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Abstract: Carbon fiber plain-woven prepreg is one of the basic materials in the field of composite
material design and manufacturing, in which defect identification is an important and easily neglected
part of testing. Here, a novel high recognition rate inspection method for carbon fiber plain-woven
prepregs is proposed for inspecting bubble and wrinkle defects based on image texture feature
compression. The proposed method attempts to divide the image into non-overlapping block lattices
as texture primitives and compress them into a binary feature matrix. Texture features are extracted
using a gray level co-occurrence matrix. The defect types are further defined according to texture
features by k-means clustering. The performance is evaluated in some existing computer vision and
machine learning methods based on fiber recognition. By comparing the result, an overall recognition
rate of 0.944 is achieved, which is competitive with the state-of-the-arts.

Keywords: plain-woven prepreg; defect inspection; texture feature compression; k-means algorithm

1. Introduction

Carbon fiber reinforced plastics are widely used in aerospace due to their good fatigue
and corrosion resistance coupled with high strength-to-weight and stiffness-to-weight ratios [1].
The predominant material when it comes to composites in structural aircraft components is
pre-impregnated carbon fibers [2]. The preparation process of composites means that it is easy to
produce bubble and wrinkle defects, and timely inspection of these defects can help improve
both the performance of composites and their subsequent service performance.

The inspection methods for examining wrinkle and bubble defects in carbon fiber
prepreg are not like the common non-destructive testing methods for composite materials,
which are similar to surface texture inspection methods. Unidirectional prepreg and woven
prepreg are the most popular raw materials for fabricating composite materials. Unidirec-
tional prepreg is the most commonly utilized material thanks to automatic manufacturing
processes such as automated tape laying and automatic fiber placement. With improvement
in the degree of automation, defect inspection technologies for unidirectional prepreg have
gained popularity as well; these include ultrasonic testing [3], radiographic testing [4], and
thermal imaging testing [5]. The structure of woven prepreg is more complicated than
that of unidirectional prepreg, and the quality inspection of its preparation process is more
difficult. At present, defect inspection for carbon fiber woven prepreg relies heavily on
manual inspection, which has the disadvantages of low detection efficiency dependence
on the experience of the inspector. Moreover, due to the complex structure of carbon fiber
woven prepreg, when defect inspection technologies for unidirectional prepreg are used
to examine defects in carbon fiber woven prepreg, the recognition rate of the inspection
technologies used with unidirectional prepreg cannot meet the demands of examining
carbon fiber woven prepreg. Therefore, it is particularly important to propose a new defect
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inspection method with a high recognition rate for use with carbon fiber woven prepreg, in
particular to allow for online inspection during future automated manufacturing processes.

From a woven fabric texture feature point of view, there are typically four classes [6,7]:
structural analysis (SA) [8,9], spectral methods [10–12], model-based methods [13–15],
and statistics-based classification approaches [16–18]. Among these, SA assumes that
the surface texture is generated by following a placement rule and that defect-frees and
defects are respectively composed of overlapped texture primitives and nonoverlapped
texture primitives. Therefore, SA is one of the most suitable methods for defect inspec-
tion of woven prepreg; its core texture primitives are defined differently in the literature.
Bodnarova et al. [10] introduced the definition of texture primitive as texture blobs sur-
rounded by rectangular regions to form an overlapping binarized grid. Ng tested the
performance of the valley-emphasis method on common defect detection applications [19].
Jia and Liang [20] proposed a texture blob location-based method which does not directly
assume that it conforms to a rigid grid, rather inferring the placement rule dynamically.
As stated in [6,7], the requirement of the texture pattern is regular; thus, the locations of
defects can be identified through structural analysis.

From the perspective of training strategy, woven prepreg inspection methods are
divided into two classes based on either supervised or unsupervised training. Unlike
unsupervised machine learning methods, woven prepregs may have unpredictable de-
fect forms in different production processes; thus, manufacturing inspection methods are
different from traditional machine learning methods, e.g., image decomposition (ID) [21],
motif-based (MB) methods [22], Bollinger bands (BB) [23], regular bands (RB) [24], Elo
rating (ER) methods [25], and wavelet-pre-processed golden image subtraction (WGIS) [26].
The ID method inspects defects using the integrating the image decomposition method,
which allows for the possibility of removing repeated texture primitives completely and
removing segment defects directly [27–29]. Another special method, MB [22], is rarely men-
tioned in the literature on plain-woven fabric inspection; its distinguishing characteristic
is the preprocessing step of lattice segmentation. The lattice segmentation method [30]
divides a plain-woven fabric image into non-overlapping block lattices which consist of the
same textures. The block lattice is similar to the texture primitives in SA, and the lattice
segmentation method derives a unified placement rule for images of the same woven
fabric patterns which share roughly the same texture for segmented block lattices. The
two categories (defect-frees and defects) generalize the categorization of motif-based and
non-motif-based methods.

