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Metabolism rewiring is an important hallmark of cancers. Being one of the most abundant
free amino acids in the human blood, glutamine supports bioenergetics and biosynthesis,
tumor growth, and the production of antioxidants through glutaminolysis in cancers. In
glutamine dependent cancer cells, more than half of the tricarboxylic/critic acid (TCA)
metabolites are derived from glutamine. Glutaminolysis controls the process of converting
glutamine into TCA cycle metabolites through the regulation of multiple enzymes, among
which the glutaminase shows the importance as the very first step in this process.
Targeting glutaminolysis via glutaminase inhibition emerges as a promising strategy to
disrupt cancer metabolism and tumor progression. Here, we review the regulation of
glutaminase and the role of glutaminase in cancer metabolism and metastasis.
Furthermore, we highlight the glutaminase inhibitor based metabolic therapy strategy
and their potential applications in clinical scenarios.
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INTRODUCTION

Sustained and unhindered proliferative tumor cells require high levels of energy and building block
molecules which depend partially on the availability of nutrients and oxygen in the
microenvironment. In 2011, Hanahan et al. described reprogramming of energy metabolism as
an emerging hallmark of neoplastic disease (1). Pavlova et al. further summarized six cancer
Abbreviations: CAF, cancer associated fibroblast; CRC, colorectal cancer; DON, 6-diazo-5-oxo-L-norleucine; EMT, epithelial-
mesenchymal transition; EV, extracellular vesicles; FAO, fatty acid oxidation; GAB, glutaminase B; GAC, glutaminase C; GLS,
glutaminase; GLUD, glutamate dehydrogenase; GLUL, glutamine synthetase; GOT, glutamic-oxaloacetic transaminase; GPT2,
glutamate pyruvate transaminase 2; GSH, glutathione; HCC, hepatocellular carcinoma; HIF, hypoxia-inducible factor; ICC,
intrahepatic cholangiocarcinoma; IDH, isocitrate dehydrogenases; KEAP1, Kelch-like ECH-associated protein 1; KGA,
kidney-type glutaminase; LKB1, liver kinase B1; lncRNA, long non-coding RNA; NEAA, non-essential amino acid; NFR2,
Nuclear factor erythroid 2-related factor 2; PDAC, pancreatic ductal adenocarcinoma; PTM, post-translational modification;
ROS, reactive oxygen species; TCA cycle, citric acid cycle; TNBC, triple-negative breast cancer; UPS, pleomorphic sarcoma;
xCT, cystine/glutamate antiporter; a-KG, a-ketoglutarate.

October 2020 | Volume 10 | Article 5895081

https://www.frontiersin.org/articles/10.3389/fonc.2020.589508/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.589508/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.589508/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.589508/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:yue.zhao@uk-koeln.de
https://doi.org/10.3389/fonc.2020.589508
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.589508
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.589508&domain=pdf&date_stamp=2020-10-26


Wang et al. Targeting Glutaminolysis in Cancer Metabolism
associated metabolic changes, including enormous influx of
nutrients, re-shaped nutrient acquisition under hostile
condition, use of intermediates of glycolysis/citric acid cycle
(TCA cycle) for biosynthesis and NADPH production, increased
nitrogen demand, altered epigenetic modification of metabolism
related genes together with changes in post-transcriptional
modification (PTM) of the enzymes, and ultimately the
metabolic interaction with the microenvironment (2).

Reprogrammed metabolism characterized by the markedly
increased consumption of glucose and glutamine is emphasized
when several examples have revealed that it could support tumor
cell survival and biosynthesis (3, 4). Not merely an increased
glucose uptake, remodeled glucose catabolic pattern is also
considered as a feature of proliferating cells. Cancer cells
preferentially utilize glucose in an oxygen “independent” way,
in which they convert most pyruvate to lactate rather than
delivering them into TCA cycle for a higher ATP yield
(described as ‘Warburg effect’) (5). A widely accepted theory
rationalizing such phenomenon is that aerobic glycolysis
provides abundant intermediates for a quick de novo synthesis
of nucleotides, non-essential amino acids (NEAAs) and fatty
acids and certainly, a more rapid ATP supplementation than
TCA cycle (6, 7).

Glutamine is the most abundant amino acid in blood and
muscle, which provides a stable nitrogen and carbon pool for
protein, nucleotide, and lipid biosynthesis (8). After first
evidenced by Eagle et al. that the glutamine consumption in
HeLa cells is 10 to 100 times higher than any other amino acids
(9), augmented glutamine metabolism has been reported to be
significantly linked with tumor growth, invasion, and metastasis
in various cancer types (e.g. ovarian cancer, breast cancer, and
pancreatic cancer) (2, 10). Due to the diversion of pyruvate from
entering TCA cycle, cancer cells rely more on glutamine carbon
for anaplerosis (10, 11). Given the crucial role of glutamine in
bioenergetics and biosynthesis in cancers, the study on glutamine
metabolism could ensure a better understanding of cancer
progression, thus further inspiring the development of
potential methods of targeted therapy. In this review, we focus
on the current understanding of glutaminase-related
glutaminolysis in cancer metabolism. The role of glutaminase
in tumorigenesis and their regulation in metastasis are also
discussed. Furthermore, the glutaminase inhibitor based
metabolic targeted therapies are summarized and highlighted.
GLUTAMINE METABOLISM IN CANCER

