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Abstract: There are numerous strains of Chlorella with a corresponding variety of metabolic pathways.
A strain we previously isolated from wastewater in northern Sweden can grow heterotrophically as
well as autotrophically in light and has higher lipid contents under heterotrophic growth conditions.
The aims of the present study were to characterize metabolic changes associated with the higher
lipid contents in order to enhance our understanding of lipid production in microalgae and poten-
tially identify new compounds with utility in sustainable development. Inter alia, the amino acids
glutamine and lysine were 7-fold more abundant under heterotrophic conditions, the key metabolic
intermediate alpha-ketoglutarate was more abundant under heterotrophic conditions with glucose,
and maltose was more abundant under heterotrophic conditions with glycerol than under autotrophic
conditions. The metabolite 3-hydroxy-butyric acid, the direct precursor of the biodegradable plastic
PHB (poly-3-hydroxy-butyric acid), was also more abundant under heterotrophic conditions. Our
metabolomic analysis has provided new insights into the alga’s lipid production pathways and iden-
tified metabolites with potential use in sustainable development, such as the production of renewable,
biodegradable plastics, cosmetics, and nutraceuticals, with reduced pollution and improvements in
both ecological and human health.
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1. Introduction

Microalgae can play important roles in sustainable development and amelioration of
climate change [1,2], both as potential sources of renewable fuel (biodiesel) and substances
such as the biodegradable plastic polyhydroxy butyric acid (PHB, from poly-3-hydroxy-
butyric acid). There is a direct comparison that can be drawn between micro particles
from plastic and diesel particles. Diesel engines exhaust small particles that are less than
2.5 µm [3]. These particles are capable of crossing cell membranes and triggering oxidative
stress and inflammation that have been linked to increased risk of cardiovascular and
respiratory diseases and lung cancer [4]. Taking this into account, it is urgent to decrease the
use of plastics from oil-based materials by increasing the use of products from microalgae.

Microalgae frequently live in varying environments of light, salinity, and temperature.
Thus, the production of algal-derived, biologically active compounds may be determined
by the selection of appropriate cultivation conditions, making these algae natural bioreac-
tors. Cultivation methods were reviewed [5], and it was found that the carbon assimilation
and energy dissipation pathways strongly differ between autotrophically, mixotrophically,
and heterotrophically grown algae. Thus, for example, the heterotrophic growth on glucose
of C. vulgaris is reportedly superior to both autotrophic and mixotrophic cultivation for
such purposes [6], with particularly high productivity of biodiesel and other biorefinery
products [5]. We previously identified a strain of Chlorella that had a high lipid content
(39.5%), good biodiesel quality, and low carbohydrate contents (8.2%) when grown under
heterotrophic conditions with glycerol as the carbon source. However, the alga’s carbo-
hydrate contents were higher under autotrophic and mixotrophic conditions; thus, an
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appropriate modulation of growth conditions could be used to enhance the production of
bioethanol from its biomass [7]. A strain of C. zofingiensis reportedly has higher contents of
total lipids, neutral lipids, triacylglycerols (TAGs, key precursors of biodiesel production),
and oleic acid under heterotrophic conditions [8]. In stark contrast, ref. [9] found that the
lipid content of the yellow-green alga Tribonema minus was much higher under autotrophic
conditions than under heterotrophic conditions. Of course, diverse variables influence
lipid production, and attempts to improve the financial viability of biofuel production
from some microalgae have been shown. Inter alia, nitrogen starvation can substantially
increase their TAG generation; thus, this is the most common approach for enhancing their
lipid production [10]. The concentration of one precursor of biodiesel production, namely
triacylglycerol, was shown to significantly increase in certain microalgae species upon ni-
trogen starvation [10]. All these studies described different aspects of algae under different
growth conditions. However, the understanding of these variations is currently hindered
by a paucity of detailed metabolomic information on heterotrophically grown algae [11],
relative to the vast amounts of metabolomic information available on autotrophically and
mixotrophically grown algae [12,13]. This prompted us to compare metabolomic profiles
of the Chlorella strain we previously isolated under heterotrophic and autotroph growth
conditions. We also compared cultures of the alga grown with both glucose and glycerol
as the sole carbon source, as the former is widely used for this purpose, but the latter is
cheaper [14,15]. Glycerol is absorbed by algae that can use it as a carbon source via simple
diffusion, then transformed by reaction with ATP into glyceraldehyde-3-phosphate, an in-
termediate in glycolysis, and subsequently triose phosphate. The mechanisms and enzymes
involved are well understood [5], but the mechanisms involved in the higher lipid pro-
duction under heterotrophic conditions with glycerol as the carbon source remain unclear.
Thus, the main aims of the study presented here were to characterize the metabolic changes
associated with the alga’s higher lipid contents under heterotrophic growth conditions.
Such information is important for modulating lipid production in microalgae and hence
the production of diverse substances with potential utility in sustainable development,
with benefits for both ecological and human health.