The vision testing and lattice segmentation methods are exploited here to develop a
novel plain-woven fabric image analysis method including texture feature compression,
which is proposed for synthetically analyzing the texture patterns of carbon fiber plain-
woven prepreg and classify them into defect-free, bubble defect, and wrinkle defect classes.
Texture features are extracted using a gray level co-occurrence matrix (GLCM). The types
of defects are further defined according to their texture features. Finally, k-means clustering
(KMC) is used to confirm the types of defects, then detect the quality of prepreg for effective
processing. This method can accurately extract the texture feature information of carbon
fiber plain-woven prepreg, making inspection results more reliable and realistic.

2. Methodology
2.1. Image Preprocessing

Prepreg images acquired from via digital cameras are embedded with errors such
as noise, fickle shadows, and illumination changes; these can appear similar to defective
objects caused in the manufacturing process and affect image quality. Thus, image pre-
processing can dampen the bad effects caused by such errors, which is vital in feature
extraction [31,32]. Three kinds of preprocessing methods were used here to enhance cap-
tured images as well as to determine crossover points or floats (the technical details of these
calculations can be found in Appendix A). The main preprocessing methods used were
presented as follows.
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Step 1. Histogram equalization: The plain-woven texture of the images was equalized
by cumulative distribution function (CDF), which is helpful for enhancing their contrast.

Step 2. Gray-level morphology: The bottom-hat image was subtracted from the sum
of the original and top-hat images in order to maximize the contrast between the objects
and the gaps and distinguish them from each other.

Step 3. Steerable filters: Image edges were obtained by deconvolving the image with
templates generated in different directions. Then, Hough transform was used to strengthen
the weft yarn in the image, and the image was corrected according to the inclination angle.
Meanwhile, performance evaluation metrics were utilized to compare the results of the
vertical and horizontal filters.

2.2. Image Compression

The woven pattern of carbon fiber plain-woven prepreg has different describable
symmetry features depending on the warp and weft yarns. Based on this symmetrical
woven pattern, a new image compression algorithm which can remove noise data, retain
texture features, and compress and simplify the original image data is proposed here.
At the same time, the texture primitive of plain-woven patterns can be extracted from
defect-free images. The texture primitive is a unit that can form a whole pattern via simple
translation without rotation [33]. In addition, it is a marker for recognizing the woven
pattern of carbon fiber plain-woven prepreg.

As shown in Figure 1, taking a defect-free carbon fiber plain-woven prepreg as an
example, the image compression process here was carried out as follows.

Figure 1. The schematic of texture features in the compression process.
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Step 1. Preparation: The original matrix Oorg can be obtained from a preprocessing
image, and the pixel width w and pixel height h can be determined as well. In the process
of capturing the surface image of each prepreg, we determined the focal length, FOV, and
working distance of the camera and the morphological structure of the prepreg did not
change. Therefore, the numbers of warps and wefts in each image could be determined,
and are defined here as nx and ny, respectively.

Oorg =

 o11 · · · o1j
...

. . .
...

ok1 · · · okj

, j = 1, 2 · · · , w ; k = 1, 2 · · · , h (1)

Step 2. Segment horizontally: the original matrix, Oorg, is segmented horizontally
according to the value of the weft, ny. As a result, ny weft-block images corresponding to
the matrix of ny weft-block images can be obtained as shown in Equation (2). The number of
rows and columns in each matrix is respectively rh and w, where rh = h/ny and x represents
the gray value in the weft-block image. Then, the weft-block and original matrices can be
expressed as shown in Equations (3) and (4):

xi
j =

[
xi

1j · · · xi
kj

]T
, i = 1, 2 · · · , ny ; j = 1, 2 · · · , w ; k = 1, 2 · · · , rh (2)

Wi =
[

xi
1 · · · xi

j

]
=


xi

11 · · · xi
1j

...
. . .

