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Abstract

Motivation: Tumour heterogeneity is being increasingly recognized as an important characteristic of cancer and
as a determinant of prognosis and treatment outcome. Emerging spatial transcriptomics data hold the potential to
further our understanding of tumour heterogeneity and its implications. However, existing statistical tools are not
sufficiently powerful to capture heterogeneity in the complex setting of spatial molecular biology.

Results: We provide a statistical solution, the HeTerogeneity Average index (HTA), specifically designed to handle
the multivariate nature of spatial transcriptomics. We prove that HTA has an approximately normal distribution,
therefore lending itself to efficient statistical assessment and inference. We first demonstrate that HTA accurately
reflects the level of heterogeneity in simulated data. We then use HTA to analyze heterogeneity in two cancer spatial
transcriptomics datasets: spatial RNA sequencing by 10x Genomics and spatial transcriptomics inferred from H&E.
Finally, we demonstrate that HTA also applies to 3D spatial data using brain MRI. In spatial RNA sequencing, we use
a known combination of molecular traits to assert that HTA aligns with the expected outcome for this combination.
We also show that HTA captures immune-cell infiltration at multiple resolutions. In digital pathology, we show how
HTA can be used in survival analysis and demonstrate that high levels of heterogeneity may be linked to poor
survival. In brain MRI, we show that HTA differentiates between normal ageing, Alzheimer’s disease and two
tumours. HTA also extends beyond molecular biology and medical imaging, and can be applied to many domains,
including GIS.

Availability and implementation: Python package and source code are available at: https://github.com/alonalj/hta.

Contact: levyalona@gmail.com or zohar.yakhini@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

This study provides a novel solution for characterizing and statistic-
ally assessing spatial heterogeneity. Recently, there has been grow-
ing evidence that phenotypical and clonal heterogeneity may play a
crucial role in tumour biology and in affecting cancer progression
and treatment outcome (AbdulJabbar et al., 2020; Ma et al., 2020).
Cancer cells differ in molecular characteristics such as mutations,
gene expression and copy number aberrations. These differences,
which define the concept of clonality in tumours, are a potentially
detrimental hallmark of cancer. In particular, tumour sub-
populations may possess a unique combination of molecular traits

that enables them to evade treatment (Dobson et al., 2020). The het-
erogeneous environment arising from such sub-populations has been
mainly investigated through bulk measurements. However, bulk
measurements lack the spatial dimension, which may harbour po-
tentially critical information. For example, the evolutionary dynam-
ics of cancer may result in tumour subclones residing in distinct
microhabitats that support the development of therapy-resistant
populations (Gillies et al., 2012). In glioblastoma, differences in
copy number alterations and somatic mutations were observed
when assessing different tumour microenvironments: EGFR-
amplified cancer cells were mainly found in poorly vascularized
regions, whereas PDGFRA-amplified cancer cells were observed in
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close proximity to endothelial cells (Little et al., 2012). The spatial
distribution of immune-cells among tumour cells has a long-
standing role in diagnosis (Hendry et al., 2017), and was proven use-
ful in predicting prognosis and treatment response in multiple cancer
types and molecular settings (Nearchou et al., 2020; Zheng et al.,
2020). Recent advances in spatial transcriptomics, including tech-
nology developed for direct measurement [e.g. Visium spatial RNA-
sequencing (RNA-seq) by 10x Genomics)], as well as approaches for
inferring such information from digital pathology images (Coudray
et al., 2018; Levy-Jurgenson et al., 2020), have accentuated the
interest in analyzing molecular heterogeneity from a spatial perspec-
tive (Ev Andersson et al., 2020; Levy-Jurgenson et al., 2020;
Masuda et al., 2019), with some studies already indicating its poten-
tial clinical utility (Levy-Jurgenson et al., 2020; Masuda et al.,
2019).

To support such analyses, we have developed a statistical tool
that measures the level of spatial heterogeneity—the HeTerogeneity
Average index (HTA). We demonstrate its use using synthetic data,
two spatial transcriptomics datasets and four brain MRI scans. We
also demonstrate its applicability to other domains.

