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A b s t r a c t .  The P D G F  receptor-[3 mediates both mito- 
genic and chemotactic responses to PDGF-BB.  Al- 
though the role of Ras in tyrosine kinase-mediated mi- 
togenesis has been characterized extensively, its role in 
PDGF-st imulated chemotaxis has not  been defined. 
Using cells expressing a dominant-negat ive ras ,  we 
find that Ras inhibition suppresses migration toward 
PDGF-BB.  Overexpression of either Ras-GTPase acti- 
vating protein (Ras-GAP)  or a Ras guanine releasing 
factor (GRF)  also inhibited PDGF-st imulated chemo- 
taxis. In addition, cells producing excess constitutively 
active Ras failed to migrate toward PDGF-BB,  consis- 
tent with the observation that ei ther excess ligand or 
excess signaling intermediate can suppress the chemo- 

tactic response. These results suggest that Ras can 
function in normal cells to support  chemotaxis toward 
PDGF-BB and that either too little or too much Ras 
activity can abrogate the chemotactic response. In con- 
trast to Ras overexpression, ceils producing excess 
constitutively active Raf, a downstream effector of 
Ras, did migrate toward PDGF-BB.  Cells expressing 
dominant-negative Ras were able to migrate toward 
soluble fibronectin demonstrating that these cells re- 
tained the ability to migrate. These results suggest that 
Ras is an intermediate in PDGF-st imulated chemo-  
taxis but may not be required for fibronectin-stimu- 
lated cell motility. 

1 HE platelet-derived growth factor (PDGF) is both a 
| mitogen and a chemoattractant (Grotendorst et al., 
. i t .  1981; Seppa et al., 1982; Grotendorst, 1984). PDGF 
exists as a homodimer (AA or BB), or as a heterodimer 
(AB), (Heldin et al., 1986; Hammacher et al., 1988; 
Stroobant and Waterfield, 1984). There are two PDGF re- 
ceptor subunits, alpha and beta. f3-receptor dimers bind 
PDGF-BB, 13-receptor heterodimers bind both PDGF-AB 
or BB and a-receptor dimers bind all three forms of 
PDGF (AA, BB, and AB) (Hammacher et al., 1989; Mat- 
sui et al., 1989; Seifert et al., 1989). The PDGF receptors 
are tyrosine kinases which are activated by dimerization 
and autophosphorylation after ligand stimulation. Upon 
activation, the receptor associates with a number of sec- 
ondary signal transduction molecules including phosphati- 
dylinositol-specific phospholipase C-~/(PLC-~/; Kumjian et 
al., 1989), Ras-GTPase activating protein (GAP; Kaplan 
et al., 1990; Kazlauskas et al., 1992), phosphatidylinositol-3 
(PI-3) kinase (Coughlin et al., 1989; Kazlauskas and Coo- 
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1. Abbreviations used in this paper. GAP, GTPase activating protein; 
GRF, guanine-nucleotide releasing factors; LPA, lysophosphatidic acid; 
PLC-~/, phospholipase C--/; PI-3, phosphatidylinositol-3; PDGF, platelet- 
derived growth factor. 

per, 1990; Escobedo et al., 1991), and the tyrosine phos- 
phatase Syp (also called SH-PTP2) (Feng et al., 1993; 
Lechleider et al., 1993). 

The signaling pathways for PDGF-stimulated mitogene- 
sis and chemotaxis are not identical. Whereas either PLC-~/ 
or PI-3 kinase binding to the PDGF receptor can individu- 
ally transduce a growth signal initiated by PDGF (Valius 
and Kazlauskas, 1993), binding of both PLC-7 and PI-3 ki- 
nase to the PDGF receptor may be needed to promote 
chemotaxis toward a PDGF-BB gradient (Kundra et al., 
1994a). In addition, GAP binding to the receptor appears 
to negatively regulate migration toward PDGF-BB (Kun- 
dra et al., 1994a), but has no effect on mitogenesis (Fantl 
et al., 1992; Kashishian et al., 1992). 

