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Recent studies have revealed the con-
tribution of fibro-adipogenic pro-

genitors (FAPs) to the pathogenesis and
progression of Duchenne Muscular Dys-
trophy (DMD). While FAPs direct com-
pensatory regeneration at early stages of
disease, as the disease progresses they
contribute to the progressive replacement
of contractile myofibers with fibrotic
scars and fatty infiltration. Using the
mouse model of DMD – the mdx mice -
we have recently reported that FAPs
mediate the ability of HDAC inhibitors
(HDACi) to promote muscle regenera-
tion and prevent fibro-adipogenic degen-
eration at early stages of disease. This
effect is mediated by the induction of
myomiRs that, in turn, target the SWI/
SNF components BAF60A and B,
thereby favoring the formation of
BAF60C-based SWI/SNF complex,
which directs the switch from the fibro-
adipogenic to the myogenic lineage. Here
we show direct evidence of induction of
miR-206 and BAF60C, and reduction of
BAF60A, in FAPs isolated from mdx
muscles exposed to the HDACi Trichos-
tatin A (TSA). We also discuss how
increased expression of myomiRs in dys-
trophic muscles can be integrated with
circulating myomiRs to provide accurate
biomarkers of disease progression and
response to treatment.

Muscular dystrophies (MD) comprise
more than 30 inherited diseases character-
ized by progressive muscle weakness and
degeneration. The most common and
severe MD is the Duchenne Muscular
Dystrophy (DMD).

DMD is caused by mutations in the dys-
trophin gene, located on the X-chromo-
some, that lead to the absence of dystrophin
protein.1 Dystrophin-deficient muscles are
vulnerable to mechanical damage, leading to
myofiber degeneration and necrosis follow-
ing contractile activity.2 At early stages of
disease, the cycles of muscle contraction/
degeneration are counterbalanced by
“compensatory” repair, which is character-
ized by proliferation and differentiation of
muscle (satellite) stem cells (MuSCs) to
form new myofibers. These stages coincide
with a “clinical latency” of DMD, with
attenuated symptoms of disease – the
so-called “Honeymoon” stage. The progres-
sion of the disease coincides with qualitative
changes in muscle tissue composition, with
ensuing deposition of fibrotic tissue and fat,
and exhaustion of the regeneration potential
that bias muscle repair toward a progressive
replacement of contractile myofibers with
fibrotic scars and fat infiltration.3-5

While the progressive decline of com-
pensatory regeneration has been histori-
cally attributed to the functional
exhaustion of muscle satellite cells and is
currently regarded as a key event in the
pathogenesis of DMD, its relationship
with fibrosis and fat deposition has only
recently begun to be appreciated, owing
to the seminal discovery of a population
of muscle interstitial cells, originally
termed fibro/adipogenic progenitors
(FAPs).6-9 These cells can contribute to
either muscle regeneration and fibro-adi-
pogenic degeneration. In healthy muscles,
FAPs provide the support to satellite cell-
mediated regeneration during acute
injury, by integrating the signals released
from inflammatory infiltrate with the
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activation of muscle satellite cells.10 This
response is typically active in muscles of
the murine model of DMD (the mdx
mice) at early stages of disease.4 However,
as the disease progresses, these cells
become biased toward their intrinsic
fibro-adipogenic activity and repress satel-
lite cell-mediated regeneration, while pro-
moting fibrosis and fat infiltration.11,4 As
such, FAPs are currently considered a het-
erogeneous population of functionally ver-
satile cells that contribute to the
pathogenesis of DMD and possibly other
chronic degenerative muscle disorders,12

and might provide valuable target for ther-
apeutic interventions toward promoting
compensatory regeneration, while inhibit-
ing fibro-adipogenic degeneration of dis-
eased muscles.

In recent studies, we have investigated
FAPs as potential cellular mediators of the
beneficial effects of HDAC inhibitors
(HDACi) that have been observed in ani-
mal models of DMD, such as mdx
mice13-16 and Zebrafish.17 Interestingly,
HDACi exert beneficial effects in mdx
mice at early, but not late, stages of disease
and this coincides with striking changes of
FAP function and phenotype observed
along with disease progression.4 Within
the “permissive” regenerative environment
of young mdx mice, FAPs display a latent
pro-myogenic phenotype that is fully
expressed upon the exposure to HDACi,
in concomitance with the inhibition of
the fibro-adipogenic potential. By con-
trast, at late stages of DMD progression,
FAPs adopt a constitutive fibro-adipo-
genic phenotype that appears to be both
“dominant” over the pro-myogenic poten-
tial and resistant to HDACi.4

The mutually exclusive phenotypes
adopted by FAPs at different stages of dis-
ease progression and the related differen-
tial response to HDACi can be explained
by the activation of alternative transcrip-
tion networks. In our recent work,18 we
have performed an integrated genome-
wide approach to address this issue. Com-
binatorial analysis of gene expression
microarray, genome-wide chromatin
remodeling by nuclease accessibility site
sequencing (NA-seq), and small RNA
sequencing (RNA-seq) revealed that
HDACi derepress the “latent” myogenic
program in FAPs from muscles of mdx

mice at early stages, while FAPs from
muscles of mdx mice at late stages of dis-
ease are refractory to HDACi. In particu-
lar, we observed reduced chromatin
accessibility in response to HDACi at
muscle-specific loci in FAPs from old mdx
mice, as compared to FAPs isolated from
muscles of young mdx mice. This finding
suggests that in FAPs from old dystrophic
muscles the chromatin adopts a configura-
tion that precludes the reprogramming by
epigenetic drugs, such as HDACi. It also
indicates that changes in chromatin
remodeling activity, observed at early
stages of disease, are regulated by HDAC-
mediated control of the chromatin remod-
eling machinery.