Several methods have been recently adopted from other fields,
mainly ecology, to assist in the quantitative analysis of the spatial
heterogeneity of molecular measurements (Yuan, 2016). However,
such methods, originating from other fields, do not easily extend to
complex biological environments. First, they were mostly designed
for univariate and bivariate analyses. For example, Morisita-Horn
(Rempala and Seweryn, 2013) is a measure of overlap between two
types of elements, such as two species. It has been used in Maley et
al. (2015) to measure the colocalisation of immune and cancer cells
in breast cancer; Moran’s I, and the more recent q-statistic (Wang et
al., 2016), both originating in ecology, measure the spatial auto-
correlation and spatial stratified heterogeneity (respectively) of a

single attribute with respect to neighbouring locations in space.
Another method, Ripley’s K (Ripley, 1976), determines whether a
single attribute is dispersed, clustered or randomly distributed in the
target spatial environment. Since we are interested in analyzing com-
plex biological environments, with many molecular traits, univariate
and bivariate methods fall short of providing an adequate solution
(as demonstrated in Section 4). Moreover, these methods may also
be difficult to interpret or complex to use (e.g. including edge-
correction and radius parameters as in Ripley’s K). Importantly, lit-
tle is known about the distribution of the null hypothesis for the
vast majority of these methods. For Morisita-Horn and Ripley’s K,
for example, P-values are empirically estimated using Monte-Carlo
simulations, which are computationally expensive and less accurate
compared to methods based on a known null distribution.

The method we propose in this article, HTA, which is based on
Shannon’s entropy, addresses these shortcomings. First, HTA is
multivariate, allowing it to capture a richer representation of hetero-
geneity, even in the bivariate case (see Section 4, Fig. 10); second, it
lends itself to easier interpretation since it is based on the notion of
entropy; and third, for a fixed set of traits, it requires only a single
input parameter. Importantly, the HTA distribution, under a null
model, can be well characterized and it thus facilitates efficient stat-
istical assessment and inference.

2 Materials and methods

In this section, we introduce HTA—the HeTerogeneity Average
Index. We first (Section 2.1) define an index called HTI
(HeTerogeneity Index—a variation of Shannon’s entropy) which we
will use to measure heterogeneity at a local level. The HTA index
(Section 2.2), representing heterogeneity at the whole sample level,

Fig. 1. HTA applied to synthetic random data of shape (32, 32) across three different region sizes (2, 8, 16 left-to-right). The data (dot location and color) is held constant

across all three. P-values demonstrate heterogeneity since H0 is not rejected (HTA P-value > 0.3) for all region sizes
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will be based on averaging local HTIs. Finally (Section 2.3), we
prove that HTA has an approximately normal distribution.

2.1 HTI
We first define a heterogeneity index, HTI (Levy-Jurgenson et al.,
2020), on which HTA is based. HTI is a variation of Shannon’s en-
tropy. Formally:

HTI ¼ �
XC

c¼1

pc log CðpcÞ

where C is the number of non-empty trait combinations that may be
observed in the analyzed sample, which typically equals 2jtraitsj � 1
(the number of subsets excluding the empty set); and pc is the pro-
portion of spatial positions for which exactly all traits in combin-
ation c manifest. A spatial position, for instance, could be a
barcoded spot in spatial transcriptomics data or a tile derived from a
pathology whole-slide image as in Coudray et al. (2018) and Levy-
Jurgenson et al. (2020).

For example, for two traits, e.g. FOXA1 and MKI67, whose gene
expression levels were spatially resolved to a whole slide image from a
breast cancer sample, we have C¼3 for 3 possible non-empty trait
combinations: FOXA1 (only), MKI67 (only) and Both. If the tissue is
homogeneous with nearly all of its sections falling into one of these
three options (say Both), then pðBothÞ ffi 1; pðFOXA1Þ ffi
0; pðMKI67Þ ffi 0 and HTI is 0. If, however the tissue is heterogeneous
with 1/3 of the tiles falling into each option then: pðBothÞ ¼
1=3; pðFOXA1Þ ¼ 1=3; pðMKI67Þ ¼ 1=3 and HTI is 1. The logarithm
base C guarantees that HTI falls within ½0;1�. In this case, a high HTI
indicates there may be two or more phenotypically different cell types,
whereas a low HTI would reflect single phenotypical dominance.

While HTI was shown to capture heterogeneity at a global level
(Levy-Jurgenson et al., 2020), it is agnostic to the within-tissue distri-
bution of the trait combinations. For example, the sample in Figure 2
(left), and the sample in Figure 2 (right) have different spatial

distributions of the same elements, but HTI is 1 in both cases. This is
expected since HTI is a global measure of heterogeneity. However,
there is clearly a difference in heterogeneity at the local level, which
may have important clinical implications. Our HTA index, described
below, which uses HTI at the local level, is designed to capture this dif-
ference. Indeed, as noted in Figure 2, the corresponding HTA scores
are 0 (homogeneous) on the left and 1 (heterogeneous) on the right.