The signaling molecule Ras has a critical role in mediat- 
ing the cellular effects of a number of tyrosine kinases (Cai 
et al., 1990; de Vries-Smits et al., 1990; Shou et al., 1994). 
Ras is a guanine nucleotide binding protein that is active 
when bound to GTP and inactive when bound to GDP 
(Grand and Owen, 1991). Ras has a low level of intrinsic 
GTPase activity which converts Ras-bound GTP to GDP. 
Ras-mediated GTP hydrolysis is accelerated by the GTP- 
ase activating protein GAP (Trahey and McCormick, 
1987). In contrast, Ras-guanine-nucleotide releasing fac- 
tors (GRFs) such as the Ras-GRF originally isolated from 
brain tissue (Shou et al., 1992), accelerate the rate of gua- 
nine-nucleotide exchange, thus activating Ras protein. Other 
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regulators of guanine nucleotide exchange that have been 
reported include Sos, the mammalian son of sevenless pro- 
tein which binds directly to Ras and is linked to the EGF 
receptor by a complex that includes GRB-2 (Gale et al., 
1993; Li et al., 1993; Rozakis-Adcock, 1993) or to the 
PDGF receptor via GRB-2 and the SH-PTP2 tyrosine 
phosphatase (Syp; Li et al., 1994), and Vav, which may link 
the T cell receptor-CD3 complex to Ras activation in he- 
matopoietic cells (Gulbins et al., 1993). 

Ras regulates both differentiation and mitogenesis. For 
example, tyrosine kinases that induce neurite outgrowth of 
PC-12 cells (Hagag et al., 1986), R7 photoreceptor devel- 
opment in Drosophila (Simon et al., 1991), or vulval devel- 
opment in Caenorhabditus elegans (Han and Sternberg, 
1990) all use a Ras-dependent signal transduction path- 
way. In addition, Ras has been shown to regulate growth 
factor-induced fibroblast mitogenesis (Cai et al., 1990; 
Mulchay et al., 1985; Stacey et al., 1991). Fibroblasts ex- 
pressing v-ras, for example, can grow in defined media 
which does not contain FGF or PDGF (Zhan and Gold- 
farb, 1986). A few downstream effectors of Ras have also 
been characterized. Ras associates with the serine/threo- 
nine kinase Raf (Vojtek et al., 1993) which has been re- 
ported to be downstream of Ras for mitogenesis (Kolch et 
al,, 1991), yet a role for Raf in chemotactic signaling path- 
ways has not been directly demonstrated. 

In order to migrate along a chemotactic gradient, a cell 
must distinguish a greater concentration of ligand at one 
end versus its opposite end. Classically, chemotaxis fol- 
lows a bell-shaped curve in which excess ligand inhibits 
chemotaxis (Devreotes and Zigmond, 1988). We have 
shown that overexpression of constitutively active chemo- 
tactic signaling molecules inhibits migration toward PDGF 
(Kundra et al., 1994b). In the current study, we have inves- 
tigated whether overexpression of either constitutively ac- 
tive Ras or Raf could lead to inhibition of PDGF-stimu- 
lated chemotaxis. To further study the role of Ras in 
chemotaxis, we tested the ability of cells transfected with a 
dominant negative Ras mutant to migrate to PDGF as 
well as to other attractants such as lysophosphatidic acid 
(LPA) (van Corver et al., 1989) and fibronectin (Andel- 
mann et al., 1989) that stimulate motility through non- 
tyrosine kinase receptor pathways. Our results suggest 
that Ras functions as an intermediate in chemotactic sig- 
naling by the PDGF [3-receptor. 

Materials and Methods 

Cell Lines 
ras-transfected BALB/c 3T3 cells were provided by Drs. Charles Stiles 
and raftransfected BALB/c 3T3 cells were provided by Dr. Thomas Rob- 
erts. ras, raf, and dominant-negative ras-expressing NIH(M17) cells were 
donated by Dr. Geoffrey Cooper. GRF expressing NIH 3T3 cells were 
produced as previously described (Shou et al., 1992). NIH 3T3 V8 and 
GAP4 cell lines were provided by Drs. Jackson Gibbs and Michael Weber 
(Merck Research Laboratories, West Point, PA). All cell lines were 
grown in DME (GIBCO BRL, Gaithersburg, MD), supplemented with 
glutamine, penicillin, streptomycin, and 10% calf serum at 37°C in a hu- 
midified 10% CO2 incubator. NIH(M17), ras and raftransfected cell lines 
were grown in 500 p,g/ml G418 (Genetecin, GIBCO, BRL). The media for 
V8 and GAP4 cells was a-MEM containing dialyzed fetal calf serum (Hy- 
clone, Logan, UT) and 1 p,M methotrexate (Sigma Chemical Co., St. 
Louis, MO). Ceils grown in our laboratory were tested periodically by 
Western blotting for their continued expression of the transfected genes 
as well for expression of the PDGF receptor-13. 