Glutamine was believed to be a non-essential amino acid in
normal physiological condition until 1990, when Lacey et al.
firstly uncovered that the supply of glutamine under a catabolic
stressed condition failed to meet the demand of this nutrient.
Since then, glutamine has been regarded as a conditional
essential amino acid (12). Cancer cells undergo aerobic
glycolysis (Warburg effect), resulting in restricting pyruvate
entry into the TCA cycle. A process known as glutaminolysis
replenishes TCA cycle with intermediates from glutamine (13).
Frontiers in Oncology | www.frontiersin.org 2
Using isotopic tracers, a number of studies, including both in
vitro and in vivo, have demonstrated the massive contribution of
glutamine to TCA metabolites pool in glutamine dependent
cancer cells (11, 14–16). Glutamine-driven oxidative
phosphorylation has also been discovered as a major ATP
source in transformed mammalian cells (17).

Rapidly-dividing cells including those in kidney, gastrointestinal
tract, immune compartments and cancer cells, possess a
tremendous appetite for glutamine. For example, deprivation of
glutamine induces necrosis of intestinal mucosa and apoptosis in
human cell lines (12, 18), while additional oral supplementation of
glutamine among cancer patients undergoing radio- and
chemotherapy improves mucosa healing and ameliorate life
quality (19). Flux of glutamine is mediated by the transporter
SLC1A5 (ASCT2) and antiporter SCL7A5/SCL3A2 on cell
membrane, and the newly identified SLC1A5 variant on the inner
mitochondrial membrane (20, 21). Glutaminolysis in mitochondria
starts from the conversion of glutamine to glutamate by
glutaminase. Then glutamate metabolism forks into two different
ways: either converted by glutamate dehydrogenase (GLUD) intoa-
KG to fuel TCA cycle, or to join a biosynthetic pathway for the
production of NEAAs via aminotransferases (e.g. alanine, aspartate,
and phosphoserine) (10). Apart from its contribution in
bioenergetic and biosynthetic process, glutaminolysis is also
directly involved in the regulation of redox homeostasis through
the synthesis of glutathione (GSH) by providing glutamate (22). In
addition, glutamine could also function as a signaling molecule,
such as in the regulation of mTOR pathway (23, 24). Despite the
diverse constitution and activity of enzymes involved in
glutaminolysis under different cellular status, the maintenance of
a sufficient intracellular concentration of glutamate relies
predominantly on the activity of phosphate-dependent
glutaminase (GLS), whose disrupted expression has been observed
in various cancer cell lines (25). Human GLS could roughly be
summarized as two isoforms which derive from two different but
related genes. The kidney-type (GLS1 or KGA) is ubiquitously
expressed in various normal tissues, while the liver-type (GLS2 or
LGA) is restricted in the liver, brain and pancreas (26, 27). Unlike
the coherent expression tendency of GLS1 in various cancer types
(26), the function pattern of GLS2 seems to be more complex and
controversial (28, 29). Accumulating evidence has confirmed that
the activity of both GLS1 and GLS2 rest highly on the metabolic
state of the cells, as GLS1 is activated by high level of phosphate and
inhibited by the enzymatic product glutamate, while GLS2 is
activated by lower level of phosphate as well as ammonia (30, 31).
Though glutaminases are mainly reported as mitochondrial
proteins, the localization of KGA in cytosol and GLS2 in nuclei
have also been revealed (32, 33). Further discussion of the
glutaminase isoenzymes are displayed in the following parts.

Besides, as one key component in cellular intermediary
metabolism, glutamine can act either as nitrogen donor (a- and
g- nitrogen) or carbon donor. While the carbon skeleton from
glutamine could directly reserve as a carbon reservoir in protein and
fatty acid synthesis, the release of a free amide (g-nitrogen) group
exploits its new role in de novo biosynthesis for purines and
pyrimidines with 2 glutamine derived nitrogen molecules for the
October 2020 | Volume 10 | Article 589508
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purine ring and one nitrogen for pyrimidine ring (34). In addition,
glutaminemetabolites account partially for the synthesis of fatty acid
synthesis in cancer cells with impaired TCA cycle products, e.g.
citrate that could support the synthetic process. Such mechanism is
mediated by a process called reductive carboxylation, which is
briefly described as the conversion of a-ketoglutarate (a-KG) to
citrate catalyzed by isocitrate dehydrogenases (IDHs) (35). Studies
have observed reductive carboxylation in hypoxic cancer cells in
vitro and confirmed its importance in supporting lipid genesis for
tumor progression in vivo (36, 37). Additionally, glutamine
metabolites participate in keeping cellular and organismal
homeostasis. Free ammonia, which could be released from
glutamine catabolism, is a key component for acid-base
homeostasis in kidney (38). Enhanced reductive formation of
citrate from glutamine by IDHs also supports redox homeostasis
and mitigates oxidative oxygen species (ROS), thus cooperatively
facilitating spheroid forming in 2 lung cancer cell lines (39). Taken
together, altered glutamine metabolism in cancer cells strongly
supports tumor growth and progression, which in turn could
encourage the investigation for metabolic targeted therapy
of cancers.
REGULATION OF GLUTAMINASES
IN CANCER

