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Abstract 

Background: Identifying blood-based DNA methylation patterns is a minimally invasive way to detect biomarkers 
in predicting age, characteristics of certain diseases and conditions, as well as responses to immunotherapies. As 
microarray platforms continue to evolve and increase the scope of CpGs measured, new discoveries based on the 
most recent platform version and how they compare to available data from the previous versions of the platform 
are unknown. The neutrophil dexamethasone methylation index (NDMI 850) is a blood-based DNA methylation 
biomarker built on the Illumina MethylationEPIC (850K) array that measures epigenetic responses to dexamethasone 
(DEX), a synthetic glucocorticoid often administered for inflammation. Here, we compare the NDMI 850 to one we 
built using data from the Illumina Methylation 450K (NDMI 450).

Results: The NDMI 450 consisted of 22 loci, 15 of which were present on the NDMI 850. In adult whole blood sam-
ples, the linear composite scores from NDMI 450 and NDMI 850 were highly correlated and had equivalent predic-
tive accuracy for detecting DEX exposure among adult glioma patients and non-glioma adult controls. However, the 
NDMI 450 scores of newborn cord blood were significantly lower than NDMI 850 in samples measured with both 
assays.

Conclusions: We developed an algorithm that reproduces the DNA methylation glucocorticoid response score 
using 450K data, increasing the accessibility for researchers to assess this biomarker in archived or publicly available 
datasets that use the 450K version of the Illumina BeadChip array. However, the NDMI850 and NDMI450 do not give 
similar results in cord blood, and due to data availability limitations, results from sample types of newborn cord blood 
should be interpreted with care.
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Background
DNA methylation is a stable epigenetic mark in humans 
that can identify risk factors, genetic differences, and has 
been shown to associate with survival outcomes. Regions 
of the DNA where methylation can act coordinately with 
other chromatin factors to alter gene regulation are pri-
marily CpG sites, where a cytosine and guanine are base 
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paired [1]. Across different sample types or different indi-
viduals, differentially methylated regions of one or more 
CpG sites can potentially lead to methylation biomarkers 
that may be useful in predicting events such as disease 
progression and responses to therapies [2]. A broadly 
applied platform for genome-wide DNA methylation 
analysis is the Illumina Infinium BeadChip technology 
[3]. The Illumina HumanMethylationEPIC array (i.e., 
850K array; introduced in 2015) measures over 850,000 
CpG sites in the human genome and builds on the Illu-
mina HumanMethylation450 array (450K array), which 
measured 485,512 CpG sites. As the technology improves 
and increases the coverage of CpGs that it can measure, 
findings and biomarkers developed from the most recent 
850K microarray version may have limited backward 
compatibility with datasets and samples run on its previ-
ous versions. As of May 2022, 82% of publicly available 
microarray data on the EWAS Data Hub are from the 
450K array, resulting in a plethora of archived studies and 
samples, so it is important to validate biomarkers built on 
the newer arrays on the older version arrays [4].

Glucocorticoids are commonly used to treat inflam-
mation for a myriad of diseases; in glioma patients, syn-
thetic glucocorticoids such as dexamethasone (DEX) 
are used to treat swelling of the brain [5]. Despite their 
benefits, exogenous glucocorticoids like DEX give rise 
to highly variable responses among people, and patients 
may experience adverse events. In pregnancy, glucocor-
ticoids play an important role in fetal programming, and 
cortisol plays a key role in antenatal development [6]. 
Antenatal glucocorticoid treatment is routinely given to 
mothers at risk for preterm birth, but this suppresses the 
hypothalamic–pituitary–adrenal (HPA) axis, which can 
lead to adrenal insufficiency, as the HPA axis is a major 
physiological stress response system that is important 
in maintaining homeostasis. Furthermore, exposure 
to stress during intrauterine life and other factors that 
raise maternal cortisol levels can result in excess corti-
sol exposure to the fetus. Toward the end of pregnancy, 
fetal exposure to maternal cortisol increases as the levels 
of the placental enzyme decrease. Thus, fetal exposure to 
elevated maternal cortisol during the third trimester is 
associated with alterations in infant feedback inhibition, 
and in the HPA axis [7]. Several studies have observed 
adrenal insufficiencies, neurodevelopmental delays, and 
other long-term consequences of elevated prenatal expo-
sures from endogenous maternal cortisol levels [6, 8–10].

