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Abstract: The use of reduced graphene oxide (r-GO) is a promising way of fabricating organic–
inorganic composites with unique electrical and magnetic properties. In our work, polystyrene/r-GO
composites were synthesized, in which both the components are linked together by covalent bonds.
The r-GO used differs from the graphene obtained from graphite through mechanical exfoliation
using the ‘scotch tape’ by presenting many structural defects. Binding in the composite structure
between the components was confirmed by infrared spectroscopy. Elemental analysis was carried
out by energy dispersive X-ray spectroscopy. Scanning electron microscopy, X-ray diffraction, and
Raman spectroscopy were used to monitor the 2D-order in exfoliated r-GO galleries. Using a vibrating-
sample magnetometer, we have shown that the composite magnetization loops demonstrate type-II
superconductivity up to room temperature due to r-GO flakes. We believe that a strain field in the r-GO
flakes covalently binding to a polymeric matrix is responsible for the superconductivity phenomena.

Keywords: graphene-based materials; defective graphene nanosheets; magnetic properties; super-
conductivity; magnetoresistance

1. Introduction

Since discovering the effect of superconductivity, researchers worldwide have focused
on creating superconducting materials with a high critical temperature. Back in 1974,
researcher K. Antonovich published an article stating that the current through the junction
of amorphous graphite strongly depends on a small external magnetic field, as predicted
by Josephson for two weakly coupled superconductors [1]. The effect existed even at
room temperature.

Since 1980, researchers started the race to get organic superconductivity materials.
First, superconductivity was observed by resistive measurements in the quasi-one di-
mensional organic conductor di-(tetramethyltetraselenafulvalene)-hexafluorophosphate,
(TMTSF)2PF6 under a hydrostatic pressure of 12 kbar with a transition temperature of
0.9 K [2]. In 2020, Elliot Snider with coworkers approached room-temperature super-
conductivity by proposing the pressure-driven disproportionation of hydrogen sulfide
(H2S) to H3S, with a confirmed transition temperature of 203 K at 155 GPa [3]. As for
bilayer graphene, a two-dimensional allotrope of carbon, in 2018 it was discovered to be a
superconductor when layers were twisted on the ‘magic’ angle of about 1.1◦ [4]. Theoreti-
cally, it was clarified that the effective d + id pairing interaction strongly increases as the
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on-site Coulomb interaction increases, indicating that the superconductivity is driven by
electron–electron correlation [5].

One paper [6] demonstrated that the superconductivity of graphite–sulfur composites
occurs within some sort of “grains” or domains. In particular, magnetization measured at
T = 7 K showed a characteristic type II superconductor hysteresis loop. High-resolution
magnetoresistance data in highly oriented pyrolytic graphite (HOPG) thin samples manifest
nonhomogenous superconductivity with a critical temperature of Tc = 25 K and higher [7].
It was found that the magnetization of pristine graphite powder, with a grain size of several
tens of micrometers, after a simple treatment with pure water, shows clear and reproducible
granular superconducting behavior with a critical temperature above 300 K [8]. The
transport characteristics of thin lamellae with tens of two-dimensional interfaces between
crystalline graphite regions reveal a Josephson-like behavior with zero resistance states
at low enough temperatures and input currents [9]. In [10], the observation of persistent
currents in the ring-shaped container, which did not decay for 50 days, suggests that
the HOPG plates immersed in n-heptane and n-octane really entered a zero-resistance
state at room temperature. The critical value of Tc at which the Josephson behavior
sets depends on the interface width of carbon lamellae and vanishes for widths below
200 nm [11]. Evidence for type II superconductivity, based on measurements of transport
current, magnetic susceptibility, Hall effect, and vortex state, was obtained in phosphorus-
doped graphite and graphene at temperatures of about 260 K [12]. The trapped magnetic
flux in the finely ground pyrolytic graphite, which has been observed on cooling of the
sample from room temperature in a magnetic field, may reflect the presence in it of a
granular high-temperature superconducting phase [13]. In [14], a magnetic field dependent
electronic gap was observed, suggestive of local superconductivity, in the point-contact
spectrum of microcrystalline graphite. Using the Bardeen–Cooper–Schrieffer (BCS) theory,
the authors obtained a critical superconductivity temperature of 14 K. Unusual hysteresis
features that point out to the possible presence of vortex states were observed in HOPG
layers [15]. These observations may indicate the superconductive signals. In [16], one
found the superconducting correlations in the local area of nanographite film surface—AC-
to-DC conversion associated with the reversed Josephson effect, pinning of vortices on
columnar topological structure observed in atomic force and magnetic force microscope,
non-zero current at zero voltage in scanning tunneling microscope.