Chemotaxis Assay 

Migration was assayed using a multiweU chamber assay (after Boyden, 
1962). 25 x 80-mm 8 p.m polyvinylpyrrolidine free filters (Nucleopore, 
Corp., Pleasanton, CA) were coated for one or two days with 100 p.g/ml 
collagen type I (Collaborative Biomedical Products, Bedford, MA) in 
0.2 N acetic acid. For some experiments, filters were coated with 1.33 p.g/ 
ml fibronectin for 15 min. A dry, coated filter was placed on a 48-blind- 
well chamber (Neuroprobe, Cabin John, MD) over wells containing at- 
tractant diluted in DME (JRH Biosciences, Lenexa, KS) or DME alone. 
The gasket and upper part of the chamber were then assembled. After 
trypsinization and dilution, 15,000 cells in 50 p.1 of DME were added to the 
top wells. The chamber was then placed in a 37°C, 10% CO2 incubator for 
4 h. Next, the chamber was disassembled and the side of the filter to which 
the cells were added was scraped. The migrating cells were then fixed in 
formalin, washed in PBS, and stained overnight in Gill's triple strength he- 
matoxylin (Polysciences, Warfington, PA). After three washes in water, 
the filter was mounted in glycerol. All cells within an area representing a 
well were counted visually. Error bars represent the standard error of 
three or four replicates. 

Western Blot Analysis 

Cells were washed in ice-cold PBS, scraped off the dish and lysed in 1 ml 
of ice-cold lysis buffer (10 mM Tris, pH 8.0, 137 mM NaCI, 10% glycerol, 
1% NP-40) containing 1 mM phenyl-methylsulphonyl fluoride, 0.15 U/ml 
aprotinin, and 1 mM sodium orthovanadate (Sigma Chemical Co.) for 20 
min. Insoluble material was removed by centrifugation at 4°C for 10 min 
at 14,000 g. Cell lysates were denatured by boiling in Laemmli sample 
buffer containing 100 mM DTI? and were resolved by 7.5% SDS-poly- 
acrylamide gel electrophoresis. Gels were transferred to nitrocellulose 
membranes, blocked with 5.0% non-fat dried milk and probed with anti-  
human PDGF receptor-13 antibody (UBI, Lake Placid, NY). For detection 
by enhanced chemiluminescence (ECL, Amersham Corp., Arlington 
Heights, IL) blots were washed 4x in Tris-buffered saline with 0.05% 
Tween 20, dried and exposed to ECL-Hyperfilm (Amersham Corp.). 

Results 

Dominant Negative Ras Inhibits Migration 
toward PDGF-BB 

To examine whether Ras is along the signal transduction 
pathway for PDGF-BB-mediated chemotaxis, we tested 
the effect of suppressing Ras activity using a dominant- 
negative Ras mutant. Ras H with an asparagine for serine 
substitution at position 17 (Asn-17) has a 20-40-fold de- 
creased affinity for GTP without a significant change in its 
affinity for GDP (Feig and Cooper, 1988). By competing 
with an upstream Ras regulator (Farnsworth and Feig, 
1991; Medema et al., 1992), the Asn-17 Ras mutant inhib- 
its endogenous Ras activity, thereby acting as a dominant- 
negative mutant. To study PDGF-BB-mediated chemo- 
taxis, we used NIH3T3 cells transfected with the ASH-17 
ras mutant under the control of the dexamethasone induc- 
ible mouse mammary tumor virus long terminal repeat 
promoter, NIH(M17) cells (Cai et al., 1990). After a 2-d 
incubation with 5 x 10 -7  M dexamethasone, the number 
of NIH(M17) cells crossing the filter in response to 
PDGF-BB decreased compared to non-induced cells (Fig. 
1 A). Induction of Ras expression by dexamethasone had 
no significant effect on the amount of PDGF receptor-J3 
on these cells (Fig. 1 A, inset). In contrast, nontransfected 
3T3 cells showed similar migration toward PDGF in the 
presence or absence of dexamethasone induction (data 
not shown). 