Chromatin remodeling is typically cat-
alyzed by specialized complexes that are
endowed with specific enzymatic activi-
ties. The SWI/SNF chromatin remodeling
complex has been previously shown to
regulate lineage determination in many
cell types19,20 and to be required for the
activation of skeletal myogenesis in muscle
progenitors.21,22 SWI/SNF complexes
show heterogeneous composition, with
mutually exclusive incorporation of 2
enzymatic subunits (the ATPases BRG1
and BRM) and a number of structural
subunits, collectively referred to as BRG1/
BRM-associated factors (BAFs)23. Among
them, there are 3 alternative variants of
the 60 kDa subunit - BAF60a, b, and c -
which confer the affinity for tissue-specific
transcription factors.24 Despite the large
sequence homology shared by BAF60 var-
iants, they appear to exert specialized
functions in lineage determination. While
BAF60c plays a key role in both cardiac
and skeletal muscle,22,24-26 BAF60a and
BAF60b appear to be involved in the acti-
vation of alternative pathways, including
lipid metabolism.27 Thus, the finding that
pharmacological blockade of HDAC in
FAPs of young mdx mice induces BAF60c
and the muscle-specific transcriptional
activator MyoD, while down-regulating
the expression of BAF60a and b,18 sup-
ports the conclusion that HDAC-medi-
ated control of SWI/SNF composition
regulates chromatin remodeling and line-
age determination in FAPs.

Interestingly, the vast majority of
HDACi-induced nuclease accessibility
sites (NAS) annotated in FAPs from

young mdx mice associates with non-cod-
ing regions of the genome, including long
non-coding RNA (LncRNA), long and
short interspersed non-coding elements
(LINE and SINE), and microRNA
(miRs). Previous work from the Bozzoni
lab has shown an HDAC-dependent con-
trol of miR expression in mdx mice.28

Based on this report, and with the support
of microRNA high-throughput screening
(HTS) against SWI/SNF BAF60 variants,
we identified HDACi-induced miRs that
establish a reciprocal network with the
SWI/SNF complex to promote “localized”
chromatin remodelling at muscle loci and
impart the pro-myogenic phenotype in
FAPs of young mdx mice exposed to
HDACi. Specifically, we have shown that
HDACi upregulate muscle-specific miRs -
the myomiRs miR-1, miR-133, and miR-
206 - that promote muscle progenitor
proliferation and differentiation,29-31 and
could be detected in the serum in patients
affected by DMD and other muscular dys-
trophies.32-37 Indeed, studies from our
group and others18,38 have established a
direct relationship between myomiRs and
selection of BAF60 subunits, by showing
that myomiRs selectively target BAF60a
and b.

We sought to correlate the relative
expression of BAF60 variants with the
expression of myomiRs in FAPs from mdx
mice exposed to HDACi. Figure 1 shows
that after exposure to the HDACi Trichos-
tatin A (TSA), cultured FAPs isolated from
young dystrophic muscles show an increased
nuclear expression of BAF60c (Fig. 1A),
reduced levels of BAF60a (Fig. 1B), and up-
regulation of miR-206 (Fig. 1C, D). These
events underline the activation of the myo-
genic program, at the expense of the fibro-
adipogenic one, as FAPs from young mdx
mice exposed to TSA and cultured in adipo-
genic medium form miR-206 and MyHC-
positive myotubes (Fig. 1D, bottom panel),
rather than differentiating into Oil red O-
positive adipocytes (Fig. 1D, upper panel).
The activation of the MyoD/BAF60c/myo-
miR network is also required for the
increased ability of FAPs to support MuSC
differentiation after TSA treatment.4,18 The
relationship between HDAC-mediated con-
trol of muscle lineage and the ability of
FAPs to promote satellite cell-mediated
muscle regeneration is currently unclear and
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deserves further investigation. Likewise, how
HDAC-regulated chromatin remodelling
and gene expression control soluble cues
that mediate functional interactions between
FAPs and satellite cells is still unclear. The
increasing evidence on miR-mediated cell-
to-cell communication process in skeletal
muscle and, in particular, their clustering
into exosomes,39,40 suggest that miR can
also mediate functional interactions between
FAPs, MuSCs and possibly other cell types
that contribute to the regeneration process
(Fig. 2). Although highly speculative, we
postulate that myomiRs released by degen-
erating fibers and/or FAPs, could act locally
as pro-myogenic signals in the regenerative
environment at initial stages of muscle
repair.