Almost all the authors indicated above obtained the results dealing with high-temperature
superconductivity on HOPG. However, over many years of observing this effect, no answer
has been received about why superconductivity arises in some HOPG samples. Meanwhile,
there are many ones in which superconductivity cannot be detected, despite a similar diamag-
netic response. Such poor reproducibility of experimental results has often caused skepticism
about their reliability.

Graphene has focused materials-science researchers’ attention since it has many as-
pects of promising practical applications [17,18]. The range of applications for graphene
can be expanded by combining it with other materials, thereby significantly changing its
properties. This is achieved by chemically modifying the graphene surface with soft sub-
stances or solid inorganic materials [19]. Ma et al. carried out current-sensing atomic force
microscopy (CSAFM) experiments for laser-reduced graphene oxide (r-GO) [20]. One re-
vealed that after laser reduction, the high-conductivity r-GO spots appear on the graphene
oxide surface in the form of two-dimensional torus shapes of several micrometers. In other
work [21], the authors synthesized heavily-reduced GO films exhibiting ferromagnetic
properties with a coercivity of 40 Oe and a saturation magnetization of 7.0 emu/g at 300 K.
The researchers in [22] proposed that doped graphene can achieve an electronically medi-
ated superconductivity provided that the chemical doping is near a van Hove singularity.
It means that a divergence in the density of states (DOS) and the lattice symmetry is pre-
served. As a result, it has led to further research of fundamental properties in developing
a new class of materials based on polymer/graphene composites [23,24]. The nanosheet
galleries in the exfoliated graphite (EG) structure are easily intercalated with monomers or
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polymers. After intercalation, EG particles are distributed in the polymer matrix in the form
of nanosheets with thicknesses from 10 to 50 nm. EG-containing nanocomposites based on
polymethyl methacrylate (PMMA) [25], styrene-acrylonitrile copolymer [26], polystyrene
(PS) [27], and PS-PMMA mixture [28] have been obtained to achieve electroconductive
properties. As to our approach, the idea is to reach twisted multilayer graphene using
covalently bonded macromolecules. We reported on a composite based on polystyrene
(PS) with multilayer reduced graphene oxide (r-GO), which exhibited a Josephson type
of current-voltage characteristic (CVC) up to room temperature [29,30]. A Josephson type
of CVC indicates that superconductivity exists with a high critical temperature (Tc), till a
room one, in r-GO flakes linked by chemical bonds with PS chains.

In the following studies, the magnetization of the composite (Mcomp) for the same
type of r-GO flakes was measured [31]. We have obtained confirmation of Mr-GO(H) su-
perconducting behavior up to room temperature after subtraction of Mcomp’s components
associated with diamagnetic background slopes of r-GO flakes and PS, as well the para-
magnetic contribution of some unknown impurities in a polymer matrix. However, such
a subtraction procedure may cause critics to doubt the reliability of the result, because
the small superconducting effect is concealed within a relatively larges diamagnetic and
paramagnetic effects. Here, it should be noted that the magnetization curves showed
hysteresis with huge coercivity (Hc) at M = 0. If the magnetization curves were related
to ferromagnetic order, then we could detect it. However, the electron spin resonance
investigation did not demonstrate magnetic ordering in the composite [32], which once
again confirms the superconducting behavior of Mr-GO(H).

In this regard, we believe that further study of such artificially created structures
with the participation of various forms of carbon filler and polymers, in which many
more parameters can be controlled than in HOPG, will provide an answer to the puz-
zle of the superconductivity in carbon-based materials, and this will be important for
practical application.

In this work, we investigated the effects of modifying chemically the multilayer
graphene on the static magnetization of the r-GO-containing composite based on PS
(Figure S1 in ESM). This paper shows that—(i) the composite magnetization plots can
demonstrate type-II superconductivity without subtracting any diamagnetic and paramag-
netic contributions; (ii) the effect of superconductivity depends on the oxygen-containing
residues detected through a paramagnetic signal when measuring static magnetization at
low temperature and linking r-GO flakes with polystyrene macromolecules.