...
xi

k1 · · · xi
kj

 (3)

Oorg =
[
W1 , W2 · · · , Wi

]T
(4)

Step 3. Compute the binary threshold value, t; the elements (gray value) of each
column in the matrix Wi are added up together and then multiplied by a correction
coefficient, λ, as shown in Equation (5). The weft-block matrix Wi becomes a new matrix,
Vi, as shown in Equation (6).

vi
j = λ×∑rh

k=1 xi
kj , i = 1, 2 · · · , ny ; j = 1, 2 · · · , w (5)

Vi =
[

vi
1 , vi

2 , · · · , vi
j

]
(6)

Afterwards, the element sequence of Vi is used as the x-coordinate and the element
value as the y-coordinate to draw the grayscale transformation graph; in other words, the
variations in the element sequence of Vi in terms of grayscale values are plotted against
the number of pixels. A sub-threshold value, ti, can be easily obtained from the grayscale
transformation graph. Similarly, the binary threshold value, t, can be obtained by taking the
average of the corresponding thresholds of each obtained Vi, as expressed in Equation (7):

t = ∑ ti/i , i = 1, 2 · · · , ny (7)

Step 4. Binary operation: the binary threshold, t, is used to divide the element value
of each column vector xi

j into binary data (0 or α) in matrix Wi, as shown in Equation (8).

Thus, the original matrix, Oorg, and the warp-block matrix Wi become the binary matrices
Obnr and Wi

bnr, respectively.

xi
j =

{
0, | vi

j < t
α, | vi

j ≥ t
(8)

Generally, the pixel values 0 and 255 represent black and white in a grayscale image.
For a good data visualization effect, the pixel value α is usually defined as 255.
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Step 5. Segment vertically: the binary matrix Wi
bnr is segmented vertically according

to the value of the warp, nx. As a result, nx crossing-block images and the corresponding
nx crossing-block matrix Cil in each Wi

bnr can be obtained as shown in Equation (9), with
Cil being a binary matrix. The number of rows and columns of each matrix Cil is rh and rw,
respectively, where rh = h/ny, rw = w/nx. Then, the binary warp-block and binary original
matrices can be expressed as shown in Equations (10) and (11):

Cil =
[

xil
1 · · · xil

j

]
=


xil

11 · · · xil
1j

...
. . .

...
xil

k1 · · · xil
kj

, l = 1, 2 · · · , nx ; j = 1, 2 · · · , rw ; k = 1, 2 · · · , rh (9)

Wi
bnr =

[
Ci1 · · · Cil

]
(10)

Obnr =
[
W1

bnr , W2
bnr · · · , Wi

bnr

]T
(11)

Step 6. Black/White classification: the binary proportions of each element are calcu-
lated for the crossing-block matrix Cil; the color with a smaller proportion will be replaced
by the color with a larger proportion. In terms of a grayscale image, the matrix Cil is
constituted by either a black block or a white block. A new matrix, Ocls, can be obtained by
updating the values of the elements of Obnr.

Step 7. Extract the output matrix F: Convolution operations are performed between
Ocls and convolution kernel K. The kernel K is an rw × rh matrix in which the values of all
elements are the same as ζ calculating by Equation (12); the horizontal step is rw and the
vertical step is rh. The output matrix F can be obtained from the following Equation (13):

ζ = (rw × rh × α)−1 (12)

F = Ocls⊗K (13)

where ⊗ is the convolution operator.
As a result, the output matrix F is obtained, in which the number of rows is equal to

the number of weft yarns and the number of columns is equal to the number of warp yarns;
it is a binary matrix that the element value is either zero or one. Thus, the texture feature of
a defect-free carbon fiber plain-woven prepreg is clearly mapped by matrix F with the least
amount of data.

2.3. Texture Feature Extraction

The GLCM is a texture feature extraction method based on gray-level spatial depen-
dence. Each element in the matrix represents the occurrence of a grayscale combination.
Assuming that f (x, y) is a two-dimensional digital image with a size of M × N and a gray
level of h, the different pixel spacing modeling of GLCM with a certain spatial relationship
is expressed as Equation (14) [34]:

P(i, j) = #{(x1, y1), (x2, y2) ∈ M× N| f (x1, y1) = i, f (x2, y2) = j} (14)

where # denotes the number of elements in the set, d is the distance between (x1, y1) and
(x2, y2), and θ is the angle between the vector and the axis of the coordinate.