Collectively these data indicate that
HDAC-regulated myomiR-BAF60 vari-
ant network “shapes” the composition of
the SWI/SNF complex and directs its
activity to determine whether FAPs sup-
ports compensatory regeneration or fibro-
adipogenic degeneration of dystrophic
muscles. This model is in striking analogy
with previously reported miR-mediated
control of BAF53 and 45 variants that reg-
ulate sequential stages of neurogenic
differentiation.41,42

While this data provide new insight into
the molecular pathogenesis of DMD, they
also shed new light on the detection and use
miRs as clinical biomarkers of disease pro-
gression. Beyond their active role in regulat-
ing myogenesis and skeletal muscle

homeostasis, myomiRs are passively released
in the blood as a consequence of degenera-
tion of dystrophic myofibers.34,43 Circulat-
ing myomiRs can be detected in the
peripheral blood of dystrophic patients and
their increase correlates with the severity of
the disease. Recently, myomiR quantifica-
tion in blood has been proposed as a diag-
nostic and prognostic marker more accurate
than the conventional detection of creatine
kinase (CK) in DMD patients34, because
miRs are more stable and less susceptible to
variables, such as exercise.43 The stability of
circulating miRs is likely to be preserved by
liposomes,44 protein complexes,45 and exo-
some vesicles.46 In particular, exosomes are
emerging as soluble mediators of cell-to-cell
communications that might broadcast

Figure 1. Expression of BAF60a, BAF60c and miR-206 in FAPs isolated from young mdx mice treated with TSA (Trichostatin A). (A) Expression of
BAF60c (Green), in growth medium (GM), was assessed by immunofluorescence. Nuclei were counterstained with DAPI (blue) (Left panel). The percent-
age of BAF60c positive cells per field was measured and reported as graphed (Right panel). The error bars indicate SEM. (B) Representative images of
BAF60a (Red) expression assessed by immunofluorescence in GM (Left panel). Nuclei were counterstained with DAPI (blue). The right panel shows the
percentage of BAF60a positive cells per field (Right panel). The error bars indicate SEM. (C) miR-206 expression in GM was evaluated by immunohisto-
chemical staining of miR-206 (Blue/Purple). Nuclei were counterstained with DAPI (Blue for immunofluorescence or Yellow for phase contrast) (Left
panel). (D) Myogenic differentiation potential was assessed by myosin heavy chain (MHC) immunofluorescence (Green) and adipogenic differentiation
potential by Oil-Red O staining (Red). miR-206 expression in DM was evaluated by immunohistochemical staining. Nuclei were counterstained with DAPI
(Blue for immunofluorescence or Yellow for phase contrast).
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regulatory signals in a protected environ-
ment insulated from the oxidative stress gen-
erated during tissue regeneration.47,48

While the accurate detection of circu-
lating myomiRs and their diagnostic and
prognostic interpretation in DMD is
under evaluation,49,50 we propose that
FAP-specific expression of miRs could
also be considered as an independent bio-
marker that correlates with compensatory
regeneration of DMD muscles at early
stages of disease or following therapeutic
interventions, such as treatment with
HDACi. We speculate that changes in the
expression profile of miRs in FAPs could
reflect histological changes during disease
progression and be used to monitor the
transition from the compensatory early
stages to the fibrotic late stages of DMD.
As FAPs are key targets of therapeutic
interventions in DMD,4,18 and possibly
other degenerative muscular disorders,
measuring myomiR levels in FAPs could
also predict the response to treatments

aimed at promoting regeneration and
reducing fibrosis. Thus, we propose that
integrating the levels of circulating myo-
miRs with the expression levels of myo-
miRs in FAPs might offer a reliable
marker of disease progression, by correlat-
ing myofiber degeneration (circulating
miRs) with muscle potential to regenerate
or undergo fibrosis and fat infiltration
(local, intramuscular miRs). Importantly,
the levels of circulating miRs have been
proposed as a non-invasive biomarker of
myofiber degeneration in DMD patients
and their reduction appears to correlate
with dystrophin re-expression by exon
skipping.33,34,45,51 By contrast, the mea-
surement of myomiR expression in FAPs
is currently relying on the availability of
muscle biopsies, and future studies should
explore the possibility to detect FAP myo-
miRs using semi-invasive methods – e.g.,
taking advantage of their interstitial posi-
tion to isolate FAPs from muscle intersti-
tial bio-fluids by fine needle aspiration.

The availability of FAPs from muscles of
DMD patients and the relative measure-
ment of myomiRs levels would offer an
unprecedented molecular readout of mus-
cle tendency to regenerate or undergo
fibro-adipogenic degeneration that can be
used not only to monitor the disease pro-
gression, but also as an inclusion criteria
to select DMD patients for clinical trials
and as biomarkers of treatment efficacy.
Overall, the integration of passively
released (circulating) and locally produced
(intramuscular) myomiRs should be
regarded as a novel outcome measure of
DMD progression and response to thera-
peutic intervention of potential interest
for the upcoming clinical trials.
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