2. Materials and Methods
2.1. Growth Assessment

To examine the effects of the growth conditions on the alga’s biomass, sets of eight
cultures of the locally isolated microalga strain Chlorella sp. [7] were grown in autotrophic,
mixotrophic, and heterotrophic conditions for 8 days. In all cases, the basal growth
medium was municipal wastewater collected and immediately stored at 4 ◦C for at most
10 days. Thereafter, the wastewater was filtered, autoclaved, and otherwise treated as
previously described [7]. Algal inoculum was grown in 100 mL portions of BG11 in 500 mL
flasks under autotrophic conditions (16 h light/8 h dark cycles, with 120 µmol/m2 s−1

illumination during the light phase and constant bubbling with 5% CO2, at 25 ◦C). To
start each growth experiment, 200 mL of wastewater in a 1 l flask was inoculated with
inoculum to an optical density (OD630) of 0.06 (equivalent to 0.005 g algal biomass). In
autotrophic and mixotrophic conditions, cultures were bubbled with 5% CO2, and both
mixotrophic and heterotrophic cultures were supplemented with either glycerol or glucose
(VWR International, Pennsylvania, PA, USA) to a final concentration of 37.5 mM.

2.2. Harvesting

The biomass was collected after 8 days of growth, and after washing twice with
distilled water, the cells were recovered by centrifugation (3700× g, 6 min), immediately
placed in liquid N2, then freeze-dried for 3 days and weighed.

2.3. Sample Preparation for Metabolomic Analysis

Samples were prepared as previously described [16]. Briefly, 1 mL of extraction
buffer (20:20:60 v/v chloroform:water:methanol) including internal standards was added
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to 9–12 mg of each sample. The samples were shaken with a tungsten bead in a mixer
mill at 30 Hz for 3 min, the bead was removed, and the sample was centrifuged at +4 ◦C,
14,000 rpm, for 10 min. Next, 200 µL of supernatant was transferred to a micro vial, and
solvents were evaporated.

2.4. Derivatization

Derivatization was performed as earlier described [16]. Briefly, 30 µL of methoxyamine
(15 µg/µL in pyridine) were added to the dry sample, which was shaken vigorously for
10 min before left to react at room temperature for 16 h. Following addition of 30 µL of
N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA), the samples were shaken and
incubated for a further hour at room temperature. A 30 µL portion of methyl stearate
solution (15 ng/µL in heptane) was subsequently added, and the samples were subjected
to gas chromatography-mass spectrometry (GC-MS, Agilent 7890, Santa Clara, CA, USA)
analysis, as previously described [16,17]. Briefly, 1 µL of the derivatized sample was injected
in either splitless or split (1:20) mode by an CTC Combi Pal Xt Duo (CTC Analytics AG,
Zwingen, Switzerland) autosampler into an Agilent 7890A gas chromatograph equipped
with a 30 m × 0.25 mm i.d. fused-silica capillary column with a chemically bonded 0.25 µm
DB 5-MS UI stationary phase (J&W Scientific, Folsom, CA, USA). The voltage was turned
on after a 290 s solvent delay.

2.5. Data Evaluation

Raw MS files from the metabolic analyses were exported from ChromaTOF software
(LECO, St Joseph, MI, USA) in NetCDF format to Matlab™ (Mathworks, Natick, MA,
USA). Following pre-treatment procedures, such as baseline correction and chromatogram
alignment in Matlab, the data were further processed by peak integration and multivariate
curve resolution using custom scripts. Next, analytes were identified by comparison of
their retention time indices and mass spectra with those of entries in both in-house and
public databases.

Finally, differences between cultures grown under different conditions were explored
by principal coordinate analysis (PCA) using SIMCA (Umetrics, Umeå, Sweden). The
differences between algae grown heterotrophically with glycerol, heterotrophically with
glycerol, autotrophically, and mixotrophically were analysed by t-tests.

3. Results and Discussion

Algal heterotrophic metabolism can occur in the light as well as the dark [18]. How-
ever, the metabolic pathways involved differ and require elucidation in order to optimize
algal exploitation for production of biodiesel and/or other substances. For example, re-
duced power and energy (ATP) are obtained via glycolysis, the pentose phosphate and
tricarboxylic acid pathways linked to mitochondrial electron transport pathways, in dark,
aerobic conditions, but via photosynthesis in autotrophic conditions [18]. This study pro-
vides more detailed information on the metabolic profiles, and hence key pathways, of the
local Chlorella strain under four conditions: autotrophic, mixotrophic, and heterotrophic
with glycerol or glucose as the sole carbon source.