Glutaminases are encoded by two different genes called GLS1
and GLS2, and both have longer and shorter isoforms as a result
of alternative splicing: KGA and glutaminase C (GAC) for GLS1,
and LGA and glutaminase B (GAB) for GLS2 (31) (Figure 1).
While GLS1 is usually upregulated in cancers, the expression of
GLS2 is generally repressed in cancers (26). GAC has higher
activities and is the predominant GLS1 isoform in cancers (40–
42). Recently, Redis et al. revealed that the alternative splicing of
GLS1 is regulated by a long non-coding RNA (lncRNA) called
Frontiers in Oncology | www.frontiersin.org 3
CCAT2, which interacts with CFIm complex and results in the
preferential expression of GAC (43). Here, we summarize the key
regulators of glutamine metabolism in cancers, focusing on the
regulation of glutaminases by oncogenes (c-Myc, KRAS), tumor
suppressor (TP53) and other factors.

The oncogene c-Myc has been reported to regulate the
expression of several genes in glutamine metabolism, including
GLS1 (44), glutamine synthetase (GLUL) (45), GLUD and
aminotransferases (46). c-Myc promotes the uptake of glutamine
by directly binding to the promoter region of glutamine
transporters SLC1A5 and SLC38A5 (47, 48). However, for the
regulation of GLS1, c-Myc indirectly promotes the expression of
GLS1 through transcriptional repression of miR-23a and miR-23b
(44), which are also repressed by NF-kB (49). MYC could also
upregulate GLS1 by repressing the expression of an antisense
lncRNAGLS-AS (50). Another oncogenic transcriptional factor c-
JUN also regulates the gene expression of GLS1 (51). Several
pathways regulate the expression of GLS1 through c-MYC
have also been reported. The GSK3a/b pathway indirectly
upregulates GLS1 through modulating the protein stability of c-
Myc and c-Jun (52). The mTORC1/S6K1 pathway positively
regulates GLS1 through the eIF4B-dependent control of c-Myc
translation (53).

RAS proteins are frequently mutated in many types of human
cancers (54). KRAS is the most frequently mutated isoform,
especially in pancreatic cancer with more than 90% of the
patients (55). Both c-Myc and KRAS have been reported to
enhance glycolysis and glutamine addiction, while diverting
glucose away from TCA cycle (11, 47). However, the
mechanism of glutamine-dependent tumor growth is largely
unknown. Son et al. reported a non-canonical pathway of
glutamine use in pancreatic ductal adenocarcinoma (PDAC)
cells, in which the anabolic metabolism of glutamine is mainly
through the glutamic-oxaloacetic transaminase 1 (GOT1)
dependent pathway (56). This non-canonical glutamine
A

B

FIGURE 1 | Genomic structures of human GLS1 and GLS2 and alternative transcripts. (A) Two alternative transcripts arise from GLS1, KGA, and glutaminase C
(GAC). KGA is the longer isoform with all exons except exon 15, while GAC is the shorter isoform with exons 1–15. (B) Two alternative transcripts arise from GLS2,
GAB, and LGA. GAB is the longer isoform with all exons, while LGA is the shorter isoform lack of exon 1.
October 2020 | Volume 10 | Article 589508
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metabolism also contributes to the maintenance of redox
homeostasis in PDAC, and the inhibition of anabolic
glutamine metabolism sensitizing PDAC to oxidative stress.
Interestingly, it was suggested that different KRAS mutations
may show different effects. For instance, KRAS G12Vmutation is
less glutamine-dependent than G12C or G12D mutation in lung
cancer cells (57). However, this difference of glutamine-
dependence is not explained by the differential expression of
glutaminolysis related enzymes. In addition to the regulation of
GOT1 by KRAS, oncogenic PIK3CA mutations also have been
reported to mediate metabolic reprograming of glutamine in
colorectal cancer (CRC) by upregulating glutamate pyruvate
transaminase 2 (GPT2) (58). However, KRAS mutants did not
show differential response to glutamine deprivation in case of
CRC cell lines. Moreover, NRF2 (nuclear factor erythroid 2-
related factor 2) pathway plays a critical role in the metabolic
reprogramming to glutamine dependence in KRAS-mutated cells
(59, 60). Mukhopadhyay et al. reported that glutamine
metabolism was rewired by NRF2, which also promotes
chemotherapy resistance in KRAS-driven PDAC cells (59).
Galan-Cobo et al. reported that LKB1 (liver kinase B1) and the
KEAP1/NRF2 pathways cooperatively drove metabolic
reprogramming and enhanced sensitivity to the glutaminase
inhibitor CB-839 both in vitro and in vivo (60).