2.2 HTA
2.2.1 HTA definition

HTA is essentially a weighted average of HTIs across a defined set
of spatial regions of a sample (Fig. 1 depicts such regions). To for-
mally describe HTA, we first define what regions of a matrix are,
and then use these to define HTA.

Consider a matrix M, where each entry corresponds to a spatial
location in the sample [e.g. a barcoded spot from spatial RNA-seq
data or a single tile from a pathology image (Levy-Jurgenson et al.,
2020)] and indicates which of the C trait combinations is present
therein (or ‘None’ otherwise). Then we consider M to be a trait-
combination matrix.

HTA

Let MjG ¼ fM1;M2; . . . ;MRg be the set of regions obtained by
applying grid G to a trait-combination matrix M. Let
fn1; n2; . . . ;nRg be the corresponding number of entries in each re-
gion that are not ‘None’. Then we define:

HTAðMjGÞ :¼
XR

r¼1

nr

n
HTIðMrÞ ¼

XR

r¼1

nr

n

 
�
XC

c¼1

nrc

nr
log

nrc

nr

!
(1)

where nrc is the number of entries in region r that manifest trait com-
bination c 2 f1; . . . ;Cg, and n is the total number of entries, in the
entire matrix, that manifest at least one trait.

Fig. 2. HTA applied to synthetic data across three different distributions (homogeneous, random heterogeneous, deterministic heterogeneous from left-to-right). Region size

and trait proportions are held constant (8 and 0.5 resp.). HTA P-values: (left) significant homogeneity (p ffi 0); (middle) not significant (P¼0.23); (right) significant heterogen-

eity (1� p ffi 0)

Fig. 3. Heterogeneity maps and corresponding HTAs for: (B–D) two traits: ESR1 and GATA3; (F–H) three traits: ESR1, GATA3 and FOXA1. Each color represents the mani-

festation of a different trait combination. In B–D, red means that ESR1 and GATA3 are highly expressed (above their respective medians), green—only GATA3 is highly

expressed and orange—only ESR1 is highly expressed. In F–H, due to the large number of trait-combinations, we note here the most common trait combinations and provide

the full legend in Supplementary Material S4: grey—all three traits are highly expressed, pink—GATA3 and FOXA1 are highly expressed, red—ESR1 and GATA3 are highly

expressed. HTA is significantly homogeneous at all region sizes (5, 15 and 30) in both settings (HTA P-values < 10�8). This aligns with the expected outcome for this cancer

type (Luminal B breast cancer, for which the cancer cells highly express these three transcription factors); (A) and (E): the resulting heterogeneity maps if the respective trait-

combinations were randomly distributed (H0). HTA P-values are 0.26 and 0.56 (A, E respectively) at region size 5, as expected under H0
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Note that since nr is the number of entries in region r that are not

‘None’, this means that
PC
c¼1

nrc

nr
¼ 1, for all r. Empty regions (where

all elements in the region are ‘None’) are discarded.
For example, in spatial RNA-seq, each entry in M that is

included in n represents a barcoded spot that manifests at least one
trait (e.g. the coloured dots in Fig. 3D), and each included region of
M contains several such barcoded spots (e.g. the non-empty regions
bordered by the grid lines in the same figure). In digital pathology,
where each whole-slide image is divided into thousands of smaller
images (tiles), each entry represents a single tile in which at least one
trait is present and each region of M contains several such tiles.

We note that HTA monotonically decreases with grid refine-
ment. This is similar to the fact that:

HðYjXÞ � HðYÞ (2)

for any random variables X and Y (for a proof see Supplementary
Material S1). Indeed, we observe this in Figure 1, where HTA
decreases from right-to-left. We note that since region-based methods
are inherently sensitive to region size, HTA’s monotonicity provides
an added advantage since it guarantees an ordering one can expect to
observe when moving between region sizes. In Figure 4, for example,
we can see that for the largest region size (D), the null hypothesis of
heterogeneity is not rejected (HTA P¼0.1), whereas at the smaller
region sizes (B–C) it is. Knowing that HTA monotonically decreases
with grid refinement, a user may be inclined to test finer grids before
concluding that the sample is heterogeneous with respect to the mu-
tual spatial distribution of T-cells among HER2 cells.

2.3 HTA P-value
We compute the HTA P-value under the null model in which all trait
combinations are uniformly distributed across the tissue sample, as

in Figures 3A, E and 4A (i.e. a random permutation of the exact trait
combinations present within the tissue sample, naturally preserving
the observed frequencies).