2. Materials and Methods
2.1. Materials

The technical sequence for the synthesis of the two PS/r-GO composites in this work
was as follows:

(1) As the first step from natural pristine graphite, we produced graphite oxide by a
modified Hummers method. The initial graphite oxide was synthesized via oxidation of
the natural crystalline graphite by potassium permanganate in sulfuric acid in the presence
of sodium nitrate, using a procedure that was close to that described in [33]. During
the oxidation, many different functional groups, such as hydroxy, epoxy, and carboxylic
ones, attach to the basal planes and edges of the graphene sheets [34–36]. A significant
property of graphite oxide is the ability to undergo complete exfoliation in water, yielding
colloidal suspensions of individual graphite oxide nanosheets. The C/O ratio, obtained
by X-ray photoelectron spectroscopy (XPS) analysis (the Russian–German synchrotron
radiation beamline at bending-magnet D16-1A of the BESSY-II electron storage ring, Berlin,
Germany [37]) for graphite oxide, is in a range of 4:1–2:1 [38,39]. Graphite oxide films
were prepared on the surface of silicon substrates by drying aqueous suspension in air at
120 ◦C. Besides, when reducing in the Ar atmosphere according to the XPS and energy
dispersive X-ray analysis (EDX) (Table 1, cp composites 1 and 2) [38,39], the C/O ratio 7.45
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corresponds to a lower number of oxygen-containing groups than in H2 when this ratio
is 5.82.

Table 1. EDX analysis data of polystyrene (PS)/laser-reduced graphene oxide (r-GO) composites and
their components.

System Composite

Elemental Composition

C O Si S

at.%

r-GO (Ar) 88.16 11.84 – –
r-GO (H2) 85.26 14.64 – 0.10

r-GO modified by TMSPM (Ar) 84.09 15.53 0.38 –
r-GO modified by TMSPM (H2) 84.93 13.96 1.08 0.03

PS 97.07 2.93 – –
PS with r-GO modified by TMSPM (Ar) 1 96.03 3.97 – –
PS with r-GO modified by TMSPM (H2) 2 97.83 2.12 0.05 –

(2) As shown by the XPS study, high temperatures (T > 750 ◦C) are necessary to
achieve good reduction of graphene oxide when the C/O ratio can be higher than 13 [40].
On annealing, part of O-containing functional groups is removed from the r-GO flakes,
but simultaneously they leave defects in their place, in the form of vacancies, structural
deviations, and distortion [41]. After heat treatment, the oxygen content decreases signifi-
cantly in r-GO but, in many cases, does not entirely disappear [42]. When studying static
magnetization, this can be indicated by the presence of a paramagnetic contribution at low
temperatures. Thus, r-GO differs from graphene produced from graphite by mechanical
exfoliation using the ‘scotch tape’ method, which lacks these defects [17].

(3) Before the synthesis of the r-GO-containing composites based on PS (Figure S1 in
ESM), we carried out the functionalization of r-GO flake surfaces using 3-(trimethoxysilyl)
propyl methacrylate (TMSPM) (CAS Number: 2530-85-0, Aldrich, St. Louis, MO 63103,
USA) to improve the interaction with the polymer matrix [43,44]. For synthesizing com-
posites 1 and 2, we used r-GO upon reduсing in an Ar (900 ◦C) or H2 atmosphere (900 ◦C),
correspondingly (Table 1).

2.2. Methods of Characterization

Control over the organosilicon modifier’s attachment to the surface of two-dimensional
r-GO nanostructures was carried out using FTIR spectroscopy on a Vertex 70 spectrometer
(Bruker Optik GmbH, Ettlingen, Germany), which is equipped with an attenuated total
reflectance device (Pike Technologies Inc., Madison, WI 53719, USA).

Raman spectra of r-GO reduced in argon and hydrogen have been obtained using a
532 nm laser with a power of 0.2 mW in the range of 80–3700 cm−1 Raman shifts in a focal
field of 25 × 1000 µm (see ESM as well).

The elemental constituents of PS/r-GO composite and their components were mea-
sured using—(i) Auger electron and X-ray photoelectron spectroscopy measurements
performed on a Multitechnique 5500 spectrometer from Physical Electronics (USA); (ii) a
TESCAN VEGA 3 SBH scanning electron microscope (TESCAN, Brno, Czech Republic) with
an INCA Energy 250/X-max 20 microanalysis system (Oxford Instruments Nanoanalysis
Ltd., High Wycombe Bucks, UK).