Hypoxia-inducible factor (HIF) drives metabolic adaptation to
hypoxic conditions in many solid tumors (61, 62). Under hypoxic
conditions, cells use glutamine to generate citrate by enforcing a
shift from glutamine oxidative metabolism towards reductive
carboxylation to support proliferation through lipids synthesis
(35, 36, 63). Thus, hypoxia is an inducer of reductive metabolism
of glutamine in cancers. Furthermore, hypoxia upregulates GLS1
expression in amanner of transcriptional activation by HIF-1a (64).

Besides the transcriptional and post-transcriptional regulation of
glutaminase, PTM is also important for the activity of glutaminase
(65–67). Wang et al. found that hyperactivation of Rho-GDPase/
NF-kB significantly enhanced glutaminase activity by promoting its
phosphorylation, while not affecting the expression levels of the
enzyme (65). Later on, Han et al. revealed that the key Ser314
phosphorylation site on GAC was regulated by NF-kB-PKCϵ axis
(68). In addition, HGF-MET axis is reported to activate GLS activity
by phosphorylation, though the phosphorylated site is not indicated
(69). Furthermore, mitochondrial desuccinylase SIRT5 stabilizes
GLS through desuccinylation of residue K164, which protects GLS
from ubiquitin mediated degradation (70).

GLS2 seems to be regulated in a different way from GLS1’s.
GLS2 has been proved to be a target of p53 (71, 72). Interestingly,
the regulation of GLS2 by p53 was involved in the regulation of
ferroptosis (73, 74). Besides p53, TAp63 and TAp73 as well
regulate the expression of GLS2 (75, 76). Differently to GLS1,
GLS2 is directly upregulated by N-Myc in neuroblastoma (77). In
breast cancer, GLS2 expression is preferentially upregulated in
luminal-subtype cancers via promoter methylation and GATA3,
a master regulator of luminal differentiation (78). Recently, the
post translational modification of GLS2 by GCN5L1 has also
been revealed, which modulates the oligomerization and
acetylation of GLS2 (79). In summary, these observations renew
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our understanding of glutamine metabolic reprogramming in
cancers and contribute to the optimization of glutamine targeting
therapy. A summary of the regulation of glutamine metabolism in
cancers is depicted in Figure 2.
OPPOSITE ROLES OF GLS1 AND GLS2
IN TUMORIGENESIS

Glutaminase is dysregulated in many cancers, which makes it an
appealing target for cancer therapies (22). However, whether the
functions of glutaminase is tumorigenic or tumor suppressive
remains controversial, especially from the view of isoenzymes
(26). Generally, the upregulation of GLS1 links with augmented
tumorigenesis, while the expression of GLS2 is more likely
related with quiescent or differentiated cell states.

GLS1, a mitochondrial enzyme, hydrolyzes glutamine into
glutamate and fuels rapid proliferation of cancer cells. GLS1
might be emphasized as a multiple player in tumorigenesis and
progression of human cancers (44, 80). Increased GLS1
expression in a variety of human cancer types was associated
with significantly decreased patient survival, which suggests its
function as a potential prognostic biomarker for many human
cancers, including hepatocellular carcinoma (HCC), ovarian
cancer, osteosarcoma, colorectal cancer (CRC) and breast
cancer (64, 81–85). Directly or indirectly elevated expression of
GLS1 correlates with poor prognosis in these human cancers and
GLS1 could be developed as a diagnostic and therapeutic target
for these types of cancers (26). Xiang et al. demonstrated that
GLS1 expression was required for hypoxia-induced migration
and invasion in vitro and for tumor growth and metastatic
colonization in vivo in CRC cells (64). The important role of
GLS1 also shows that the overexpression of GLS1 induced
metastasis and invasion and promoted epithelial-mesenchymal
transition (EMT) in intrahepatic cholangiocarcinoma (ICC) cells
(86). In addition, Li et al. demonstrated that targeting GLS1 not
only reduced the expression of stemness-related genes including
NANOG, OCT4, KLF4, SOX2 and c-Myc, but also suppressed
CSC properties via ROS/Wnt/b-catenin signaling (81).

Compared with GLS1, GLS2 is more regarded as a tumor
suppressor. GLS2 is repressed in glioblastoma, HCC and colon
cancers (87–89), while overexpressed in luminal subtype of breast
cancer (78). As a target gene of p53, GLS2 shows antioxidant
function through regulation of ROS level and GSH/GSSG ratio in
cells, contributing to its role in tumor suppression (71, 72, 90). The
upregulation of GLS2 in cancer cells induced an antiproliferative
response with cell cycle arrested at the G2/M phase and reduced
tumor cell colony formation in HCC (33, 71). The researches
revealed that GLS2 negatively regulates the PI3K/AKT signaling
and plays an important role in tumor suppression in HCC (89).
Furthermore, Kuo et al. demonstrated that expression of GLS2
inversely correlates with poor prognosis and early recurrence in
HCC patients (91). On the contrary, Dias et al. revealed that GLS2
amplification or overexpression is linked to worse overall, disease-
free and distant metastasis-free survival in breast cancer (92). The
increased expression of GLS2 leads to enhanced cell migration,
October 2020 | Volume 10 | Article 589508
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invasion and lung metastasis (92). Consistently, Lukey et al. found
that the expression of GLS2 supports proliferation and tumorigenesis
in luminal subtype breast cancers (78). These data established an
unforeseen tumorigenic role of GLS2 in breast cancer.