In general, d selects 1~8, while θ selects 0◦, 45◦, 90◦, and 135◦. According to the output
matrix F provided by the texture feature compression algorithm, only one kind of the
texture feature of weft and warp yarns can be extracted in a case where the angle of θ is 45◦

or 135◦, as shown in Figure 2. Thus, the values of θ with 45◦ and 135◦ can be selected in
order to improve the contrast of the feature data, thereby facilitating the detection of defect
and defect-free images. The co-occurrence matrices of the two conditions are tabulated
in Table 1.
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Figure 2. The schematic of three defect-free fiber texture feature extractions.

Table 1. The co-occurrence matrices of two conditions [34].

Function Position Conditions

M (i, j, d, 45◦) RRD(d): (x1 − x2 = d, y1 − y2 = −d)
or (x1 − x2 = -d, y1 − y2 = d) {RRD(d), f (x1, y1) = i, f (x2, y2) = j}

M (i, j, d, 135◦) RLD(d): (x1 − x2 = d, y1 − y2 = d)
or (x1 − x2 = -d, y1 − y2 = −d) {RLD(d), f (x1, y1) = i, f (x2, y2) = j}

Therefore, texture features can be represented by the values of contrast and homo-
geneity along with the angular second moment [35,36]. These three secondary statistics
can reflect the textural features of carbon fiber plain-woven prepreg.

The schematic for defect-free fiber texture feature extraction is shown in Figure 2; the
different colors of the square sections represent the different values of different textural
features. The value of the white section is 1, the value of the black section is 0, and the
values of dark gray and light gray sections are equal to the calculation results. Taking
the defect-free image as an example, whether θ is 45◦ or 135◦ the size of a matrix is 2 × 2
and one diagonal value is 0. Therefore, the contrast, homogeneity, and angular second
moment can be easily obtained using basic arithmetic (the specific operation is shown
in Appendix A).

2.4. Defect Inspection

Bubble and wrinkle defects are two kinds of typical defects in prepreg during the
laying up process. The KMC algorithm was adopted to inspect the textural features in
defect-free, winkle defect, and bubble defect cases. By calculating the center of clustering
for each condition, the KMC algorithm looked for the best way of grouping images with a
minimal value of the mean similarity [37,38]. The accuracy of the KMC algorithm can be im-
proved and verified using training and validation sets with images for the three conditions.
Moreover, the KMC algorithm can consolidate the defined defect-type partition [39].

3. Materials and Experiments

Carbon fiber plain-woven prepreg (WP-3011, Guangwei Composite Material Co., Ltd,
Weihai, China) was used for this study. The prepreg was laid on the mold with assis-
tance from a machine hand (KRC4, KUKA Robotics Co., Ltd, Shanghai, China). Then,
images were captured using a digital camera (MV-CH050-10UM, HIKROBOT Co., Ltd,
Hangzhou, China). The camera captured images of other areas by coordinate movement
and stored them in the computer. The computer configuration used was a Windows 7
64x operating system and Inter Core i7-8565U (1.8 GHz) CPU with 8 GB running mem-
ory. The process of defect inspection for carbon fiber plain-woven prepreg is shown in
Figure 3. The working distance of the camera was 450 mm. Defect sizes were no more than
150 mm × 180 mm, and not smaller than the size of the texture primitive. Representative
original images of the defect-free, bubble defect, and wrinkle defect samples are shown
in Figure 4.
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Figure 3. The process of defect inspection for carbon fiber plain-woven prepreg.

Figure 4. The original images of carbon fiber plain-woven prepreg with and without defects, captured
by digital camera.

As a result, 1200 prepreg surface images (200 defect-free images, 500 images with
bubbles, and 500 images with wrinkles) were collected as the total dataset and used for
improving the proposed plain-woven prepreg defect automatic inspection method.

Python 3.7 and OpenCV module were used for the development of the proposed
defect automatic inspection method; a flowchart is shown in Figure 5. The enhanced
grayscale images of the prepreg were obtained using three preprocessing algorithms. A
texture feature compression algorithm was used to compress and simplify the preprocessed
images. Then, the texture features of the compressed output matrix F, consisting of contrast,
homogeneity, and the angular second moment, were extracted by the GLCM algorithm
(1-pixel and 45◦, 135◦ directions). The mean value of two directions was utilized as the
texture feature. These three features formed a three-element array as the input of the KMC
algorithm. In the end, the results of clustering recognition were obtained.
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Figure 5. The flowchart of the proposed defect automatic inspection method.