To determine whether the requirement for activated 
Ras was specific to tyrosine kinase receptor-mediated cell 
motility, we tested two additional attractants that bind to 
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side relative to the opposite side. We have shown previ- 
ously that the chemotactic response to PDGF-BB can be 
reduced by either excess ligand or by excess receptor ty- 
rosine kinase activity (Kundra et al., 1994b). To analyze 
whether excess constitutive Ras activity could also affect 
PDGF-BB mediated chemotaxis, we employed cells pro- 
ducing constitutively active v-Ras. As shown in Fig. 3 A, 
NIH 3T3 cells expressing v-ras n failed to migrate toward 
PDGF-BB, although they did display normal random mo- 
tility in the absence of PDGF. In contrast, control NIH 
3T3 cells responded to PDGF in a dose-dependent man- 
ner. Similarly, BALB/c 3T3 cells producing constitutively 
active EJ-Ras did not migrate toward PDGF-BB whereas 
the control BALB/c 3T3 displayed directional migration 
toward PDGF-BB (Fig. 3 B). 

Figure 1. Migration of M17 cells which have dexamethasone in- 
ducible expression of dominant-inhibitory ras toward PDGF-BB. 
(A) Cells were treated with vehicle (©) or vehicle containing 5 × 
10  -7  M dexamethasone (0) for 2 d before plating onto 8 Ixm po- 
rous filters in a Boyden multiwell chemotactic chamber contain- 
ing the indicated concentrations of PDGF in the bottom well. 
Expression of the PDGF-receptor-13 was not altered after dexa- 
methasone induction of dominant negative Ras (inset). 

differing receptor types. LPA is a serum component that 
mediates mitogenesis and chemotaxis, operating via a per- 
tussis toxin-sensitive Gi protein (van Corven et al., 1989; 
Jalink et al., 1993). As shown in Fig. 2 A, we find that 
LPA-stimulates M17 cell motility in the Boyden chamber 
assay and that this is inhibited by induction of dominant-  
negative Ras. In contrast, soluble fibronectin, a known at- 
tractant (Fukai et al., 1992; Aznavoorian et al., 1990) that 
operates via an integrin-mediated pathway, stimulates mo- 
tility that is insensitive to the effects of dominant-negative 
ras expression (Fig. 2 B). This result indicates that cell mi- 
gration toward gradients of PDGF and LPA but not of fi- 
bronectin, are mediated by a pathway that contains acti- 
vated Ras as an essential intermediate. The result with 
fibronectin also demonstrates that the dominant-negative 
ras expression does not result in a general inhibition of cell 
motility or in a disruption of all directional cell motility. 

Constitutive v-ras Activity Inhibits Migration 
toward PDGF-BB 

Chemotaxis is a gradient-dependent process that requires 
a cell to distinguish a higher ligand concentration on one 

Modulators o f  Ras Activity Af fect  
PDGF-stimulated Chemotaxis 

The experiments described above suggest that the chemo- 
tactic response to PDGF-BB is inhibited when Ras activity 
is altered. To confirm this finding, we used intracellular 
modulators of Ras that regulate the phosphorylation state 
of the bound guanine nucleotide. GAP, for example, stim- 
ulates the GTPase activity of normal Ras, thus, inhibiting 
Ras activity (Trahey et al., 1988; Vogel et al., 1988). In 
GAP4 cells, which overexpress GAP ~110-fold, Ras-GTP 
levels are reduced in both quiescent and PDGF-stimulated 
cells relative to cells transfected with vector alone (Gibbs 
et al., 1990). As shown in Fig. 4, these cells show reduced 
migration toward PDGF relative to control cells trans- 
fected with vector alone. Both cell types displayed a low 
level of unstimulated random motility in the absence of 
stimulant, implying that the cells have the ability to mi- 
grate across the filter. 