The X-ray diffraction (XRD) analysis of the crystallinity size and the assessment
of the number of layers for r-GO nanosheets was performed using a Rigaku SmartLab
diffractometer (Rigaku Corporation, Tokyo, Japan) with CuKα radiation.

Magnetic measurements on the samples were performed in the temperature range of
2–400 K and magnetic fields from 0 to ±10 T. The composite was placed into a separate
diamagnetic plastic holder with an inner diameter of about 3 mm and installed in a
vibrating-sample magnetometer based on Quantum Design PPMS® (Quantum Design Inc.,
San Diego, CA 92121, USA).
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3. Results
3.1. Impurity Control

The chemical compositions were determined from the maximum possible area of
the test samples. EDX analysis confirms the absence of 3d metal impurities in native or
TMSPM-modified r-GO flakes and in those included in the composite structure (Table 1). In
this case, the presence of an organosilicon compound responsible for the covalent binding
of r-GO flakes to styrene macromolecules can be traced in the EDX spectra for composite 2
(Figure S2 in ESM). Auger electron and X-ray photoelectron spectroscopy measurements
did not reveal the presence of magnetic impurities in the r-GO flakes and composites.

3.2. The Analysis of IR Spectra

The IR spectrum exhibited intense broad bands in the region of 3700–3000 cm−1

due to O–H stretching vibrations of carboxyl groups and adsorbed water for the initial
graphite oxide. Besides, peaks centered at 1370 and 1265 cm−1 correspond to skeletal
vibrations of C–OH, C–O–C bonds. The characteristic band maximum for stretching
vibrations of C=O at 1735 cm−1 was also recorded. The remaining signals at 1060 and
1614 cm−1 can be attributed to the skeletal vibrations of C=C unoxidized sp2 C-bonds
and C–O stretching vibrations of alkoxy groups, respectively (Figure 1a). The shoulder at
970 cm−1 is commonly associated with epoxyl, ether, and peroxide groups. In the spectrum
of partially reduced graphene oxide in a hydrogen atmosphere, the bands’ intensity in the
region of 3000–3700 cm−1 decreases, and three main peaks at 1735, 1576, and 1241 cm−1

are traced (Figure 1b). The band located at 1735 cm−1 is associated with the stretching
vibrations of C=O in the residual carboxyl and carbonyl groups. Absorption in the 1576 and
1457 cm−1 is due to in-plane bending vibrations of C=C bonds. The last peak (1241 cm−1),
with a hardly distinguishable shoulder in the range of 1000–1050 cm−1, corresponds to the
stretching vibrations of C–O–C alkoxyl and epoxyl groups. After functionalization of r-GO
flakes using the double bond modifier TMSPM, additional absorption bands appear in the
FTIR spectrum (Figure 1c) in the frequency range of 1020–1140 cm−1, which corresponds
to the stretching vibrations of the following bonds—Si–O, Si–OH, Si–O–C and Si–O–Si.
In turn, the band of the methoxyl groups of the organic silicon compound, centered at
820 cm−1, disappears since they are hydrolyzed during the modification of the r-GO flakes
(compare Figure 1c,d). The bands of ester groups on the r-GO surface and in the TMSPM
structure overlap, and the vinyl bond signal appears at 1210 cm−1. This fact indirectly
confirms the efficiency of the performed surface modification of the r-GO flakes.

Styrene copolymerization with TMSPM on the r-GO flake surface was carried out
according to [45], leading to a PS/r-GO composite. For the latter one, band maxima at
3081, 3058, 3025 cm−1 are observed in the FTIR spectrum, corresponding to the absorp-
tion of stretching vibrations of aromatic C–H bonds. The two peaks centered at 2924
and 2850 cm−1 are caused by asymmetric and symmetric stretching vibrations of CH2
groups. The peaks in the range of 1660–2000 cm−1 can be attributed to monosubstituted
benzene rings. The spectrum contains vibrations of C=C bonds of aromatic rings at 1598,
1492, and 1453 cm−1. The bands of twisting vibrations of the C–H bonds in the phenyl
ring plane (1069, 1028 cm−1) and outside it (700, 758 cm−1) are also visible. Along with
the characteristic bands of PS (Figure 2a), the spectrum of its composite with r-GO con-
tains signals of stretching vibrations of C=O (1735 cm−1) and silicon-containing groups
(1020–1140 cm−1) (Figure 2a). Further, the polymer matrix spectrum was subtracted from
the one of composites—PS with covalently bonded r-GO flakes (Figure 2b).
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Figure 1. FTIR spectra of graphite oxide (a), r-GO (b), r-GO modified (c) with TMSPM (d). The r-GO
was obtained in an H2 atmosphere.
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Figure 2. FTIR spectrum of composite 2 (a) and the difference between composite and PS matrix (b).