4. Results and Discussion

As shown in Figure 6, a series of preprocessed defect-free images were used to describe
the image preprocessing steps. The original grayscale image is shown in Figure 6a. To
enhance the contrast in the original grayscale image, the plain-woven texture of the image
was equalized by CDF, as shown in Figure 6b. Then, the histogram-equalized image was
filtered through a box filtering function to reduce noise, as shown in Figure 6c. After
that, a top-hat transform (as shown in Figure 6d) and bottom-hat transform (as shown
in Figure 6e) were applied to the filtered image to obtain the gray-level morphology, as
shown in Figure 6f. The gray-level morphology algorithm allowed us minimize the effects
of tensile fiber on fiber texture extraction. Finally, a steerable filtering algorithm, which
included a horizontal steerable filter (as shown in Figure 6g) and a vertical steerable filter
(as shown in Figure 6h), was used to obtain the clear edges of each yarn, with the templates
generated in different directions by the deconvolving method. With this comparison, the
vertical steerable image was selected for the Gaussian filter to complete the whole image
preprocessing step, as shown in Figure 6i.

The comparisons between the original gray and the histogram-equalized images and
histograms in three conditions (defect-free, bubble defect, and wrinkle defect) are shown in
Figure 7. By comparing the images, it can easily be seen that the histogram equalization
equalizes the brightness of the original grayscale image caused by the reflective resin on
the prepreg surface and improves the clarity of the plain-woven texture. By comparing the
histograms, it can be seen that a uniform distribution of the gray level was obtained, which
is helpful for extraction of texture features.
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Figure 6. Image preprocessing steps: (a) original grayscale image; (b) histogram equalization; (c) box
filtering; (d) top-hat transform; (e) bottom-hat transform; (f) gray-level morphology; (g) horizontal
steerable filter; (h) vertical steerable filter; and (i) Gaussian filter.

Figure 7. Three kinds of grayscale images (defect-free, bubble, and wrinkle) and their gray histograms
with/without histogram equalization.
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The gray-level morphological operation processing is shown in Figure 8. An area
of 10 (warp yarns) × 10 (weft yarns) was intercepted for image observation. The weave
points of warp and weft yarns in the image were regarded as mountains and valleys. The
contrast was improved by minimizing the number of valleys. The top-hat and bottom-hat
images contained the mountains and the valleys of the yarns, respectively. Thus, gray-level
morphological operation processing was carried out by adding the top-hat operated image
to the original grayscale image and then subtracting the bottom-hat operated image from
the sum. Following this gray-level morphology process, the gray-level morphological
image was obtained, which was similar to the ideal image.

Figure 8. Gray-level morphological operation processing.

A steerable filter was adopted to filter the gray-level morphological image in order to
emphasize the borders of warp and weft yarns in the final preprocessing step. The effects
of vertical filtering and horizontal filtering are compared in Figure 9. The performance
evaluation metrics for the vertical and horizontal steerable filtered images are shown in
Table 2. From Table 2, it can be seen that (i) the ACC values of the vertical steerable filter
are much higher than those of the horizontal steerable filter; (ii) the TPR values of the
horizontal steerable filter in the full-size image are very low, specifically, 41.64% below the
maximum value; and (iii) the FPR values of the vertical steerable filters are much lower
than those of the horizontal steerable filters. Therefore, the vertical steerable filtered images
were selected to improve recognition accuracy before the final preprocessing step.

Figure 9. Comparison of the results of the vertical and horizontal steerable filters, Gaussian filter, and
binary operation.

Table 2. Performance evaluation metrics for vertical and horizontal steerable filtered images.

Image
Size Direction ACC TPR FPR PPV NPV

10 × 10 Vertical 82.27 78.13 13.31 86.27 78.74
Horizontal 72.89 72.24 26.39 74.71 71.07

Full-size Vertical 77.33 69.57 19.29 81.43 73.36
Horizontal 63.58 36.49 47.33 90.01 56.19
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An image compression algorithm was proposed to compress and simplify the pre-
processed image data while retaining the texture features for further analysis; the image
compression process is shown in Figure 10. A preprocessed image (shown in Figure 10a)
was segmented horizontally (shown in Figure 10b) based on the number of weft yarns,
then used to compute the binary threshold value for threshold classification (shown in
Figure 10c). The binary sub-image arrays were then segmented vertically based on the
number of warp yarns to obtain crossing-block image arrays as the preliminary texture
pattern, which are shown in Figure 10d. Then, a dichotomy operation was carried out for
the Black/White classification process, as shown in Figure 10e. After that, the crossing-
block image arrays were merged to obtain the final texture pattern, as shown in Figure 10f.
Using a convolution operation, the final texture pattern was converted into the output
matrix, F (obtained by Python and shown in Figure 10g), which was used as a standard
defect-free template for further analysis. Following the same image compression process,
the texture patterns of the original images of carbon fiber plain-woven prepreg with and
without defects (corresponding to Figure 4) were obtained, and are shown in Figure 11.