Interestingly, Ishak Gabra et al. reported that dietary
glutamine supplementation inhibited melanoma tumor growth
by suppressing epigenetically activated oncogenic pathways (93).
The inhibitory effect of glutamine in tumor growth observed here
is due to the elevated intra-tumoral a-KG level, consistent with
the reported role of a-KG as a tumor suppressor (94, 95). Taken
together, GLS1 is more likely to be tumorigenic and a promising
therapeutic target, whereas GLS2 behaves more like a tumor
suppressor factor despite some controversial results.
GLUTAMINOLYSIS AND CANCER
METASTASIS: EMT, TUMOR
IMMUNOLOGY, AND TUMOR
MICROENVIRONMENT

In addition to the multiple functions of glutamine metabolism in
regulating tumor biology described above, a number of studies
Frontiers in Oncology | www.frontiersin.org 5
have also suggested that glutamine metabolism participated in
several aspects of tumor metastasis. By analyzing eight ovarian
cancer cell lines, Yang et al. suggested that glutamine dependent
ovarian cancer cells showed stronger invasion ability and were
related to worse patient survival when compared with glutamine
non-dependent cancer cells (83). In addition, suppressing
glutamine uptake by inhibiting glutamine transporter ASCT2
significantly inhibited prostate cancer growth and metastasis
(96). Moreover, in patient-derived organoids model, Braun et al.
found that glutamine was increased more than four times from
early-recurrent PDAC patients with the development of tumor
recurrence within the first six months after radical surgery, than
those from late-recurrent patients, suggesting that glutamine
metabolism may be diverse according to different tumor
malignancies (97). To date, the exact mechanisms linking
glutamine metabolism to tumor metastasis are still unclear, but
studies have demonstrated that glutamine may participate in the
metastatic process through the interaction with EMT, tumor
immunology and tumor microenvironment.

EMT is an important cellular program that enables
epithelial cells to acquire a mesenchymal phenotype with
increased motility as well as invasive ability, and is widely
considered as a critical process for the initiation of the
FIGURE 2 | Glutamine metabolism in cancer. Cancer cells uptake glucose and glutamine through GLUT and ASCT2, respectively. After transporting into cells,
glutamine is catalyzed to glutamate by glutaminases, which have two isoforms: GLS1 and GLS2. Glutamate is further converted to a-KG through GLUD or
aminotransferases. The resulting metabolites can supply for bioenergetics through tricarboxylic/critic acid (TCA) cycle and support biosynthesis of proteins,
nucleotides and lipids. In addition, glutamine metabolism also contributes directly to GSH synthesis. The regulation of glutaminase is marked in pink.
October 2020 | Volume 10 | Article 589508
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metastatic cascade (98). Glutamine metabolism was reported
to be related to EMT in several types of malignant tumors.
Takaoka et al. found an inverse correlation between GLS1 and
E-cadherin expression by analyzing seven CRC cell lines. And
the knockdown of GLS1 not only elevated E-cadherin
expression but also suppressed Vimentin and Slug expression
in CRC cells, referring to as an EMT induction by GLS1 (99).
By transactivating GLS1 and GOT2 to enhance asparagine
synthesis, SOX12 overexpression promotes CRC cell proliferation,
migration, invasion, and metastasis (100). GLS1 was also reported
to promote cell migration and invasion by regulating EMT in
intrahepatic cholangiocarcinoma, in which GLS1 expression was
higher in tumor tissues than in peritumoral tissues, and the higher
expression of GLS1 independently predicted a poor survival (86).
Besides, Ramirez-Peña et al. found that experimentally induced
EMT breast cancer cells showed a decreased GLS2 expression,
which could be further restored by inhibiting the EMT
transcription factor FOXC2 (101). GLS2 was found to be
capable of repressing cell migration, invasion, and metastasis
of HCC through the suppression of EMT secondary to the
downregulation of Snail via Dicer-miR-34a-Snail axis in vitro
and in vivo (91), suggesting a negative regulation role of GLS2 on
EMT. Likewise, GLS2 but not GLS1 could not only inhibit HCC
cell migration and invasion in vitro, but also suppress lung
metastasis in a mouse model through inhibiting Rac1 activity
and mediating p53’s function (28). Conversely, Dias et al.
reported that GLS2 expression was able to increase the EMT
markers as well as cancer cell migration and invasion partly
through the regulation of ERK and ZEB1 in breast cancer (92),
indicating a positive induction of EMT by GLS2. In general,
GLS1 shows a positive regulation of EMT process while
the functions of GLS2 on EMT are diverse and may be
attributed to different tumor types as well as varying degrees of
tumor malignancy.