3.1. Growth of Chlorella Vulgaris

After 8 days of growth, there was no significant difference in biomass between cultures
grown autotrophically, mixotrophically with glycerol, and heterotrophically with glucose
(Table 1). However, cells grown mixotrophically with glucose and heterotrophically with
glycerol had accumulated less biomass than autotrophic cells (Table 1). These results are
consistent with previous findings regarding the growth of Chlorella sp. and the amounts of
phosphorous and nitrogen taken up by heterotrophic grown cultures [7]. It was shown that
the amount of phosphorous and nitrogen taken up by heterotrophically grown cultures
with glycerol were 5 and 19 mg·L−1, corresponding to 83 and 80% uptake, respectively [7].
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Table 1. Accumulated biomass of the Chlorella strain after 8 days of growth under conditions of cultiva-
tion: autotrophic (A), mixotrophic with glycerol (Y M), heterotrophic with glycerol (Y H), mixotrophic
with glucose (U M), heterotrophic with glucose (U H). Means ± standard deviations, n = 8.

Growth Condition

A 1.25 ± 0.09
Y M 1.31 ± 0.10
Y H 0.52 ± 0.03
U H 1.29 ± 180
U M 0.70 ± 0.05

3.2. Metabolomic Analysis of Chlorella Alga Under Auto-, Mixo-, and Heterotrophic Conditions

The GC-MS analysis identified 74 distinct metabolites that were present in all samples
(Table 2). Key metabolites and metabolite classes separating the samples are shown in the
constructed traditional principal coordinate analysis PCA plot presented in Figure 1, which
clearly reveals correlations between the abundance of metabolites and growth conditions. It
shows that the growth conditions substantially influenced the levels of certain metabolites,
inter alia there were major metabolomic differences between cells grown heterotrophically
with glucose and glycerol; thus, it was clearly shown that the samples could be separated
based on the growth conditions. Moreover, there were major differences between cells
grown heterotrophically in glucose and glycerol (Figure 1).

Table 2. Metabolites detected in Chlorella strain and their retention indexes (RI), compound classes
(CC; FA = fatty acids; CA = carboxylic acids; AA = amino acids; EC = energy compound; V = vitamins;
P = phenols; ACA = amino carboxylic acid; Carb= carbohydrates; AlA = alkylamines; Carb= carbohy-
drate; AM = amides; SP = sugar phosphates; L = lipids) and P values. The P values of differences
in levels of the metabolites between algae grown in autotrophic and heterotrophic conditions with
glycerol are according to t-tests. Mean ± standard errors, n = 8.

Compounds RI C.C. p Value

1-myristoylglycerol 2382 FA <0.0001

2-methylmalic acid 1460 CA <0.0001

2-oxoisocaproic acid 1207 FA 0.2423

3-hydroxybutyric acid 1156 CA 0.0377

3-hydroxyisobutyric acid 1156 CA 0.0065

4-aminobutyric acid 1522 CA 0.0860

4-hydroxyphenylacetic acid 1636 CA 0.0064

5-hydroxypipecolic acid 1588 CA 0.0139

Adenosine-5-monophosphate 3050 EC 0.0108

Alanine 1100 AA 0.0010

Alpha-ketoglutaric acid 1565 CA 0.0638

Alpha-tocopherol 3145 V 0.5274

Aminomalonic acid 1458 ACA 0.0425

Arabinose/ribose/xylose 1672 CA <0.0001

Arabitol 1697 SA 0.0002

Asparagine 1658 AA 0.0696

Aspartic acid 1507 AA 0.0011
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Table 2. Cont.