Figure 10. The image compression process: (a) preprocessed image; (b) grayscale sub-image arrays
of ten weft yarns; (c) binary sub-image arrays of ten weft yarns; (d) preliminary texture pattern;
(e) preliminary texture pattern processed by dichotomy; (f) final texture pattern; and (g) the output
matrix, F.

Texture features were extracted based on the GLCM method. The mean values of the
texture features are listed in Table 3. Three texture feature parameters, namely, the contrast
and homogeneity along with the angular second moment, made up a three-dimensional
array which was used to present the texture features.

The KMC algorithm classified 180 samples by three conditions, defect-free (60 samples),
with bubble defect (60 samples), and with wrinkle defect (60 samples), by recognizing
different representative defect-free, bubble, and wrinkle texture features of carbon fiber
plain-woven prepreg samples randomly selected from the 1200 total samples. The results
were plotted as a three-dimensional scatter plot, shown in Figure 12. Each texture feature
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of these three conditions has distinguishable differences, which are defined according to
their locations in the plot.

Figure 11. The texture patterns of the original images of carbon fiber plain-woven prepreg with and
without defects, corresponding to Figure 4.

Table 3. The mean value of textural features.

Specimens Contrast Homogeneity Angular Second Moment

Defect-free 0.032 0.022 0.960
Bubble 0.272 0.242 0.680
Wrinkle 0.839 0.830 0.177
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Moreover, a total of 1000 samples based on the same three conditions (defect-free,
bubble, and wrinkle) with proportions of 2:3:5, 2:4:4, and 2:5:3, respectively, were used to
verify the recognition rate. The plots for each proportion are shown in Figure 13. The initial
and final center points of the clustering results are shown in Tables 4 and 5 respectively.
The overall recognition accuracy (IE) listed in Table 6 is 94.41%, where TN, TB, and TW are
the number of defect-free, bubble and wrinkle samples, RN, RB, and RW are the number of
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correctly recognized data elements, IN, IB, and IW are the recognition accuracy, and IM is
their average.

Figure 13. Plot of KMC algorithm classification for the three conditions with proportions of (a) 2:3:5,
(b) 2:4:4, and (c) 2:5:3.

Table 4. The initial cluster center of three surface morphologies with different proportions.

Defect-Free:
Bubble: Wrinkle

Defect-Free
Cluster Center Coordinates

Bubble
Cluster Center Coordinates

Wrinkle
Cluster Center Coordinates

2:3:5 (0.0352, 0.0225, 0.9556) (0.2746, 0.2456, 0.6734) (0.8345, 0.9934, 0.1579)
2:4:4 (0.0352, 0.0225, 0.9556) (0.2746, 0.2456, 0.6734) (0.8345, 0.9934, 0.1579)
2:5:3 (0.0352, 0.0225, 0.9556) (0.2746, 0.2456, 0.6734) (0.8345, 0.9934, 0.1579)

Table 5. The final cluster center of three surface morphologies with different proportions.

Defect-Free:
Bubble: Wrinkle

Defect-Free
Cluster Center Coordinates

Bubble
Cluster Center Coordinates

Wrinkle
Cluster Center Coordinates

2:3:5 (0.0321, 0.0203, 0.9596) (0.2696, 0.2425, 0.6759) (0.8389, 0.8297, 0.1779)
2:4:4 (0.0322, 0.0217, 0.9598) (0.2719, 0.2427, 0.6799) (0.8393, 0.8304, 0.1773)
2:5:3 (0.0319, 0.0221, 0.9603) (0.2734, 0.2408, 0.6811) (0.8432, 0.8314, 0.1763)

Table 6. The recognition accuracy of the proposed method in this paper.