Immune escape is a major reason for tumor progression and
metastasis. Some studies have suggested that a crosstalk may
exist between glutamine metabolism and tumor immunology.
GLUL was found to modulate macrophage skewing toward the
M2 phenotype that was relevant for metastasis formation,
where GLUL-deficient macrophages inhibited T Cell
suppression, endothelial cell capillary formation as well
cancer cell motility, and induced lymphocyte recruitment to
prevent tumor metastasis (102). GLUL was also found to
enhance HCC cell migration and invasion both in vitro and
in vivo, and higher GLUL level independently predicted a
poorer prognosis in HCC patients (103). In addition, Wu
et al. suggested that glutamine metabolism could support
highly immunosuppressive tumor-infiltrating immature
myeloid cells with glutamine-derived a-ketoglutarate, and
could also regulate their suppressive capacity through the
glutamate-NMDA receptor axis, in which inhibiting GLS1
improved the efficacy of anti-PD-L1 treatment, with
decreased Arginase1+ myeloid cells, increased CD8+, IFNg+,
as well as granzyme B+ T cells, and delayed tumor growth in an
immunotherapy-resistant mouse model (104). Johnson et al.
demonstrated that GLS1 plays an important role in T cell
Frontiers in Oncology | www.frontiersin.org 6
activation and subset specification (105). GLS1 could promote
differentiation of Th17 cells but distinctly suppress
differentiation and effector function of CD4 Th1 and CD8
CTL cells. Despite that chronic GLS deficiency could impair
T cell responses, transient GLS inhibition by CB839 also
showed enhanced Th1 and CD8 CTL effector function and
long-lasting cell numbers in vivo, providing a novel hint that
transient GLS inhibition may be used in combination with
immunotherapy to enhance the treatment effect (105). JHU-
083 is a new inhibitor synthesized by Jonathan D group which
is the prodrug of glutamine antagonist DON (106). By
concurrently using JHU-083, Leone RD et al. found that
glutamine blockade enhanced the anti-tumor effects of the
anti-PD-1 therapy compared with anti–PD-1 therapy alone.
Glutamine blockade with JHU-083 monotherapy could also
enhance endogenous antitumor immunity by triggering tumor
immune rejection and adaptive immune memory without
additional immunotherapy (106). Besides, targeting glutamine
metabolism with JHU-083 inhibits both tumor growth and
metastasis in an immune-dependent manner, including inhibiting
infiltration of myeloid-derived suppressor cells, reprogramming
myeloid-derived suppressor cells and tumor-associated
macrophages from a suppressive to a proinflammatory
phenotype, increasing immunogenic cell death and antigen
presentation, and reducing kynurenine levels in both tumor and
myeloid-derived cells by inhibiting IDO expression, which in turn
inhibited the development of metastasis and further enhanced
antitumor immunity (107). Given the low response rate as well as
high tendency of adaptive or acquired resistance in cancer
immunotherapy (108), investigating the relationship between
glutamine metabolism and tumor immunology may provide an
insightful treatment solution in the future.

Glutamine metabolism is also joined in the biologic interaction
within the tumor microenvironment. Yang et al. found that cancer
associated fibroblast (CAF) synthesize glutamine in glutamine-
deficient tumor microenvironment to maintain glutamine-
addicted ovarian cancer cell growth, where targeting glutamine
synthetase in tumor stroma could reduce tumor weight and
metastasis in orthotopic ovarian carcinoma mouse model, and
the treatment effect can be further enhanced by co-targeting
glutaminase in cancer cells (109). Due to the poor vascularization
and hypoxic environment, PDAC tumors have been found to be
commonly deprived of several nutrients, including glutamine
(110). Pharmacologically, glutamine deprivation by glutamine
analog DON leads to the induction of EMT through selectively
up-regulating the EMT transcription factor Slug in both KPC
mouse model and human PDAC cell lines, contributing to
enhanced tumor migration and invasion capacities (111).
Besides, under the hypoxic condition, Xiang et al. found that
GLS1 was implicated in hypoxia-induced cancer cell invasion
and metastasis, where GLS1 knockdown significantly suppressed
CRC cell migration and invasion in vitro, as well as tumor
growth and metastatic colonization in vivo (64). Besides,
extracellular vesicles (EV) are wildly considered as an
important bridge connecting cell communications in the tumor
microenvironment and are involved in the process of pre-
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metastatic niche formation (112). In the LNCaP prostate cancer
progression mode, Dorai et al. linked EV to glutamine
metabolism, in which large EVs produced from highly
bone metastatic C4-2B cells was significantly decreased when
treated with glutaminase inhibitor BPTES, leading to an
inhibition of bone metastasis in prostate cancer (113).
Moreover, GLS1 inhibition combined with metformin
treatment suppressed tumor growth and reduced metastatic
progression in spontaneous metastasis mouse models with
osteosarcoma (114).