As noted above, excess constitutive Ras activity sup- 
plied by transfection with mutant v-ras resulted in decreased 
chemotactic responsiveness to PDGF-BB. Ras can also be 
activated by expression of a guanine nucleotide-releasing 
factor such as the brain-derived GRF (Shou et al., 1992). 
GRF accelerates the rate of GDP release from Ras, in- 
creasing the formation of Ras-GTP. Cells expressing con- 
stitutive GRF activity showed reduced migration toward 
PDGF-BB (Fig. 5) in the Boyden chamber assay confirming 
that constitutive Ras activity inhibits PDGF-BB mediated 
chemotaxis. No significant difference in PDGF receptor-J3 
number was observed in the GRF or GAP overexpressing 
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Figure 2. Migration of M17 cells in response 
to lysophosphatidic acid (LPA) or fibronec- 
tin. LPA or fibronectin were added in the in- 
dicated concentrations to the lower chambers 
of Boyden multiwell chemotactic chambers. 
M17 cells transfected with dexamethasone- 
inducible dominant negative Ras were tested 
for their ability to migrate toward LPA (A) or 
fibronectin (B) in the presence or absence of 
48-h pretreatment with dexamethasone. 
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Figure 3. Effect of ras over- 
expression on migration to- 
ward PDGF-BB. (,4) Migra- 
tion toward PDGF-BB of 
NIH 3T3 cells (©) or NIH 
3T3 cells producing constitu- 
tively active Ras (1). (B) Mi- 
gration toward PDGF-BB of 
BALB/c 3T3 cells (©) or 
BALB/c 3T3 cells producing 
constitutively active Ras ( i ) .  

cell lines (data not shown) and several groups have previ- 
ously demonstrated that Ras overexpression does not 
markedly alter PDGF receptor-13 number or affinity (Ben- 
jamin et al., 1987; Zullo and Failer, 1988; Kaplan et al., 
1990). Thus, our results are unlikely to be due to de- 
creased levels of PDGF receptors in these cell lines. Our 
current results do suggest that a window of appropriate 
Ras activity is necessary for optimal chemotactic move- 
ment toward PDGF-BB. Substantially increased or de- 
creased Ras levels disable the chemotactic response. 

Excess Raf Activity Does Not Affect Migration 
toward PDGF-BB 

To identify potential downstream Ras effectors involved 
in mediating chemotaxis toward PDGF-BB, we tested the 
effect of constitutive Raf activity on PDGF induced chemo- 
taxis. Raf binds Ras directly (Vojtek et al., 1993) and ap- 
pears to be downstream of Ras in a number of signal trans- 
duction pathways (Adelmann et al., 1989; Cantley et al., 
1991; Carthew and Rubin, 1990) including those leading to 
mitogenesis (Kolch et al., 1991). If Raf operates down- 
stream of Ras in PDGF-induced chemotaxis, one would 
expect constitutively active Raf to inhibit PDGF-BB me- 
diated chemotaxis as does constitutively active Ras. Our 
results, shown in Fig. 6, demonstrate that either NIH 3T3 
or BALB/c 3T3 cells producing constitutively active Raf 
migrate effectively toward PDGF-BB. The data imply that 
unlike constitutive Ras activity, constitutive Raf activity 
does not inhibit PDGF-BB induced chemotaxis. 
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Figure 4. Effect of GAP 
overexpression of 3T3 cell 
migration toward PDGF-BB. 
Migration toward PDGF-BB 
was measured in the multi- 
well Boyden chamber assay 
using control NIH 3T3 cells 
expressing methotrexate re- 
sistance alone ((3) or express- 
ing both methotrexate resis- 
tance and Ras-GAP (1). 
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Figure 5. Effect of guanine 
nucleotide-releasing factor 
(GRF) overexpression on 
3T3 cell migration toward 
PDGF-BB. Migration to- 
ward PDGF-BB of NIH 3T3 
cells (©) or NIH 3T3 cells ex- 
pressing GRF (e).  

Discussion 
Using cells in which Ras activity has been modulated, we 
find that either stimulation or suppression of Ras activity 
results in reduced cellular chemotaxis toward PDGF-BB. 
Ras has previously been shown to be an essential interme- 
diate in PDGF-stimulated mitogenesis (Zhan and Gold- 
farb, 1986). Our current results imply that Ras is also an 
important signaling intermediate in PDGF-stimulated 
chemotaxis. Previous results from our laboratory (Kundra 
et al., 1994a) indicated that the signaling pathways for mi- 
togenesis and chemotaxis are not identical. Consequently, 
the finding that Ras is involved in the chemotactic path- 
way highlights this molecule as an important intermediate 
in two distinct responses to a single ligand. 