Compounds RI C.C. p Value

Benzoic acid 1252 P 0.0420

Beta-alanine 1419 AA 0.0543

Cadaverine 1831 AlA <0.0001

Citric acid 1800 CA <0.0001

Dehydroascorbic acid dimer 1837 V 0.0002

Disaccharide 2515 Carb 0.0303

Eicosanoic acid 2435 FA 0.0388

Ethanolamine 1260 AA 0.0003

Fructose-6-phosphate 2280 SP 0.0041

Fumaric acid 1342 CA 0.0112

Glucose 1876 S 0.0393

Glucose-6-phosphate 2316/2327 SP 0.0008

Glutamic acid 1607 AA 0.0485

Glutamine 1763 AA 0.0438

Glyceric acid 1318 CA <0.0001

Glyceric acid-3-phosphate 1787 CA <0.0001

Glycerol 1267 SA <0.0001

Glycerol-2-phosphate 1704 SP 0.0001

Glycerol-3-phosphate 1743 SP <0.0001

Glycine 1120 AA 0.8101

Glycolic acid 1074 CA 0.0004

Heptadecanoic acid 2139 L 0.0052

Hexadecanoic acid 2042 L 0.0616

Inositol, myo- 2074 V 0.0151

Inositol, scyllo- 2008 V <0.0001

Inositol-phosphate 2396 V 0.3207

Isoerythritol 1479 S 0.0336

Lactic acid 1057 CA 0.1729

Lysine 1848 AA 0.0232

Lyxose 1633 S 0.0059

Malic acid 1474 CA 0.6389

Maltose/turanose 2727 S <0.0001

Methylsuccinate 1320 CA <0.0001

Myristic acid 50 1844 FA 0.0027

Nicotinamide 1844 V 0.0002

Nonanoic acid 1357 FA <0.0001

Octadecatrienoic acid, 6,9,12-(z,z,z)- 2191 FA 0.061
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Table 2. Cont.

Compounds RI C.C. p Value

Octadecatrienoic acid, 9,12,15-(z,z,z)- 2218 FA 0.0370

O-phosphoetanolamine 1771 AM <0.0001

Ornithine 1453 AA <0.0001

Pantothenic acid 1980 V 0.0043

Phenylalanine 1680 A 0.0036

Putrescine 1732 AM 0.0768

Pyroglutamic acid 1518 AA 0.0315

Pyruvic acid 1049 CA <0.0001

Raffinose 3373 S 0.0062

Salicin 2488 S <0.0001

Succinic acid 1308 S <0.0001

Sucrose 2616 S 0.2146

Threonine/allo-threonine 1372 AA 0.027205

Trehalose/maltose 2721 S <0.0001

Tyrosine 1933 AA 0.6952

Valine 1208 AA 0.0455

Xylitol 1684 S 0.0050

Xylulose 1654 S <0.0001
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addition, fructose-6-phosphate was the most abundant carbohydrate and much more 
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id-3-phosphate observed under heterotrophy with glycerol as the sole carbon source may 
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Figure 1. PCA score plot showing metabolomic separation of sets of eight replicates of Chlorella cultures after 8 days
of cultivation in the following growth conditions: autotrophic (A), mixotrophic with glycerol (YM), heterotrophic with
glycerol (YH), mixotrophic with glucose (UM), heterotrophic with glucose (UH). Eight replicates for each growth condition
are shown.
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The relative abundances of selected metabolites presented in Figures 2–5 clearly show
cultivation-condition-related metabolomic variations. The levels of amino acids (notably
alanine, ornithine, and aspartic acid) were several times higher following heterotrophic
growth with glycerol than under other growth conditions (Figure 2). This has strong
physiological (as well as metabolomic) implications because in addition to being building
blocks of proteins, amino acids are precursors of diverse N-containing molecules such as
nucleic acids, polyamines, quaternary ammonium compounds, and some hormones.

Under environmental stress, de novo protein synthesis is generally inhibited, and
protein turnover and proteolytic activity are increased, resulting in increases in the total
free amino acid content [9,19]. In addition, ref. [19] also found that the N/C assimilation
and distribution pathways related to the glutamate-glutamine system, amino acid (GABA)
catabolism and synthesis, and the TCA cycle and glycolysis contribute to the shunting of
excess carbon into lipid biosynthesis.

To extend our understanding of the links between growth conditions and metabolite
contents in Chlorella sp., we focused particularly on three metabolites that play important
roles in carbon metabolism: glucose-6-phosphate, fructose-6-phosphate, and glyceric acid-
3-phosphate. All three compounds were much less abundant in cells grown heterotrophi-
cally with glycerol than in cells grown autotrophically (Table 2 and Figure 3). In addition,
fructose-6-phosphate was the most abundant carbohydrate and much more abundant un-
der autotrophic conditions than under the other conditions (Table 2 and Figure 3). As the
formation of fructose-6-phosphate is the rate-limiting step in gluconeogenesis, the low lev-
els of glucose-6-phosphate, fructose-6- phosphate, and glyceric acid-3-phosphate observed
under heterotrophy with glycerol as the sole carbon source may be associated with low
gluconeogenesis rates. This would explain the alga’s high carbohydrate contents among the
microalgae under autotrophic conditions (Figure 3). Fructose-1,6-bisphosphatase, which
catalyzes the conversion of fructose-1,6-bisphosphate into fructose-6-phosphate during
gluconeogenesis, is also reportedly up-regulated in microalgae with low lipid content
and high carbohydrate content [9,20]. This corroborates the indication that the higher
carbohydrate contents observed under all the conditions except heterotrophy with glycerol
are associated with higher contents of sugars involved in glucose synthesis.

