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INTRODUCTION

The search for specific inhibitors of CD39 (ectonucleoside triphosphate diphosphohydrolase-1,
NTPDase1, apyrase, ATPDase, ENTPD1, EC 3.6.1.5) and CD73 (5′-ribonucleotide
phosphohydrolase, ecto-5′-NT, CD73, eNT, EC 3.5.1.5) is long underway. However, the history
of this search has revealed crosstalk among components of the purinergic system, including
nucleotides and nucleosides, enzymes and receptors, and the extracellular environment. This
report aims to present an opinion about key features of inhibitors and antibodies against CD39/
CD73 discussing their applications and limitations. Certainly, many questions have the potential to
emerge, which are likely to be in accordance with new and old points of view. However, the most
important questions raised in this opinion piece are: 1) what are the limitations of CD39 and CD73
inhibitor use? and 2) What information is needed to enhance our understanding of the complex
purinergic network that allows cells to avoid compensatory mechanisms between cell components
and the surrounding microenvironment?

NTPDase1/CD39 Inhibitors
The first step in the extracellular metabolism of ATP involves CD39, which hydrolyses ATP and ADP
to AMP (Burnstock, 2017). The search for new, potent and specific inhibitors of CD39 has been a
goal of many researchers throughout recent decades. In 2006, Robson and colleagues (Robson et al.,
2006) observed that the failure to discover and identify specific inhibitors of NTPDase were major
impediments to making further discoveries. The first inhibitors of CD39 identified are considered
classical inhibitors, and include sodium azide (NaN3), suramin, chelators (EDTA and EGTA),
ARL67156 (6-N, N-diethyl-D-b,g-dibromomethylene ATP), 8-BuS-ATP (8-thiobutyladenosine
50 –triphosphate) and BG0136 (1-naphthol-3, 6-disulfonic acid). These inhibitors may increase
ATP and ADP levels to enhance purinergic signaling. However, inhibitors capable of binding to P2
receptors antagonize their effects (for example, suramin) (Munkonda et al., 2007). The fact that these
inhibitors are not selective for CD39 is a limitation of their use. However, classical inhibitors are very
useful for characterizing CD39 activity in different cell types (Battastini et al., 1991; Leal et al., 2005).

Among the new classes of CD39 inhibitors, the most studied are polyoxymetalates (POM´s)
(Müller et al., 2006). These compounds have limited cell uptake, act mainly in the extracellular
environment, and have a high degree of stability at physiological pH values (Sang-Yong et al., 2015).
Studies indicate that POM´s induce conformational changes in enzymes, and consequently, prevent
nucleotide hydrolysis (Zebisch et al., 2012). The most potent inhibitors of CD39 are compounds
called POM-1 and POM-5 (Sang-Yong et al., 2015). Although POM-1 and POM-5 are potent
enzyme inhibitors, they have low selectivity for CD39, and also inhibit activities of NTPDase-2,
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NTPDase-3, and NPP-1. While POM-5 is the most effective
CD39 inhibitor, it only moderately inhibits other NTPDase
isoforms, POM-1 has similar inhibition activity against
NTPDase isoforms, and most strongly inhibits NPP-1 (Müller
et al., 2006; Wall et al., 2008; Bastid et al., 2015; Sang-Yong et al.,
2015). Further, POM-1 was the only POM assessed in vivo in
different tumor models (Zhang et al., 2019). The rationale for
POM-1 studies includes the fact that the molecule is well tolerated
and is currently the only POM sold commercially.

Recent studies have aimed to enhance production of low
molecular weight inhibitors with high selectivity for CD39
including Schiff bases of tryptamine (SBT´s) and quinoline
derivatives (QD´s) (Hayat et al., 2019; Kanwal et al., 2019).
Among SBT´s, the SBT-C6 compound strongly inhibits CD39,
but with a low degree of selectivity. The inhibitor also inhibits
other isoforms of NTPDases. On the other hand, SBT-C1
selectively inhibits CD39. Thus, it is a promising agent for in
vivo studies (Hayat et al., 2019). However, SBT’s competitively
inhibit, and thus, their use for inhibiting CD39 in the most
requested microenvironments (ATP-rich sites) may be limited.
QDs, on the other hand, include two selective CD39 inhibitors
(compounds QD-3F and QD-3T), which have high inhibition
efficiencies and are also promising agents for future studies.
However, the type of enzymatic inhibition induced by the QD
compounds has not yet been determined. It is known that some
QD compounds non-competitively inhibit CD39, and it is
possible that these compounds are superior to SBT´s (Kanwal
et al., 2019).