We use a permutation over trait-combinations, rather than a per-
mutation over individual traits, since only the former preserves the
natural trait-combinations present within the sample. To illustrate
the difference, consider a sample that exhibits only one type of cell,
say one that over-expresses all of: KRAS, BRAF, EGFR and TP53.
Under a trait-based permutation, this single trait-combination could
turn into 24 � 1 trait-combinations (all non-empty subsets), chang-
ing the true underlying molecular composition. Conversely, under a
permutation over trait-combinations, only the original trait-
combination would be present, alleviating this problem.

Note that since the null model depends on the original
trait-combination composition, lower HTA values do not necessar-
ily correspond to lower HTA P-values (see Supplementary
Material S7). As such, the interpretation of results should rely on
the P-value rather than on the statistic, as in many standard statis-
tical tests.

2.3.1 Equal-weight regions

If we assume that all regions contain the same number of entries, we
obtain that HTA is normally distributed, by the classical central-
limit theorem (Lindeberg–Lévy CLT). Formally, we denote Xr, r ¼
1; . . . ;R to be HTIðMrÞ. Then, under the null hypothesis, the ran-
dom variables Xr are iid. Therefore, by the CLT, their mean (HTA)
is normally distributed:

1

r=
ffiffiffiffi
R
p Xr � l

� �
!d N 0;1ð Þ (3)

where l and r are the mean and standard-deviation of Xr, under the
null model.

Fig. 4. (B–D) Heterogeneity maps and HTA depicting the mutual distribution of ERBB2 (HER2) and CD8A (T-cells) for the bottom half of Figure 3, chosen due to indications

of high tumour content in that portion (see Section 3.2). (A) The resulting heterogeneity map if ERBB2 and CD8A were randomly distributed (H0). HTA is: (B–C) significantly

homogeneous p < 10�6; (D) heterogeneous P¼ 0.1 (H0 not rejected); (A) heterogeneous P¼0.47

Fig. 5. A 3D heterogeneity map and HTA for two region sizes that differ along the z-axis. The two illustrations at the bottom illustrate the resulting regions along with the cor-

responding HTA results: (left) region size (8, 8, 1) each region is perfectly homogeneous, yielding HTA 0 and HTA P-value ffi 0; (right) region size (8, 8, 3)—each region is per-

fectly heterogeneous, yielding HTA 1 and HTA P-value ffi 1. Note that the 3D grid visible at the top does not describe the regions
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In our case this means:

1

r=
ffiffiffiffi
R
p 1

R

XR

r¼1

Xr � l

 !
¼ 1

r=
ffiffiffiffi
R
p HTA� lð Þ!d N 0;1ð Þ (4)

l and r depend on both the region size and the distribution of
trait combinations in the matrix M. We can estimate these quantities
from simulations of M under the null model. For a limited region
size, we can also compute these quantities precisely by running an
exhaustive search across the permutations of trait combinations in a
single region to obtain all possible values for Xr and its resulting
distribution.

Using this approach for two traits (3 non-empty trait combina-
tions, C¼3) and region sizes 2 and 3 (yielding square regions with
22 ¼ 4 and 33 ¼ 9 elements, respectively) we obtain, for example,
that for sufficiently large values of R the following holds
(respectively):

HTA � N
 

0:57;
0:312

R

!
ðregion size ¼ 2Þ

HTA � N
 

0:83;
0:172

R

!
ðregion size ¼ 3Þ

2.3.2 Weighted regions

For actual data, the number of entries in each region may vary as a
function of the positions in which entries of M are empty. Their cor-
responding HTIs are therefore no longer identically distributed
under the null hypothesis. Specifically, we have different means and
stds for the HTI of each of the regions, indexed by r, which we de-
note by lr and rr, respectively. For example, a region with only one
entry will always exhibit a single trait combination, leading to HTI
¼ 0 and therefore lr ¼ 0, whereas a region with more entries has a
positive probability of obtaining a non-zero HTI and therefore
lr > 0. Since the classical CLT (Lindeberg–Lévy CLT) assumes that
the random variables are iid, we turn to a different version of CLT
that applies to independent, but not identically distributed, random
variables—the Lyapunov CLT:

Lyapunov CLT

Let X1;X2; . . . Xm be independent random variables with EXi ¼ li

and VarXi ¼ r2
i < 1. Denote Yi ¼ Xi � li.