Tumor metastasis is a natural and mostly inevitable process
during the tumor progression, and also the leading cause of
tumor-associated death. Given glutamine metabolism is involved
in different phases of tumor metastasis development, genetically
or pharmacologically targeting glutamine metabolism may
suppress the initiation and progression of metastasis and
provide a promising prospect in cancer treatment.
GLUTAMINASE INHIBITOR BASED
THERAPEUTIC STRATEGY

Due to the critical role of glutaminolysis in cancer metabolism, it
has been a promising therapeutic target to combat cancers. As
the first step of glutaminolysis, glutaminase convert glutamine to
glutamate. This important role of glutaminase in glutamine
metabolism makes it a valuable target for cancer therapy. The
application of glutaminase inhibitors attenuates the glutamine to
glutamate conversion, elevates intracellular ROS level and
impairs antioxidant GSH production in cancer cells (15, 115,
116). Furthermore, the combination of glutaminase inhibitors
with chemotherapy agents also increased sensitivity of cancer
cells to chemotherapy in pancreatic cancer and ovarian cancer
(59, 117, 118).

To date, many potent small molecule inhibitors have been
developed to target glutaminase, including DON, JHU-083,
BPTES, CB-839, and compound 968 (119). DON is a
glutamine antagonist, binds covalently to the enzyme active
site and broadly inhibits glutamine-using enzymes, including
glutaminase and glutamine amidotransferases involved in de
novo nucleotide synthesis, amino acid synthesis, and
hexosamine production (120). However, this ‘non-selective’
inhibition of glutamine metabolism induces high degree of
toxicity, prevents its further investigation in glutamine
targeting. To minimize the toxicity of DON, a prodrug strategy
is developed (120). JHU-083 is a newly synthesized prodrug of
DON, which can be administered in an inert state and then be
activated preferentially in the tumor microenvironment through
enzymatic cleavage, thus alleviating the previously reported
toxicity of DON (106, 121). Other DON prodrugs such as
Rais-5C and Nedelcovych-13d have also been reported (122–
124). Unlike the glutamine mimetics, the allosteric inhibitors
such as BPTES and CB-839, are selectively targeting glutaminase
without disturbing other aspects of glutamine metabolism (25,
124). BPTES is now the most frequently used allosteric
glutaminase inhibitor, which specifically inhibits kidney type
Frontiers in Oncology | www.frontiersin.org 7
glutaminase activity through the formation of an inactive
complex (125). Though BPTES shows high specificity and
efficiency in inhibiting cancer cell proliferation in vitro, the
drawbacks of poor aqueous solubility and low bioavailability in
vivo restrict its further applications in clinical trials (124). In
order to improve drug solubility, several derivatives of BPTES
were synthesized through structural modifications (119, 126–
128). Later on, CB-839, a more potent, and orally bioavailable
BPTES derivative was discovered. CB-839 shows a broad anti-
proliferative activity in a number of cell lines in culture (42, 129,
130). Importantly, dozens of clinical trials of monotherapy or
combination therapy with CB-839 are currently ongoing (42,
124). Another widely used glutaminase inhibitor is compound
968, a dibenzophenanthridine, which is first reported to be a
GAC inhibitor and repressed oncogenic transformation in breast
cancer cells, but is lately found by Lukey et al. to be a pan-
glutaminase inhibitor with a moderate selectivity for GLS2 (65,
78). Recently, more potent GLS inhibitors were investigated,
including CB-839 selenadiazole-derivatives CPD-20, CPD-23
(131), and Physapubescin I (132). Structures of selected
inhibitors and the allosteric binding of GLS1 with BPTES and
CB-839 are shown in Figure 3 (66). However, less efforts have
been made to target GLS2 due to its controversial roles in tumor
suppression (26, 71, 92). Lee et al. reported a series of alkyl
benzoquinones that preferentially inhibit GLS2 rather than
GLS1, which function through the specific binding to an
allosteric pocket at the C-terminal end of GLS2 monomer
(133). Yeh et al. reported a class of thiazolidine-2,4-dione
compounds targeting both GLS1 and GLS2, while moderately
selective for GLS1 over GLS2 (134).

Despite the promising cell proliferation inhibition results
observed in vitro, some cancer cells show resistance to
glutaminase inhibitors. More importantly, the in vivo data of
glutaminase inhibition is still quite limited and shows
controversial results (42, 130, 135). Gross et al. reported
significant antitumor activities of CB-839 in two xenograft
models, a patient-derived TNBC model and a basal like
HER2+ cell line model (JIMT-1) (42). Lee et al. reported a
successful inhibition of undifferentiated pleomorphic sarcoma
(UPS) tumor growth with CB-839 (135). Combination therapy
of CB-839 and PARP inhibitor olaparib also showed prolonged
survival in a xenograft model of ovarian cancer (136). However,
Biancur et al. found no antitumor effect of CB-839 in both
autochthonous and subcutaneous mouse models of PDAC (130).
Their work suggested that compensatory metabolic networks
emerged during glutaminase inhibition, with the activation of
alternative pathways of glutamate production. Nevertheless, the
high clearance rate of CB-839 in mice should also be considered
(42). Noteworthy, reducing cell culture medium nutrients to
physiological levels also compromised the sensitivity of lung
cancer cells to glutaminase inhibitors (137). Singleton et al.
found that CB-839 activity was significantly compromised in
three dimensional spheroids assay compared with two
dimensional monolayer culture in TNBC cells (138). Davidson
et al. reported that KRAS-driven lung tumors require pyruvate
carboxylase and pyruvate dehydrogenase, and are less dependent
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on glutaminase than cultured cells (139), suggesting a crucial
impact of tumor microenvironment in glutamine metabolism
and glutaminase inhibition. In addition, Muir et al. showed that
cystine levels dictate glutamine dependence via the cystine/
glutamate antiporter SLC7A11 (xCT) and concurrent high
expression of GLS and xCT may predict response to glutaminase
inhibition (78, 137, 140). Grinde et al. found that addiction to
proline synthesis from glutamine is associated with response to CB-
839 in breast cancer (141).