In terms of purinergic signaling and the action of
ectonucleotidases, POMs are noted for their ability to act
exclusively in the extracellular environment. In contrast, due
to their similarities with purines, SBTs and QDs can enter
cells and may induce intracellular changes. Studies assessing
the toxicity of these types of new compounds are lacking.
Further in vivo studies and more advanced clinical tests have
the potential to confirm the effectiveness SD and QD inhibitors in
pathological processes.

Ecto-59-NT (CD73) Inhibitors
The CD73 enzyme is the main source of extracellular adenosine,
and it point of convergence between the canonical (through
NTPDases) and non-canonical (through CD38/CD203a)
pathways. In this way, CD73 connects the purinergic signaling
pathway, on one side via ATP (P2 receptors) and on the other side
via adenosine, which, in general, produces opposite effects by
activating P1 receptors. Preliminary studies that assessed CD73
inhibitors aimed to characterize and clarify its kinetic properties.
However, further studies revealed the role of the enzyme in the
control of purinergic signaling in different pathological processes
such as cardiovascular diseases, autoimmune processes, cancer
and other diseases. These findings indicated a potential use for the
enzyme as a novel therapeutic target. The first endogenous,
powerful, competitive CD73 inhibitors were ATP and ADP
(Burger and Lowenstein, 1970; Sullivan and Alpers, 1971).
Burger and colleagues (1970) also reported that the nucleotide
analogue α, β-methylene adenosine 5′-diphosphate (APCP) was a
more potent inhibitor of CD73 than ADP and ATP. This ADP

analogue remains one of the strongest known inhibitors of CD73.
However, some of its characteristics such as its low bioavailability,
low metabolic stability and off-target effects limit its therapeutic
use (Ghoteimi et al., 2019). For this reason, APCP became a
prototype for drug development (Bhattarai et al., 2015; Corbelini
et al., 2015; Bhattarai et al., 2020). In addition, the recent
availability of the crystal structures of ecto-5′-nucleotidases
has led to the development of numerous docking and virtual
screening studies (Knapp et al., 2012; Bhattarai et al., 2019;
Viviani et al., 2020).

Available extracellular adenosine mediates immune evasion,
which facilitates tumor growth and metastasis. This process has
been the focus of numerous recent cancer studies (Antonioli et al.,
2017). Some natural products capable of inhibiting CD73 have
been reported to possess biological effects that include anticancer
activities (Braganhol et al., 2007; Rockenbach et al., 2013).
However, the search for natural products has become less
intense than identifying synthetic products with similar
activities (Dumontet et al., 2018; Iqbal et al., 2020). Recently,
extensive studies of structure-activity relationships, structure-
based drug design, and the optimization of pharmacokinetic
properties culminated in the discovery of several different
APCP analogues. To our knowledge, Prof Christa Müller’s
group has found the most potent inhibitors of CD73, which
are structurally related to the APCP skeleton. Bhattarai and cols
(2015) prepared a series of selective and potent CD73 inhibitors
with Ki values in the low nanomolar range in good yields and high
purity using a multistep reactions. Importantly, the new
compounds displayed high selectivity relative to other ecto-
nucleotidases and ADP-activated P2Y receptors. More
recently, the same group synthesized 5′- O-
[(phosphonomethyl)phosphonic acid] derivatives. These
uridine- and cytosine-derived α,β-methylene diphosphonates
represent an entirely new class of CD73 inhibitors that proved
to be potent inhibitors of rat and human CD73 with Ki values in
the low nanomolar range, too (Junker et al., 2019). In addition, an
orally bioavailable small-molecule CD73 inhibitor (OP-5244) was
able to reverse immunosuppression via the blockage of adenosine
production (Du et al., 2020). Recent published data has revealed
another highly potent (Ki � 5 pM) and selective inhibitor of ecto-
5′-NT/CD73 (AB680). Importantly, AB680 is well tolerated and
exhibits a pharmacokinetic profile suitable for intravenous
administration in humans (Bowman et al., 2019; Lawson et al.,
2020). This and another small molecule inhibitor (LY3475070)
are currently being evaluated in phase one clinical trials. In
addition to APCP based inhibitors of CD73, descriptions of
numerous other inhibitors of the enzyme can be found in the
literature (Figueiró et al., 2014; Baqi, 2015; Yang et al., 2017;
Ghoteimi et al., 2019; Iqbal et al., 2020; Viviani et al., 2020).
Finally, nucleoside analogues with two carboxylate groups and
benzothiazine derivatives are CD73 inhibitors for treating cancer
that have been patented (Gong et al., 2018; Ghoteimi et al., 2019).