(Lyapunov Condition) If there exists d > 0 such that:

lim
m!1

1

s2þd
m

Xm
i¼1

EðjYij2þdÞ ¼ 0 (5)

where

s2
m ¼ Varð

Xm
i¼1

YiÞ ¼
Xm
i¼1

r2
i (6)

then

1

sm

Xm
i¼1

ðXi � liÞ!
d Nð0;1Þ (7)

In our case, we want to use this theorem with Xi ¼ nr

n HTIðMrÞ
and m¼R and obtain:

1

sR
HTA�

XR

r¼1

lr

 !
!d N 0;1ð Þ (8)

We observe that the Lyapunov condition is satisfied in our case.
For any d > 0,

EjYrj2þd � EY2
r � 1 (9)

because Yr 2 ½0;1� (since HTI 2 ½0;1�).

Therefore

1

s2þd
R

XR

r¼1

EjYrj2þd � 1

s2þd
R

XR

r¼1

VarYr ¼
1

sd
R

(10)

where the first inequality follows from Equation 9 combined with
the fact that VarYr ¼ EY2

r and the equality follows immediately
from the definition of s2

R (Equation 6).
It remains to show that sR !1 as R!1. Indeed, under the

null hypothesis, the set of variances fr2
r g

R

r¼1 is bounded away from
zero if we assume that there are no single-sample regions (otherwise
we may increase the region size), or that there is a constant number
of such regions.

Given a specific dataset, in order to use Lyapunov CLT, we must
estimate lr and rr for all relevant (non-empty) regions, r ¼ 1; . . . ;R.
We do so by simulating 1000 random-uniform permutations of the
trait combination matrix (while holding constant the original posi-
tions of non-empty elements) and for each permutation we compute
HTIs for all relevant regions. Then, for each region r 2 f1; . . . ;Rg,
we use its 1000 HTIs to estimate lr and rr.

We emphasize that the normal approximation holds only for suf-
ficiently large values of R. We also note that for adequate interpret-
ation of the HTA results, one should consider two one-sided P-
values. Namely P and 1� P, which represent the alternative hypoth-
eses of homogeneity and heterogeneity, respectively. To determine
the overall significance, the smaller P-value should be doubled.

3 Results

In this section, we demonstrate the use of HTA in several
domains. We begin with synthetic data for both 2-dimensional and
3-dimensional spatial data (Section 3.1). We then apply HTA to two
2-dimensional spatial transcriptomics datasets: Visium spatial RNA-
seq by 10x Genomics (Section 3.2) and spatial transcriptomics
inferred from pathology whole-slide images (Section 3.3). We also
demonstrate a 3-dimensional use case using MRI images (Section
3.4). Finally, we demonstrate that HTA extends to other domains
by analyzing US census data (Section 3.5).

3.1 Synthetic data
In Figures 1 and 2, we depict results from applying HTA to 2-dimen-
sional heterogeneity maps of shape (32, 32), each of which repre-
sents a trait-combination matrix. Regions are the visible square
areas that fall between the grid lines. In Figure 1, we see heterogen-
eity maps for two traits, each of which has a random uniform distri-
bution with probability 0.5 of occurrence in each position. As one
would expect, the null hypothesis that the trait-combinations are
randomly distributed is not rejected in all three region sizes (2, 8 and
16) since HTA P-values are >0.3.

Figure 2 demonstrates that HTA discerns between homogeneous
and heterogeneous distributions. Holding the region size constant,
we observe that a perfectly homogeneous distribution within each
region (left) is significantly homogeneous (HTA P-value ffi 0), while
a perfect heterogeneous distribution (right) is significantly heteroge-
neous (HTA 1-P-value ffi 0). In comparison, a random heteroge-
neous distribution from H0 (middle) is neither (HTA P-value 0.5).
This means that both significant homogeneity and significant het-
erogeneity are identified using HTA.

In Figure 5 we applied HTA to a 3-dimensional heterogeneity
map of shape (32, 32, 3) (for the x, y, z axes, respectively). Since the
region size can now also vary across the z-axis, we use two region
sizes that differ only along this axis: (8, 8, 1) and (8, 8, 3) as illus-
trated at the bottom of Figure 5. Using a region size of (8, 8, 1), as in
Figure 5 (left), where each region manifests exactly one of the trait
combinations, we obtain significant homogeneity (HTA P-value
ffi 0). Conversely, using a region size of (8, 8, 3), illustrated in Figure
5 (right), where each region contains an equal amount of each of the
three trait combinations, we obtain significant heterogeneity (HTA
P-value of ffi 1).