Interestingly, several fatty acids (e.g., eicosanoid, hetadecanoic, nonanoic, arachidic,
and octadecanoic acids) and the total fatty acid content were more abundant under het-
erotrophic conditions with glycerol than under autotrophic conditions (Table 2; Figure 4).
These results support our previous finding of a correlation between heterotrophic con-
ditions with glycerol as the carbon source and high lipid production [7]. We have also
recently observed an association between high linolenic acid (18:3) content and low oleic
acid (18:1) content under heterotrophic conditions with glycerol, which improves biodiesel
quality [7]. Increased levels of fatty acids such as nonanoic acid (17:0) and arachidic acid
(20:0) (Table 2) support our previous results that heterotrophic conditions with glycerol as
the carbon source are associated with increased lipid production [7].

A metabolite of particular interest that we detected is 3-hydroxy-butyric acid
(Table 2; Figure 5), which is generally obtained from renewable carbohydrates by
fermentation [1,2]. Together with component polyhydroxy-alkanoates (PHAs) and starch-,
cellulose-, and protein-based substances, this is a major candidate for commercial bioplastic
production [21,22]. Moreover, we have previously shown that the local Chlorella sp. can
produce more lipids (including 18:1 fatty acid), which is important for biodiesel quality [7].
Similarly, [13] found that illumination significantly affected the fatty acid saturation level
in the alga Euglena gracilis, and that while it could accumulate considerable amounts of
short-chain fatty acids in the dark, its desaturase activity (and hence unsaturated fatty acid
content) was higher in the light.
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of cultivation in the following growth conditions: autotrophic (AUTO), mixotrophic with glycerol (GLY MIXO), het-
erotrophic with glycerol (GLY HETE), mixotrophic with glucose (GLU MIXO), heterotrophic with glucose (GLU HETE).
The data are presented as means ± standard deviations, n = 8. *, **, *** indicate significant differences in metabolite
concentration relative to cultures grown in heterotrophic conditions with glycerol according to Student’s t-test, p < 0.05, 0.01,
and 0.001, respectively.
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Figure 5. Relative content of 3-hydroxy butyric acid (means ± standard deviations, n = 8) in
the Chlorella cultures after 8 days of cultivation in the following conditions: autotrophic (AUTO),
mixotrophic with glycerol (GLY MIXO), heterotrophic with glycerol (GLY HETE), mixotrophic
with glucose (GLU MIXO), heterotrophic with glucose (GLU HETE). ** and *** indicate significant
differences in concentration relative to cultures grown in heterotrophic conditions with glycerol
according to Student’s t-test at p < 0.01 and 0.001, respectively.

3.3. Bioplastics

Commonly used plastics originating from oil-based materials are estimated to reach
622 MT by year 2034 [23]. Microplastics are either produced by design or are formed as
a result of degradation of macroplastics. An increasing amount of evidence suggests a
widespread exposure to microplastics from foods, drinking water, and air [3]. Replacing
microplastics with bioplastics produced from algae would be beneficial for human health.
Despite a rapid increase in the bioplastic production, it was still only 2.11 MT in 2018 [23].
The component 3-hydroxy-butyric acid is, together with polyhydroxy-alkanoates (PHAs)
and starch-, cellulose-, and protein-based substances, a major candidate for commercial bio-
plastic production [21,22]. It was found in higher amounts under heterotrophic conditions
with glycerol in this study (Figure 5).

4. Conclusions

In this study, we have identified key metabolites connected to the high lipid contents
of a Chlorella strain (isolated in northern Sweden) when grown under heterotrophic con-
ditions with glycerol as the sole carbon source. Under all the other growth conditions,
we observed higher contents of glucose-6-phosphate, fructose-6-phosphate, and glyceric
acid-3-phosphate, which may be associated with higher gluconeogenesis rates. Growth
under heterotrophic conditions with glycerol resulted in the highest levels of certain amino
acids, for reasons that are unclear and warrant further attention. Moreover, levels of 3-
hydroxybutyric acid, which can be potentially used for bioplastic production, were highest
under heterotrophic conditions. Thus, these findings may enhance our understanding of
lipid production in microalgae and facilitate their biorefinery-based exploitation, with
substantial ecological and human health benefits.
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