In summary, the field of research on CD73 inhibitors has been
quite intense and, in our opinion, the use of small molecules to
inhibit CD73 activity for clinical use is promising. It is likely that
these therapeutics will be used in association with established
chemotherapies and/or new immunotherapies strategies.
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CD39/CD73 Axis as Pharmacological
Target for Immunotherapy
No commercially available antibody blocks CD39. However,
some antibodies with this activity are in preclinical or clinical
trials in several cancer models. In preclinical trials, the CD39-
blocking antibody OREG-103/BY40 alone, with the A2AR
antagonist (SCH58261), or with ARL67156 was shown to
improve CD4 and CD8 T-cell proliferation and enhance
cytotoxicity induced by CD8 T-cells and NK cells against
tumoral cell lines (Bastid et al., 2015), demonstrating its
potential antitumor effects. These effects have been associated
with reduced adenosine production, which occurs as a
consequence of CD39 inhibition. The OREG-103/BY40
monoclonal antibody (mAb) was capable of blocking
extracellular enzymatic activities and has been tested clinically
in relation to its efficacy (Nikolova et al., 2011; Perrot et al., 2019).
The anticancer potential of another antagonistic mAb (clone 9-
8B) was assessed, which revealed that the compound slowed
tumor development in a sarcoma model (Hayes et al., 2015).

A recent clinical study in phase one assessed IPH5201, an anti-
CD39 antibody. The compound has been administrated as
monotherapy, or in combination with immune checkpoint
inhibitors, to enhance the antitumor immune response. Unlike
BY40, IPH5201 blocks extracellular and soluble CD39, reducing
ATP hydrolysis and adenosine production. This antibody
increased antitumor activity when administrated with
chemotherapeutic drugs, such as oxiplatin (Perrot et al., 2019).
Other antibodies including anti-CD39, TTX-030, and SRF617
have been tested in phase one clinical trials, both as single agents
and in combination with chemotherapy, with the aim of
improving the antitumoral response (Moesta et al., 2020).

Since it was observed that CD39 deficient mice have altered
platelet function, thrombotic events could be a concern because
blocking CD39may affect other biological functions of purinergic
signaling. Activated platelets also release factors that contribute to
the degradation of the extracellular matrix and the preparation of
the metastatic niche (Palacios-Acedo et al., 2019), that can be a
risk of CD39 blockade. However, it was recently shown that anti-
CD39 administration in mice did not promote thrombosis
(Allard et al., 2020). CD73 stimulate VEGF release in tumor
cells through adenosine, inducing the angiogenesis in the tumor
microenvironment, which facilitate the metastasis (Allard et al.,
2014). Several studies have demonstrated the correlation between
CD73 expression and/or activity with tumor cells capacity of
adhere to extracellular matrix and invade different tissues. Then,
CD39 and CD73 blockade can beneficially reduce tumor growth
and metastasis by reducing tumor angiogenesis (Antonioli et al.,
2021).