3800 A.Levy-Jurgenson et al.



3.2 Spatial RNA sequencing
We use 10x Genomics’ Visium breast cancer spatial gene-expression
data (see Supplementary Material S2 for details). The sample is a
Stage Group IIA breast cancer of type Luminal B (ER positive, PR
negative and HER2 positive). To determine nrc, the number of entries
in region r manifesting trait-combination c, we use the median
threshold for each gene. An entry manifests combination c if all the
genes in this combination are above their respective median expres-
sion level. Since this sample is Luminal B, it is expected that ESR1,
FOXA1 and GATA3 would be spatially co-expressed (Jacquemier
et al., 2009), leading to a significantly homogeneous HTA index. We
tested both two and three traits. Indeed, in Figure 3B–D, we observe
that the tissue sample is significantly spatially homogeneous at both a
local and global resolution (smaller and larger region-sizes, respect-
ively), obtaining HTA P-values of < 10�10. This is compared to a
random permutation of the observed trait combinations under H0

(Fig. 3A) which obtains an HTA P-value of 0.26 even at the smallest
region size of 5. For the three traits: ESR1, GATA3 and FOXA1
(Fig. 3F–H) we observe similar results, with HTA P-value of < 10�8

at all three region sizes. This is in comparison to the random permu-
tation of the observed trait combinations (Fig. 3E) which obtains an
HTA P-value of 0.56 at region size 5.

Previous research has shown that T-cells remaining at the periph-
ery of cancer cells, with low tumour infiltration, may be indicative
of poor prognosis compared to tumours with high T-cell infiltration
(Pruneri et al., 2018). HTA can help identify such cases. In Figure
4B–D we generated the heterogeneity map for ERBB2 (HER2) and
CD8A (T-cells) using the same HER2 positive breast cancer sample.

We focused on the area where ESR1 and GATA3 are relatively co-
expressed (bottom half of the tissue in Fig. 3) since, as explained
above, these regions are likely to have high tumour content. Using
HTA, we observe significant homogeneity in the two smaller region-
sizes, 5 and 15, with HTA P-values < 10�6. Interestingly, at the
larger region size of 30 we no longer observe significant homogen-
eity, with a P-value of 0.1. For context, a random dispersion of these
T-cells (Fig. 4A) is not significantly homogeneous, with an HTA P-
value of 0.47. The significant homogeneity at the two smaller region
sizes mean that the tumour cells are rarely, if at all, infiltrated by T-
cells. However, the lack of significant homogeneity at the larger re-
gion size indicates that there is at least some infiltration of T-cells
(otherwise we would observe significant homogeneity at this level
too).

Since HTA is designed to handle a large number of traits, it is
capable of capturing certain characteristics of clonal composition.
We demonstrate this using the same breast cancer sample and 7
breast cancer driver genes: MYC, ESR1, ERBB2, GATA3, FOXA1,
TP53 and CDK4. In Figure 6A we can see the resulting heterogen-
eity map. Using a region size of 15, we obtain a significantly homo-
geneous HTA (P-value: 10�16). In B we observe a random
permutation of the observed trait combinations, which results in a
non-significantly homogeneous HTA (P-value: 0.43). Since 7 traits

Fig. 6. Heterogeneity maps and HTA for seven breast cancer driver genes: MYC,

ESR1, ERBB2, GATA3, FOXA1, TP53 and CDK4. (A) Actual heterogeneity map,

with HTA P-value of 10�16 at region size 15; (B) heterogeneity map under H0 (ran-

dom permutation of the trait-combinations), with HTA P-value of 0.43

Fig. 7. Survival analysis with respect to HTA derived from two spatially resolved

traits in breast cancer pathology whole-slides—MKI67 and miR-17 expression level.

Binary spatial transcriptomics maps, inferred from the slides of 324 subjects, were

split into high and low HTA with respect to the cohort’s median: > median (blue)

and � median (orange). The plots differ in the region size used to compute HTA.

HTA region sizes and corresponding log-rank P-values: (A) 15, P¼0.15; (B) 30,

P¼ 0.01; (C) 45, P¼ 0.06. All maps were resized to (90, 90), close to the median

map size, using nearest neighbour interpolation. Each survival curve is shown with

a 95% confidence interval
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give rise to 27 � 1 ¼ 127 non-empty combinations (provided that all
are present), we do not attempt to display the legend. Instead, we
produce a ‘region-report’ to identify the most frequent combinations
in regions of interest. For example, in the bottom left corner, at
ð�0:5;59:5Þ, the most frequent combination is all 7 driver genes,
accounting for 73% of the elements in that region. The second most
frequent combination is the 6 driver genes that remain after remov-
ing CDK4. While the region to its right has a similar composition,
two regions to the right, at ð29:5; 59:5Þ, already exhibits a different,
yet relatively homogeneous composition: the combination of all 7
account for 41% of the elements; a small number of different combi-
nations of 6 of the driver genes account for 26% and; the vast ma-
jority of the remaining elements (accounting for 28%) are several
combinations of 4 and 5 genes. These observations align with the
significantly homogeneous HTA, and may indicate that the

significant homogeneity may be due to the gradual formation of a
dominant subclone that over-expresses all 7 genes.