The questions then arise: what is the molecular mechanism of
glutaminase inhibition resistance and how could we overcome
the therapy resisatnce? Firstly, as the most frequently used
glutaminase inhibitors such as BPTES and CB-839 are GLS1
selective, the resistance to glutaminase inhibition may be due to
the differential expression of GLS1 and GLS2 in cells, as
demonstrated in luminal and basal-like breast cancer cells (78).
Application of a pan-glutaminase inhibitor 968 suppresses
BPTES-resistant breast cancer growth. Importantly, a number
of studies have demonstrated that glutaminase inhibition could
be rescued by alternative metabolic pathways, such as glycolysis
and fatty acid oxidation (FAO) (130, 138, 142). A combinatorial
strategy may help to overcome glutaminase inhibition resistance.
Several inhibitors targeting glycolysis have demonstrated a
synergistic effect with glutaminase inhibitor, such as metformin
(115, 143, 144), Erlotinib (EGFR inhibitor) (145), MLN128
(mTOR inhibitor) (52), and Glutor (glucose uptake inhibitor)
(146). Co-inhibition of FAO with etomoxir (CPT1 inhibitor) as
Frontiers in Oncology | www.frontiersin.org 8
well inhibits the cell proliferation in resistant cells (130, 142).
However, the combination of CB-839 and etomoxir was lethal in
mouse models. In addition, combined therapy targeting oxidative
stress response also show enhancement of the sensitivity to
glutaminase inhibition (60, 130). Together, combinatorial
strategies show the effectiveness in overcoming the glutaminase
inhibition resistance. A summarized diagram of glutaminase
inhibition resistance is showed in Figure 4.

Although as a promising therapeutic approach to combat
cancer, limited clinical research data of glutaminase inhibition is
available. In the last few years, CB-839 is the only glutaminase
inhibitor undergoing clinical trials. Most recently, a new inhibitor
DRP-104 (glutamine antagonist) is now entering clinical trials
(NCT04471415). However, most of the trials are in a stage of
phase I/II, evaluating the safety and tolerability of the inhibitors.
Nevertheless, results of CANTATA (NCT03428217) showed
encouraging clinical activity and tolerability of combination
therapy of CB-839 plus cabozantinib in metastatic renal cell
cancer (147). Supportively, Zhao et al. reported that combination
of CB-839 and 5-fluorouracil induced PIK3CA-mutant tumor
regression in CRC xenograft models (148). Importantly, an
exploratory analysis of a phase I clinical trial (NCT02861300)
showed a trend of better response to combination therapy of CB-
839 plus capecitabine (prodrug of 5-fluorouracil) in PIK3CA-
mutant CRC patients as compared to PIK3CA-WT cohort (148).
More data are needed to evaluate the efficiency of glutaminase
inhibition in clinical scenarios.
A

B

FIGURE 3 | Structures of glutaminase inhibitors. (A) The structures of selected glutaminase inhibitors, including BPTES, CB-839, DON and JHU-083. (B) The
structure and allosteric binding pocket of GLS1 (rcsb.org). Left, structure of GLS1 in complex with BPTES, PDB entry 3VOZ; right, structure of GLS1 in complex with
CB-839, PDB entry 5HL1. The inhibitors are at the center of the structures.
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CONCLUSIONS

Uncontrolled cell growth is an essential feature of cancers, which is
supported by the augmented glycolysis as well as glutaminolysis.
Studies of cancer metabolic reprogramming provide new insights
into the nature of malignancy and reveal a potent target to combat
cancer. Despite the pivotal role of glucose, the importance of
glutamine metabolism in cancer is well recognized. In this review,
we updated the current understanding of glutaminolysis in cancer
from the view of glutaminase isoenzymes and summarized the
glutaminase inhibitor based therapeutic strategies. However, high
metabolic heterogeneity increases the complexity of metabolic
targeting therapies. Pharmacological inhibition of glutaminases
gives different responses in various cancers, which may be due to
the differential expression of glutaminase isoenzymes or emerge of
alternative metabolic pathways. Combinatorial strategies have
shown promising synergistic effects in some context and may
help overcome glutaminase inhibition resistance. Identification of
glutaminase inhibitor sensitive cancers and optimization of
combination therapies would be an interesting focus for targeting
glutaminolysis in a variety of cancers.
Frontiers in Oncology | www.frontiersin.org 9
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