3.3. The Analysis of Raman Spectra

In Figure 3, we compare the Raman spectra for r-GO(H2) with r-GO(Ar) reduced in
molecular hydrogen and argon medium, respectively. Based on model ideas about the
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nature of the peaks [20,46] in the Raman curves, we deconvolved the spectra contour
using the Voigt function in the OriginPro 2021 (version 9.8.0.200, OriginLab Corporation,
Northampton, MA, USA) software (Figure S3 in ESM). The contours of the Raman spectra
for the r-GO under investigation appear to be approximately the same.
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In the Raman spectra (Figure 3), we observe the D, G, 2D peaks typical for the single-
layer graphene for both types of the reduced carbon structures [46]. Besides, the shoulder D”
at ca. 1100 cm−1, resulting from the acoustic longitudinal vibrations (LA) in the nanosheets
consisting of several layers of defective graphene, few-layer graphene, is observed. This
mode is associated with the sp2–sp3 edge bonds, activated in the disordered graphite
lattice [47]. For r-GO obtained in an H2 atmosphere, the D” shoulder contribution is higher
than when Ar was used, indicating that the structure is more defective in the case of H2.
Also, in the shift range 2400–3300 cm−1, where the second-order peaks are located [20,46],
the contribution of the sum D + D” of the two modes for r-GO(H2) can be seen. At 1765
cm−1, the M peak is attributed to an intravalley resonant second-order scattering process.
This combinational mode arises based on out-of-plane breathing and in-plane longitudinal
optical oscillations of the layer [20].

3.4. XRD Analysis of Initial and Surface Modified r-GO Flakes

XRD patterns of both initial and modified TMSPM r-GO flakes have a characteristic
peak at 24◦, corresponding to the (002) graphite plane. Concerning this reflex, the Bragg
equation was used to estimate the interplanar distance (d) between graphene layers. For
determining the average height of the stacked layers (average crystalline size, Dp), the
calculation was carried out according to the Scherrer formula based on the value of the
grazing angle and the full width at half maximum (FWHM) (Figure 4 and Table 2) [48,49].
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Table 2. XRD analysis data of initial and surface modified r-GO flakes using Scherrer’s equation (1).

Sample 2θ (2), ◦ FWHM, ◦ Dp
(3), nm D (4), nm n (5)

r-GO 24.3 2.8 2.9 0.37 8 ± 1
r-GO modified by TMSPM 24.5 2.4 3.4 0.36 9 ± 1

Note: (1) the constant in Scherrer’s equation is equal to 0.9; X-ray scattering wavelength for CuKα is used:
λ = 0.15418 nm; (2) the diffraction angle for X-ray intensity peak maximum; (3) Dp is the average crystalline size;
(4) d is the interplanar distance; (5) n is the number of graphene sheets in an r-GO flake.

According to the ratio of maximum intensities, ID and IG, corresponding to vibrational
modes D and G in the Raman spectra, we estimated the size of the cluster diameter or
in-plane correlation length, La, following Tuinstra and Koenig [50]:

ID

IG
=

C(λ)
La

,

where C(λ) is ca. 4.4 nm, and λ is an excitation laser wavelength (514 nm). It turned out
that the La magnitude for r-GO reduced in an Ar or H2 atmosphere is approximately the
same and is about 4.6 and 4.3 nm, correspondingly. So, if taking into consideration the
XRD data obtained (Table 2), a crystalline domain represents a graphite nanosheet with an
aspect ratio of ca. 1.3–1.6 and a thickness of ca. 8–9 layers.

In the XRD pattern, the peak’s position remains practically unchanged, and the FWHM
values are comparable within the error limits for TMSPM-modified and initial r-GO flakes
(Figure 4, curves 1 and 2). At that, the interplanar distance is ca. 0.365 nm that more than
0.335 nm for pristine graphite. This indicates some defects in the structure of r-GO led to
expanding graphite nanosheets [28].