Proportion TN/TB/TW RN/RB/RW IN/% IB/% IW/% IM/% IE/%

2:3:5 200:300:500 188:283:471 94.00 94.33 94.20 94.18
94.412:4:4 200:400:400 189:379:380 94.50 94.75 95.00 94.75

2:5:3 200:500:300 189:469:284 94.50 93.80 94.67 94.32

When texture feature extraction and defect type inspection was performed only by
GLCM and KMC the recognition accuracy was 91.96%, as shown in Table 7. At the
same time, the image processing time is also slower than that of the above method, as
shown in Table 8. In contrast with general image preprocessing and the GLCM algorithm,
this paper further refines the processing of texture features. Therefore, the recognition
accuracy can be significantly improved in different proportions, as shown in Figure 14.
Furthermore, the proposed method was compared with several existing computer vision
and machine learning methods based on fiber recognition, with the results shown in
Figure 15. Despite the different data sets employed by the above methods, their final
purpose is ultimately to effectively recognize fiber morphologies and defect types. The
proposed method can describe the morphological characteristics of defects in carbon fiber
prepreg more comprehensively and more simply, and shows a remarkable improvement
recognition accuracy; the results show that the proposed methodology is competitive or



Polymers 2022, 14, 1855 14 of 19

better than these traditional techniques. The three kinds of surface morphologies (defect-
free, bubble, and wrinkle) in carbon fiber prepreg were all recognized effectively.

Table 7. The recognition accuracy of the GLCM algorithm.

Data Set Proportion Recognition Accuracy (%) Average Value (%)

1 2:3:5 92.12
91.962 2:4:4 92.41

3 2:5:3 91.37

Table 8. The effect of image compression on performance time.

Method GLCM & KMC Method The Proposed Method of This Article

Each testing time (ms) 472 136
Total testing time (min) 7.87 2.27

Figure 14. Diagram of the algorithm comparison.

Figure 15. Comparison of different recognition methods (MSCDAE [40], SDAE [41], LSTS [30],
BB [23], ER [25], RB [24], WGIS [26], NN [42]).
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5. Conclusions

Here, we have proposed a novel defect inspection method to improve the efficiency pf
automatic online detection of defects in carbon fiber plain-woven prepregs, which can help
in developing an automatic laying-up process in their production. The proposed method
compresses a plain-woven prepreg image while reserving additional texture features, which
are calculated using GLCM. These features can be regarded as a three-dimensional array
and used as the input of the KMC algorithm, which is then applied to define the defect
types and realize defect inspection. It should be noted that the performance of the proposed
method was compared to several different inspection methods, it showed significant
improvement; the recognition rate and performance time of the proposed method reached
94.41% and 136 ms, respectively. Moreover, this proposed method could be used for surface
defect identification in other woven patterns, such as twill and satin.
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Nomenclature

Oorg original image matrix
w image width (px)
h image height (px)
nx the numbers of warps
ny the numbers of wefts
Wi weft-block matrix
t binary threshold value
Obnr binary matrix
Cil crossing-block matrix
F output matrix
Mij co-occurrence matrix
C contrast
H homogeneity
E angular second moment

Appendix A

Let us recall that when the prepreg images captured in the process of automatic
placement need to be enhanced by three preprocessing methods: (1) histogram equalization;
(2) gray-level morphology; (3) steerable filters; (4) Performance evaluation metrics; (5) Gray
level co-occurrence matrix. The specific algorithm implementation of these methods is
as follows.

(1) Histogram equalization: Firstly, the global image is equalized directly. Suppose that the
histogram distribution of the captured image A is HA(D). The monotone nonlinear
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mapping is used to change image A into image B, that is, function transformation f is
applied to each pixel in image A, and the histogram of image B is obtained as HB(D).

The whole process can be understood as changing all the DA in image A into DB
as follows: ∫ DA+∆DA

DA

HA(D)dD =
∫ DB+∆DB

DB

HB(D)dD (A1)

In order to achieve histogram equalization, the following are in particular:∫ DA

0
HA(D)dD =

∫ DB

0
HB(D)dD (A2)

Because the target is histogram uniformly distributed, we obtain HB(D) = A0/L, where
A0 is the number of pixels, and L is the grayscale depth (usually 256). And then we get:∫ DA

0
HA(D)dD =

A0DB
L

=
A0 f (DA)

L
(A3)

Therefore, let us define f :

f (DA) =
L

A0

∫ DA

0
HA(D)dD (A4)

The discrete form is:
f (DA) =

L
A0

∑DA
u=0 HA(u) (A5)

Then the histogram distribution in the local area window is used to construct the
mapping function to equalize the local image area.

Finally, in order to avoid the discontinuity and excessive enhancement of the image, the
interpolation method is used to accelerate the histogram equalization. Bilinear interpolation
formula is as followed.

f (D) = (1− ∆y)((1− ∆x) ful(D) + ∆x fbl(D)) + ∆y((1− ∆x) fur(D) + ∆x fbr(D)) (A6)

where ful(D), fur(D), fdl(D), fdr(D) are the mapping values of the histogram CDF of the
adjacent four windows to the central pixel, and ∆x, ∆y are the ratio of the distance between
the center pixel and the window pixel and the window size.