Moreover, it has been extensively shown that inhibiting CD73
may directly improve outcomes of conventional therapies by
directly targeting cancer cells or by decreasing adenosine levels
and, consequently, indirectly promoting antitumor-effector
immune cells in the alleviation of the immunosuppressed
microenvironment (Azambuja et al., 2019). In addition to
clinical trials involving synthetic inhibitors, (e.g. LY3475070
and AB-680), mAbs are also currently being evaluated for

activity against CD73, (e.g. oleclumab, CPI-006, AK119,
TJ004309, NZV930, BMS-986179). Alternatively, bifunctional
mAb (GS-1423) that target CD73 and TGF-β pathways have
been assessed. These molecules are being investigated for use
mostly as combined therapies for advanced cancer patients
(www.clinicaltrials.gov). Monoclonal antibodies have been
displayed fewer off target effects than natural or synthetic CD73
inhibitors. In this sense, in comparison to mAbs, classical molecular
inhibitors AMPCP (CD73) and ARL67156/POM-1 (CD39) and
their derivatives show inhibition capability over other purinergic
targets and have been mostly studied in the preclinical field. In
addition to specificity, pharmacokinetic characteristics and
unexplored side-effects have contributed to the low
translationality of small synthetic inhibitors (Jeffrey et al., 2020).

It has been widely demonstrated that CD39 and CD73 may be
overexpressed in cancer cells, different immune cell subsets and
stroma cells working in a coordinated way to arrest antitumor
immunity via increasing levels of adenosine in the tumor
microenvironment (TME) (Allard et al., 2017). Thus,
especially from two pioneering works (Stagg et al., 2010; Sun
et al., 2010), targeting the CD39/CD73 axis has become an
immunotherapeutic strategy that aims to reduce adenosine
levels and allow proinflammatory ATP to shift the cells from a
protumoral to antitumoral immune response (Perrot et al., 2019).
Considering the potential role of CD73, and possibly CD39, as
adhesion molecules, the efficiency of blocking these proteins by
specific antibodies may not be related only to their enzymatic
activities and adenosine production. For example, some studies
have shown that the blockage of CD73 may prevent its adhesion
to extracellular matrix affecting the potential migration of cancer
cells, an important event of tumor invasiveness (Zhou et al., 2007;
Sadej et al., 2008; Cappellari et al., 2012). Although adverse effects
must be carefully evaluated, the strategy considers that the
enzymes are overexpressed in the TME and, therefore, drugs’
benefits can outweigh the possible risks. Cutting-edge research
such as microRNA (Zhou et al., 2019), siRNA (Azambuja et al.,
2020) interventions, antibody-drug conjugates (Abdollahpour-
Alitappeh et al., 2019), mAbs or microRNA delivery by active
targeting nanotechnology (Lin et al., 2020) may be the next wave
of purinergic interventions used in the treatment of cancer.

CONCLUDING REMARKS

The purinergic system is an ancestral signaling system. Therefore,
it can be expected that the system developed the capacity to
participate in crosstalk with another signaling systems and
components of the cell to create compensatory mechanisms to
ensure cell survival. In fact, this ancestral system is able to regulate
signaling processes by enhancing or decreasing enzyme activities
and expression levels, nucleotide and nucleoside levels, and
binding and expression levels of specific receptors. Then when
using inhibitors, some features must be considered. First, the
selectivity of the inhibitors is important. It must be ensured that
inhibitors alter only the target component of the purinergic
system. For example, an inhibitor should target one specific

Frontiers in Pharmacology | www.frontiersin.org March 2021 | Volume 12 | Article 6336033

Battastini et al. CD39 and CD73 as Therapeutic Targets

http://www.clinicaltrials.gov
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


enzyme, but not block receptors of other cytosolic enzymes.
Second, unexpected responses may occur as a consequence of
crosstalk with the surrounding environment. The highly intricate
TME and CD73/CD39 axis allows for the modulation of immune
and cancer cells.

In our opinion, the use of inhibitors or immunotherapy for
regulating CD39/CD73 axis could be a promising therapeutical
approach by promoting the increase in the ATP and the decrease
in the adenosine levels, causing strong immune and anti-tumor
responses. In addition, inhibiting the adenosinergic system may
modulate this immune checkpoint leading to a synergistic effect
with the conventional anticancer treatments such as chemo- and
radiotherapy and even with current immunotherapies.
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