Both the small amount of r-GO in the composite and the large contribution of short-range
order recorded on the X-ray diffraction pattern of the unfilled polystyrene matrix do not allow
one to judge the shifting of graphene layers and the expanding of nanosheets because of
covalently binding graphite nanosheets with macromolecules (Figure 4, curves 3 and 4).

However, the ultrasonic dispersion of r-GO flakes with subsequent covalent attach-
ment of TMSPM to their surface during the condensation reaction promoted significant
refinement of two-dimensional carbon structures hundreds of microns in size (Figure 5a,a’)
to plates with an average aspect ratio of about 8 × 13 µm (Figure 5b,b’), according to SEM
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micrographs. Inclusions of flakes of similar dimensions emerge on the formed PS/r-GO
composite film’s surface (Figure 5c,c’).
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Figure 5. Scanning electron microscopy (SEM) micrographs of the initial (a,a’), surface modified
r-GO flakes (b,b’) and a film surface for composite 2 (c,c’) taken at 1 k× (c), 2 k× (a,b) and 10 k×
(a’,b’,c’) magnifications. The r-GO was obtained in an H2 atmosphere.
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3.5. The Analysis of Magnetization

Figure 6 shows the magnetic moments of two composites 1 and 2 vs. temperature in
cooling from 300 to 2 K in the field H of 500 Oe.
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Figure 6. Temperature dependence of the magnetic moments for composites 1 and 2 in cooling at
H = 500 Oe.

According to the EDX data when obtaining r-GO in H2, the C/O ratio, 5.82 corresponds
to a higher number of oxygen-containing groups than those obtained in Ar, where this ratio
is 7.45 (see Section 2.1). Moreover, having a greater contribution to the D” peak for r-GO(H2)
than r-GO(Ar) allows for more oxygen defects in the structure of rGO(H2) (see Section 3.3).
As can be seen from Figure 6, indeed, composite 1 exhibits diamagnetic magnetization,
which is independent of temperature. Whereas for composite 2, the magnetization behaves
diamagnetically at high temperatures (see curve 2 in Figure 6). However, with decreasing
temperature, the magnetization crosses the temperature axis and becomes positive. A
gradually increasing paramagnetic response suppresses the diamagnetic behavior of the
composite 2 due to the remaining patches of graphene oxide on the r-GO flake surfaces.
On the contrary, paramagnetic growth at low temperatures is not observed in composite 1.

Figure 7 shows the field dependence of the static magnetization for composite 1 at
T = 50 and 300 K. According to the obtained dependence M(H), composite 1 exhibits
diamagnetic behavior in the entire magnetic field range.
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Figure 7. Dependence of the magnetic moment versus magnetic field for composite 1 at T = 50 and
300 K.
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Figure 8a,b shows the field dependence of the static magnetization for the composite 2
at T = 300 K. In weak magnetic fields, an abnormally high increase in magnetization (a)
with a small hysteresis (b) turned counterclockwise is observed. With an increase in the
magnetic field, the anomalously high component of the magnetization gradually decreases,
as is observed in superconductors [51–54]. Only diamagnetism is revealed in the composite
in strong magnetic fields, which was too observed for r-GO at T = 300 K and polystyrene
as individual components at all temperatures.

Nanomaterials 2021, 11, x FOR PEER REVIEW 11 of 18 
 

 

Figure 6. Temperature dependence of the magnetic moments for composites 1 and 2 in cooling at 
H = 500 Oe. 

Figure 7 shows the field dependence of the static magnetization for composite 1 at T 
= 50 and 300 K. According to the obtained dependence M(H), composite 1 exhibits dia-
magnetic behavior in the entire magnetic field range. 

Figure 8a,b shows the field dependence of the static magnetization for the composite 
2 at T = 300 K. In weak magnetic fields, an abnormally high increase in magnetization (a) 
with a small hysteresis (b) turned counterclockwise is observed. With an increase in the 
magnetic field, the anomalously high component of the magnetization gradually de-
creases, as is observed in superconductors [52–54]. Only diamagnetism is revealed in the 
composite in strong magnetic fields, which was too observed for r-GO at T = 300 K and 
polystyrene as individual components at all temperatures. 