(2) Gray-level morphology: The operation object of gray-level mathematical morphology
is not a set, but an image function. The dilation and erosion operations of the input
image f(x, y) with structure element b(x, y) are respectively defined as:

( f ⊕ b)(s, t) = max
{

f (s− x, t− y) + b(x, y)
∣∣∣(s− x, t− y) ∈ D f , (x, y) ∈ Db

}
(A7)

( f � b)(s, t) = min
{

f (s + x, t + y) + b(x, y)
∣∣∣(s + x, t + y) ∈ D f , (x, y) ∈ Db

}
(A8)

Opening and closing operations are respectively defined as:

fopn = ( f � b)⊕ b (A9)

fcls = ( f ⊕ b)� b (A10)

The operations of top-hat and bottom-hat are respectively defined as:

ftop = f − fopn (A11)

fbtm = fcls − f (A12)
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Therefore, we obtain the final gray-level morphology preprocessing formula:

f f inal = f + ftop − fbtm (A13)

(3) Steerable filters: Considering the woven pattern, we use the steerable vertical filters
with the following basic 2-D Gaussian function in this paper.

f (x, y) =
1

2πσxσy
exp
[
−
(

x2

2σx2 +
y2

2σy2

)]
(A14)

where σx and σy are the standard deviation in the x and y directions, respectively.

Rotation matrix (Equation (A15)) is used to rotate the axis in accordance with a
necessary angle θ into the function.[

X
Y

]
=

[
cos θ sin θ
− sin θ cos θ

][
x
y

]
(A15)

Therefore, the steerable vertical filter algorithm is derived from Equation (A16). Af-
ter defining appropriate parameters of σx, σy and θ, the filter is convolved with above-
mentioned morphology enhanced image.

f (x, y) =
1

2πσxσy
exp×

[
− (x cos θ + y sin θ)2

2σx2 − (−x sin θ + y cos θ)2

2σy2

]
(A16)

(4) Performance evaluation metrics: First, the numerical comparisons between steerable
filtered images (binary images after filter) and template images are conducted in a
pixel-by-pixel manner. Specifically, both pixel values in the filtered and template
images are 255 as true positive (TP), while 0 as true negative (TN). The pixel value
in the filtered image is 255 and that of the defect manual-labeled image is 0 as false
positive (FP), while the reversed situation is false negative (FN). The following mea-
surement metrics are used to compare the result of applying vertical and horizontal
steerable filters:

ACC =
TP + TN

TP + FN + FP + TN
(A17)

TPR =
TP

TP + FN
(A18)

FPR =
FP

FP + TN
(A19)

PPV =
TP

TP + FP
(A20)

NPV =
TN

TN + FN
(A21)

In the above formula, ACC is accuracy, TPR is true positive rate, FPR is false positive
rate, PPV is positive predictive value, NPV is negative predictive value.

(5) Gray level co-occurrence matrix: All values of the co-occurrence matrices are given
normalized treatment before the texture features are calculated. The co-occurrence
matrices, Mij, is shown as Equation (A22).

Mij =
Pij

∑l
i=0 ∑l

j=0 Pij
(A22)
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Contrast, homogeneity and angular second moment are used to describe the carbon
fiber texture features.

Contrast: The contrast reflects the sharpness of the image and the depth of the texture
patterns. The pattens is deep, the image is clear, and the contrast is large. On the contrary,
the patterns are shallow, the image is fuzzy, and the contrast is small.

C =
N−1

∑
t=0

t2

{
l−1

∑
i=0

l−1

∑
j=0

P2(i, j)

}
(A23)

t = |i− j| (A24)

Homogeneity: The homogeneity measures how much the image texture changes
locally. The larger the value is, the less variation of different regions of the image texture is,
and the local texture is very uniform.

D =
l−1

∑
i=0

l−1

∑
j=0

P(i, j)
1

1 + (i− j)2 (A25)

Angular second moment (ASM): ASM is the sum of squares of element values in the
gray co-occurrence matrix. It reflects the degree of texture thickness and the degree of
evenness of image gray-level distribution. When the value is larger, gray-level distribution
is uniform and image is closed-grain. Otherwise, it is smaller.

E =
l−1

∑
i=0

l−1

∑
j=0

P2(i, j, d, θ) (A26)
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