Evidence for an involvement of Ras in chemotactic sig- 
naling is provided by experiments using a dominant nega- 
tive Ras construct in which asparagine is substituted for 
serine normally present at amino acid 17 (NIH-M17 cells). 
Expression of dominant-negative ras resulted in severely 
limited chemotaxis toward PDGF-BB. Expression of dom- 
inant-negative ras also blocked cell motility induced by 
lysophosphatidic acid but not that stimulated by fibronec- 
tin. These results indicate that Ras is not essential for all 
forms of stimulated cell motility in 3T3 cells. 

Previously, it was shown that the level of dominant-neg- 
ative Ras activity can influence Ras-dependent functions 
such as los induction in fibroblasts (Amrosio et al., 1989) 
and neurite outgrowth in PC-12 cells (Szeberenyi et al., 
1990). Ras activation has recently been shown to have a 
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Figure 6. Effect of activated 
Raf overexpression on 3T3 
cell migration toward PDGF- 
BB. (A) Migration toward 
PDGF-BB of NIH 3T3 cells 
(©) or of NIH 3T3 cells pro- 
ducing constitutively active 
Raf (11). (B) Migration to- 
ward PDGF-BB of BALB/c 
3T3 cells (©) or BALB/c 3T3 
cells producing constitu- 
tively active Raf ( i ) .  
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role in wound-stimulated cell motility in corneal and vas- 
cular endothelial cells (Sosnowski et al., 1993; Fox et al., 
1994) whereas conflicting results have been reported for 
the role of Ras in epithelial cell scattering in response to 
scatter factor (Takaishi et al., 1994; Hartmann et al., 1994). 
The level of downstream Ras signaling activity appears to 
influence chemotaxis as well since PDGF stimulates chemo- 
taxis but not random motility in 3T3 cells (Kundra, 1994b) 
and since cells expressing dominant negative Ras remain 
able to move toward fibronectin. 

Ras p21 can be regulated at the level of GTPase activity 
and at the level of nucleotide exchange. Ras is active when 
bound to GTP (Grand and Owen, 1991). GAP accelerates 
the intrinsic GTPase activity of normal Ras by up to 100- 
fold (Trahey and McCormick, 1987). Cells producing 
PDGF receptor mutants unable to bind GAP display wild- 
type levels of mitogenesis (Fantl et al., 1992; Kashishian et 
al., 1992), but increased migration in response to PDGF- 
BB (Kundra et al., 1994a). Thus, although GAP binding to 
the PDGF receptor does not effect mitogenesis, it can neg- 
atively regulate chemotaxis toward PDGF-BB. 

If Ras activity were involved in PDGF-BB mediated 
chemotaxis, one would expect that GAP overexpression 
could potentially influence migration toward PDGF by re- 
ducing the percentage of Ras activated by PDGF. GAP4 
cells overexpress GAP ll0-fold and have a reduced per- 
centage of Ras complexed to GTP when unstimulated and 
when stimulated with PDGF (Gibbs et al., 1990). These 
cells were inhibited in their ability to migrate toward 
PDGF-BB, adding support to the hypothesis that GAP 
can regulate the chemotactic response to PDGF-BB, pos- 
sibly by suppressing Ras activity. 

Classically, the chemotactic response is characterized by 
a bell-shaped curve with either too little or too much 
ligand limiting chemotaxis (Devreotes and Zigmond, 1988). 
Inhibition of the chemotactic response can be accom- 
plished either by autocrine production of excess ligand or 
by expression of constitutive tyrosine kinase activity (Kun- 
dra et al., 1994b). If the reduced chemotactic response to 
excess ligand were mimicked at the level of the down- 
stream effector, excess Ras activity should also suppress 
chemotaxis in response to PDGF-BB. In support of this 
hypothesis, we found decreased chemotaxis toward PDGF 
in cells in which Ras activity was upregulated by two dif- 
ferent methods. In the first case, we employed cells over- 
expressing brain-derived GRF, a guanine-releasing factor 
that facilitates exchange of Ras-GDP to Ras-GTP, result- 
ing in increased levels of activated Ras (Shou et al., 1992). 
In the second case, we employed cells producing constitu- 
tively activated EJ-Ras or v-HA-Ras. In all cases tested, 
cells with increased r a s  expression showed diminished 
chemotaxis toward PDGF. 