 
Figure 7. Dependence of the magnetic moment versus magnetic field for composite 1 at T = 50 and 
300 K. 

(a) (b) 

  

Figure 8. Dependence of the magnetic moment on the magnetic field at T = 300 K for composite 2 in strong (a) and weak (b) 
magnetic fields. 

-10 -5 0 5 10

-0.10

-0.05

0

0.05

0.10

H, kOe

Composite 1
 50 K
 300 K

M
, e

m
u 

g⁻¹

-100 -50 0 50 100

-0.010

-0.005

0

0.005

0.010

H, kOe

T = 300 K

M
, e

m
u 

g⁻¹

-1.0 -0.5 0 0.5 1.0

-0.004

-0.002

0

0.002

0.004

H, kOe

M
, e

m
u 

g⁻¹

T = 300 K

Figure 8. Dependence of the magnetic moment on the magnetic field at T = 300 K for composite 2 in strong (a) and weak
(b) magnetic fields.

It should be noted that this behavior, as well as a slight hysteresis observed at high tem-
peratures in composite 2, are typical of all powder samples of granular high-temperature
superconductor (HTSC) [52–54] and nanowire networks [55]. With decreasing temperature,
the paramagnetic contribution to the total magnetization increases (Figure 6, curve 2). In
this case, the form of the dependence M(H) also changes significantly (Figure 9). The
magnetization presented in this figure consists of a superposition of the paramagnetic and
diamagnetic contributions. As shown in Figure 9a, at T = 100 K in strong magnetic fields,
the diamagnetic magnetizations measured at different polarities of magnetic fields are
shifted relative to each other due to paramagnetic contributions. Besides, in the region
of paramagnetism, a hysteresis magnetization loop is observed at weak magnetic fields
at T = 100 K. (Figure 9b). The hysteresis curve of the magnetization of composite 2 in
Figure 9b has the peaks in the weak field’s negative/positive regions, which are typical for
many hard type-II superconductors [56,57].

This behavior of hysteresis is not observed in ferromagnets but is characteristic of
granular type-II superconductors [52,53]. The superconducting behavior of the type-II
magnetization is more clearly seen after subtracting the diamagnetic and paramagnetic
contributions from the total magnetization (Figure 9c).

Figure 10a shows the field dependence of the static magnetization for the composite in
strong magnetic fields at T = 5 K. As seen from Figure 10a, the magnetization is dominated
by the paramagnetic effect.

Figure 10b also shows the paramagnetic signal has a hysteresis loop in weak fields (the
beginning of the hysteresis loop is presented), which can be mistakenly interpreted as ferro-
magnetism. However, after subtracting the diamagnetic and paramagnetic contributions from
the total magnetization, one can see the type-II magnetization’s superconducting behavior.
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Figure 9. Dependence of the magnetic moment for composite 2 at T = 100 K on the strong (a) and
weak magnetic fields (b). Arrows indicate the peaks of the magnetization loop and field direction (b).
Magnetization loop after subtracting the diamagnetic and paramagnetic contributions (c).
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3.6. Discussion

As is known from the classical theory of superconductivity, penetration of a magnetic
field into a type-II superconductor occurs in the form of quantized Abrikosov vortex
filaments. At that, each filament has a non-superconducting core with a radius of the
order of the superconducting coherence length. Around this normal-conducting cylinder,
within a region with a radius of the order of the penetration depth of the magnetic field,
an undamped vortex current of Cooper pairs flows. The type-II superconductor has
an intermediate phase of mixed normal and superconducting properties. Vortices are
fixed mainly by defects with suppressed superconductivity (pinning centers). When the
external magnetic field decreases to zero, not all vortices in the sample disappear; some
remain trapped at the pinning centers. In this case, the static magnetization exhibits a
hysteresis loop.

Within the framework of the classical BCS superconductivity theory in conventional
superconductors, the critical temperature Tc depends exponentially on the electronic
density of states (DOS) at the Fermi level. In graphene, the valence and conducting bands’
structure is conical, i.e., the DOS at the Fermi level is zero; therefore, Tc should be zero
also. Additionally, as follows from the BCS theory, Tc should be higher in those materials
where the electron–phonon coupling strength is greater. For this reason, natural carbon
is unpromising as a superconductor since this coupling is well known to be weak in
carbon. Moreover, the superconducting critical temperature cannot be higher than 23 K
under normal conditions in the standard BCS theory framework. Therefore, to understand
superconductivity at room temperature, new theoretical scenarios must be created [58].