3.3 Spatial transcriptomics from pathology whole-slide

images
In this section, we use spatial transcriptomics inferred from breast
cancer pathology whole-slide images obtained from Levy-Jurgenson
et al. (2020). This dataset contains 324 subjects for which: (i)
MKI67 and miR-17 expression were spatially resolved to their re-
spective pathology whole-slide images, yielding binary maps that in-
dicate where each gene was detected as over-expressed; and (ii)
survival data is available. Since not all slides, and therefore inferred
maps, have the same size, we first resize them to (90, 90), chosen
based on their median shape. To ensure that the maps remain bin-
ary, we use nearest neighbour interpolation during resizing. We

Fig. 8. Heterogeneity maps and HTA for four MRI scans taken from different sub-

jects. The shape of each heterogeneity map is (256, 256, 3) and the region size is

(128, 128, 3). From top to bottom (highest to lowest HTA P-values): (i) normal age-

ing, (ii) Alzheimer’s disease, (iii) Metastatic bronchogenic carcinoma and (iv)

Glioma

Fig. 9. Heterogeneity maps and HTA for US census data for three ethnicity-related

traits: ‘Black or African American alone > 5% of total population in county’, ‘Asian

alone > 5% of total population in county’ and ‘American Indian and Alaska Native

alone > 5% of total population in county’ using region size 70. We observe signifi-

cant homogeneity with HTA P-value < 10�19
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apply HTA using the three region sizes: 15, 30 and 45. We then split
the cohort into two equal sets based on their HTAs: > median HTA
and � median HTA (relatively heterogeneous and relatively homo-
geneous, respectively). Figure 7 shows the results for the survival
analysis performed using these heterogeneity-based assignments. We
observe significant survival differences in the two larger region sizes,
with the middle one, region size 30, obtaining the lowest P-value of
0.01.

3.4 MRI
In this section, we demonstrate the use of HTA in the context of 3D
data by analyzing brain MRI scans (see Supplementary Material S3
for further details). We use four axial MRI scans from four different
subjects, representing: (i) normal ageing, (ii) Alzheimer’s disease (iii)
Metastatic bronchogenic carcinoma and (iv) Glioma. For each sub-
ject, we obtained the only two weighted sequences that were avail-
able for all four: T2-weighted and Proton density (PD) weighted
(these accentuate different properties; for details see, e.g. Chong
et al., 2016). We use these as the traits, where a strong signal
(brighter) gets 1 and a low signal (darker) gets 0, depending on
whether they are above or below the median grayscale value, corres-
pondingly. Since MRI scans are sequences of images (slices), they
represent a 3-dimensional space. We use three different slices per
subject taken from similar locations in each (Supplementary
Material S3). We use three for visualization purposes, but the ana-
lysis applies to any number of slices. In Figure 8 we see the resulting
3D heterogeneity maps and HTA for all four subjects. The shape of
each map is (256, 256, 3) and the region size is (128, 128, 3).
Normal ageing (top) is the only one that is not significantly homoge-
neous at a 0.01 threshold (P-value 0.02). The remaining three, each
of which represents a different disease, are significantly homoge-
neous. The figures are ordered in decreasing P-values. Interestingly,
the two cancer scans obtain the strongest significance, with P-values
10�84 (metastatic bronchogenic carcinoma) and 10�149 (glioma).
Alzheimer’s disease is also significantly homogeneous, with a P-
value of 0.0002.

We note that for images, there may be other binarization techni-
ques besides the median that are worth considering (e.g. Li thresh-
olding to detect background versus foreground). Specifically for
MRI, it may also be relevant to use actual raw signal measure-
ments, provided such data is available. In such a case, other binar-
ization methods may be better suited than the median value
threshold. We have kept the median threshold for simplicity of
demonstration.

3.5 Census data
To demonstrate the overall utility of HTA we also applied it to re-
cent census data for 3092 counties across the US, excluding those in
Alaska, Hawaii and Puerto Rico due to their relatively large distance
from the other states (see Supplementary Material S5). For each
county, the data contains the total population per ethnicity, across
multiple ethnicity groups. In Figure 9 we observe the heterogeneity
map and corresponding HTA index and P-value obtained for the
three ethnicity-related traits: ‘Black or African American alone >5%
of total population in county’, ‘Asian alone > 5% of total popula-
tion in county’ and ‘American Indian and Alaska Native alone >5%
of total population in county’ for region size 70. We observe signifi-
cant homogeneity, with HTA P-value 10�19, indicating that people
from the same ethnic origin tend to cluster in specific regions. Since
all regions included over 5% ‘White alone’ we did not include this
category.