We did not observe a significant increase in the unstimu- 
lated random motility of our r a s  expressing cells, although 
such an increase has been reported previously (Groten- 
dorst, 1984). These differences may be due to the type of 
Ras used. We have shown previously, however, that signal 
transduction pathways that modulate PDGF-stimulated 
chemotaxis are independent of those mediating unstimu- 
lated random motility (Kundra et al., 1994b). The loss of 
the chemotactic response in Ras transfected cells cannot 
be ascribed to cellular transformation since cells trans- 

formed by the serine/threonine kinase Mos do migrate to- 
ward PDGF (Kundra et al., 1994b) and data presented 
here show that cells producing constitutively active Raf 
are also capable of migrating toward PDGF-BB. Thus, 
transforming oncogene expression does not necessarily di- 
minish the chemotactic response to PDGF-BB. 

Raf has been reported to be downstream of Ras in a 
number of signal transduction systems, including mitogen- 
esis of fibroblasts (Amrosio et al., 1989; Cantley et al., 
1991; Kolch et al., 1991). Raf is recruited by Ras to the 
plasma membrane where it is subsequently activated (Dent 
et al., 1992; Stokoe et al., 1994; Leevers et al., 1994). Raf 
kinase activity directly leads to activation of MAP kinase 
kinase (Mek-1) and subsequent activation of MAP kinase 
(Dent et al., 1992; Huang et al., 1993; Kyriakis et al., 1992; 
Williams et al., 1993). Complexes containing Ras-GTP, 
Raf and MAP kinase kinase have been isolated (Moodie et 
al., 1993). If Raf were downstream of Ras for migration to- 
ward PDGF, constitutive Raf activity, like constitutive 
Ras activity, might be expected to suppress chemotaxis to- 
ward PDGF. However, both BALB/c 3T3 cells and NIH 
3T3 cells producing constitutive Raf activity migrated to- 
ward PDGF-BB. 

Although Raf appears to be along the pathway for PDGF 
mediated mitogenesis, it may lie outside the pathway for 
PDGF-BB mediated chemotaxis. This would imply that 
the signal transduction pathways leading from a single ty- 
rosine kinase receptor to either mitogenesis or chemotaxis 
diverge at a point distal to Ras activation in 3T3 cells. If 
Raf is not involved in signaling for PDGF-induced chemo- 
taxis, it would imply either that MAP kinase is not in- 
volved or that an alternate route of MAP kinase activation 
was being employed such as has been proposed for MAP 
kinase activation in rat fibroblasts (Kizakondoh and 
Okayama, 1993). Bornfeldt et al. (1994) have also re- 
ported that IGF-1 can induce chemotaxis independent of 
MAP kinase activation. Ras can interact directly with the 
catalytic subunit of PI3-kinase and inhibition of Ras activ- 
ity suppresses growth factor-induced PI3-kinase activity 
(Rodriguez-Viciana et al., 1994). Vojtec et al. (1994b) have 
found additional Ras-binding proteins other than Raf and 
such proteins may play a role in chemotaxis. Together, 
these results imply that novel signaling intermediates that 
are downstream of Ras may function in the intracellular 
regulation of PDGF-BB mediated chemotaxis. Future 
work will be necessary to determine whether activation of 
MAP kinase is necessary for PDGF-induced chemotaxis 
since MAP kinase is necessary for mitogenesis and can be 
activated by both Raf-dependent and Raf-independent 
mechanisms (Dent et al., 1992). 

Using studies employing both inhibited and excess Ras 
activity, we identify Ras as a member of the signal trans- 
duction pathway for PDGF-BB mediated chemotaxis. We 
also support the idea that one may be able to identify down- 
stream effectors or mediators of downstream effectors in- 
volved in chemotaxis toward a particular ligand by either 
inhibiting or over-producing signaling molecule activity 
(Kundra et al., 1994b). Our data suggests that Ras is a 
downstream modulator of PDGF-BB mediated chemotaxis. 
Further such studies should help distinguish signaling path- 
ways involved in regulating chemotaxis and in finding post- 
Ras pathways that transduce signals involved in chemotaxis. 
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