According to some theoretical models, Tc is predicted to range up to room temperature
if the DOS is reconstructed, forming so-called flat bands in graphene [59–61]. It is supposed
that such a DOS reconstruction will occur if graphene, multilayer graphene, or carbon
flakes are subjected to mechanical stress [62–65].

For composite 2 under investigation, mechanical deformations resulting from binding
organosilicon modifier TMSPM to O-containing moieties on the graphene surface led
to displacement and twisting of layers in r-GO flakes. In other words, one deals with
the formation of so-called twisted multilayer doped graphene. The latter is currently
considered to provide the possible HTSC mechanism [5,22].

During in situ radical copolymerization of vinyl groups of styrene and TMSPM
modifier on the r-GO flakes’ surface, additional chemical bonds are formed, increasing the
mechanical stress inside multilayer graphene sheets.

As our studies have shown, in composite 1, in which r-GO in the dependence M(T)
(see Figure 6) did not exhibit paramagnetic growth at low temperatures, O-containing
moieties were few. To that point, the superconducting type of magnetization was absent
in the composite because of the inability to form a sufficient number of chemical bonds
between r-GO and polystyrene. It can be assumed that the superconducting form of
magnetization in the composite under investigation is due to mechanical stresses in r-GO
flakes. In this case, part of the r-GO flakes in the composite 2 can have strong internal
stresses because of the O-containing moieties binding with the polymer. The r-GO flakes
contribute to the superconducting magnetization, which appears in their temperature
dependence. Indeed, the O-containing moieties that do not form chemical bonds with
polystyrene via TMSPM contribute to the paramagnetism observed at low temperatures
(Figure 6). So, there is considerable evidence favoring a non-significant amount of chemical
binding between r-GO and polystyrene via TMSPM in composite 1 because of the small
number of O-containing residues that facilitate it.

Depending on the temperature, the balance between the contributions to the total
magnetization will be different. For example, at room temperature, the magnetization can
be dominated by r-GO flakes with substantial deformation, which affect superconductivity.
With a decrease in temperature and an increase in the fraction of magnetization from r-GO
flakes with a paramagnetic contribution, the total composite magnetization should change
(Figures 9 and 10). The appearance of a long-range magnetic order between localized
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magnetic moments can undergo suppressing superconductivity in such composites. How-
ever, to conclude this section, we note that the hysteresis loop cannot be explained by a
long-range ferromagnetic order since the sizes of the r-GO flakes in the composite under
investigation are not few-layer-graphene nanoribbons (Figure 5), which would promote its
appearance [66].

4. Conclusions

Synthesis of organic-inorganic composites reveals unique properties of r-GO com-
pounds based on the two-dimensional carbon allotrope, including the relationship of
magnetic with superconductive. The magnetic and conductive properties of carbon al-
lotropes are affected by chemical dopants and chemical modification of r-GO nanosheets.
The transition from native graphite to reduced graphene oxide makes it possible to achieve
the desired surface modification. The latter allows the covalent binding of the r-GO flakes to
the macromolecules. In such a composite, mechanical strains are possible between the lay-
ers in graphite nanosheets, which may be responsible for superconductivity. Chemists can
continue the macromolecular design of composites having various deformation parameters
of r-GO nanosheets, with probably room-temperature superconductivity occurring under
the scenario suggested by the above theoretical works. A future challenge for chemists is to
create a percolation network with similar nanographite nodes, with the organic–inorganic
material retaining superconducting properties at the macrolevel.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-499
1/11/2/403/s1, Figure S1: Scheme of a composite based on polystyrene/reduced graphene oxide,
Figure S2: EDX spectra of composite 2 and their components: PS with r-GO modified by TMSPM (1),
PS (2), r-GO (3), r-GO modified with TMSPM (4), Figure S3: Raman spectra for the r-GO obtained
in an Ar (a) and H2 (b) atmosphere, Figure S4: Raman spectrum for the r-GO obtained in an H2
atmosphere. An example of five functions (D”, D, D*, G, and M bands) deconvolution for the r-GO
obtained (a). The summed peaks in the spectrum are marked (b), Table S1: The position of different
modes in cm−1 in the Raman spectrum for r-GO obtained in an H2 atmosphere.
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