Since the size of such maps could potentially be much larger, we
also tested whether 100 random-uniform permutations (required to
compute Lyapunov CLT parameters, as described in Section 2.3.2),
instead of 1000, would be sufficient to obtain similar HTAs and
P-values. The results for 100 repeats are nearly identical to those of
1000 repeats: we obtain P-values 10�19 for 1000 and 10�18 for 100.

4 Discussion

HTA provides a solution to the growing need for statistical analysis tools
that are capable of quantifying spatial heterogeneity in the complex set-
ting of high throughput molecular biology data, including spatial tran-
scriptomics and digital pathology. It is also useful in other domains,
including imaging and geographic information systems. HTA accurately
reflects spatial heterogeneity at multiple resolutions, can handle a large
number of variables (trait-combinations) and lends itself to efficient stat-
istical assessment. In the context of addressing multiple traits, we also
note the difference between HTA and the existing literature. For ex-
ample, Figure 10 demonstrates that Morisita-Horn, which measures the
overlap between two traits across all regions of a given space, will de-
clare a perfect overlap for both examples shown in the figure, whereas
HTA successfully discerns between the two.

While HTA is multivariate, it may not easily scale to hundreds
or thousands of molecular traits. This can be overcome by using ag-
gregation methods to obtain several meta-traits, each representing a
group of individual traits. We demonstrate this in Supplementary
Material S6 using immune pathway enrichment scores [computed
using GSVA (Hänzelmann et al., 2013)], representing a total of 69
genes, and using cluster IDs obtained from 10X’s Loupe Browser,
representing 2786 genes. Using such aggregation methods HTA can
be applied to data that spans a large number of individual traits.

We have also shown that HTA can be used at multiple scales,
controlled by the region-size parameter. We note that other multi-
scale measures, such as 2D multi-scale entropy (e.g. Silva et al.,
2018), as well as fractal-based and wavelet-based methods (e.g.
Watanabe et al., 2021), while multi-scale, do not apply to the trait-
combination representation that HTA can analyze. These methods
apply either to 2D images, with a strong emphasis on relationships
between colours, or to 2D binary matrices. Since the colours in the
heterogeneity maps are not ordinal, and since there is more than one
trait-combination, neither option is relevant.

HTA also has other advantages. First, HTA is simple to use since
it requires a single input parameter (region size) and easy to interpret
since it is directly derived from Shannon’s entropy. This is in con-
trast to available tools that are limited in at least one of these
aspects. HTA also applies to any d-dimensional space. We demon-
strated this in 3-dimensions using both synthetic and MRI data.
Finally, HTA extends beyond the scope of molecular biology and
medical imaging and can be used in many other domains, as was
demonstrated with US census data.

HTA can be further used in down-stream analyses. For example,
in the case of ERBB2 (HER2) and CD8A (T-cells) demonstrated in
Figure 4, different HTAs could potentially be associated with differ-
ent responses to immune therapy treatment. Results of applying

Fig. 10. HTA captures a richer representation of heterogeneity, allowing it to differ-

entiate between types of overlap (a proxy used for heterogeneity), even in the bivari-

ate case
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HTA in digital pathology show that HTA may be predictive of sur-
vival in breast cancer.

HTA offers many potential extensions worthy of investigation in
future work. One option is to combine HTA scores from multiple
scales into a new measure that summarizes them. It may also be rele-
vant to extend HTA to apply to continuous measurements. Finally, al-
ternative permutation-based null models may also be investigated. One
option is to further investigate the utility of a trait-based permutation
(see Section 2.3). Another option is a locality preserving null model
(where the region can be determined by some radius), which may be
useful in certain cases where retaining local characteristics is important.
We note, however, that it may not be appropriate when considering
more global phenomenons. One such case is when measuring the level
of T-cell infiltration, as demonstrated in Figure 4; had we performed a
locality preserving permutation, we would not have been able to assess
the significance of infiltration since such a permutation would cause
the null model to assume that there is T-cell infiltration to begin with
(this sample has immune cells around cancer cells in most locations).
Nevertheless, alternative null models may be highly relevant in other
cases, and offer interesting opportunities for further investigation.

As spatial transcriptomics data and digital pathology inference
techniques become increasingly available and accurate, we expect
methods that address spatial distributions, including HTA and its
potential extensions, to become ubiquitous.
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