Studies suggest that there is epigenetic regulation of the 
glucocorticoid receptor [11–13]. In one study, research-
ers identified a methylation predictor of glucocorticoid 
excess and found that the FKBP5 gene locus had a con-
centration of hypomethylated CpG sites among those 
with Cushing’s syndrome. FKBP5 is well documented 

in regulating glucocorticoid receptor sensitivity, and it 
is also a component in the neutrophil dexamethasone 
methylation index (NDMI), a pharmacodynamic DNA 
methylation biomarker that characterizes an individual 
patient’s exposure and response to glucocorticoids [13]. 
The NDMI accurately predicts exposure to DEX at the 
time of blood draw in glioma patients and non-glioma 
controls [14]. However, this biomarker was built using 
the Illumina HumanMethylationEPIC array and cannot 
be used on data from earlier generations of the Illumina 
methylation arrays (e.g., 450K array). Given the potential 
clinical and biological applications of the NDMI cou-
pled with the wealth of publicly available 450K data, we 
sought to reconstruct the NDMI biomarker using CpG 
loci on the 450K array (NDMI 450).

The NDMI could yield potential insight into the 
pathophysiology of adrenal disorders and other factors 
involved in the glucocorticoid pathway, such as those 
involved in reproductive outcomes. Within the first few 
days after birth, a blood test is run to hormone-related, 
rare genetic, and metabolic conditions that could poten-
tially cause serious health problems to ensure a timely 
diagnosis [15]. Genetic variations of neonatal FKBP5 
have been associated with mental health outcomes and 
fetal hippocampal development with increased ante-
natal maternal depressive symptoms [16]. Exposure to 
betamethasone, a synthetic glucocorticoid, was also 
found to be significantly associated with lower placenta 
methylation at the enhancer site of FKBP5 and conse-
quently higher expression of FKBP5 in placenta samples 
[17]. Using a blood-based biomarker capable of captur-
ing inter-individual variation in glucocorticoid exposure 
and response could help clarify the complex relationship 
between maternal risk factors and developmental health 
outcomes and identify adrenal disorders beyond the 
standard blood test.

Immune responses also are linked to glucocorticoids 
and play an important role during pregnancy. Further, 
metabolic disturbances such as gestational diabetes, 
anxiety, and preterm birth can lead to neonatal compli-
cations and problems with development. In newborns 
born to individuals with gestational diabetes mellitus 
(GDM), γδ T cell and NK cell levels were found to be 
higher, and CD4T cell proportions lower than that of 
healthy pregnant women [18]. Immune cells in term and 
preterm labor participate in various phases of the preg-
nancy. Compared to term infants, preterm infants were 
observed to have lower proportions of  CD56bright NK 
cells, CD8+ T cells, and γδ T cells, and increased levels of 
CD4+ T cells and transitional B cells [19].

Here, we created a DEX response biomarker using 
CpG probes contained on the 450K array. The two aims 
of this study were to compare the predictive accuracy of 
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discriminating clinical use of DEX with the new 450K 
biomarker compared to that of the 850K biomarker and 
to evaluate the performance of the 450K biomarker with 
pregnancy variables where 850K data were not available.

Results
Elastic net regression modeling with neutrophil-specific 
CpG probes associated with DEX on the 450K array Out 
of the 2621 neutrophil-specific CpG probes from the 
850K array that had statistically significant interactions 
with the exposure to DEX (p < 0.01), 897 of the 2621 
probes (34.2%) were available on the 450K array. In elas-
tic net regression models using the 897 neutrophil-spe-
cific loci available on the 450K array to predict DEX at 
blood draw among the IPS pre-surgery samples, 22 CpGs 
with nonzero coefficients were chosen from this NDMI 
450 model, 28 CpGs were selected by the NDMI 850 
model, and 15 of these loci overlapped between the two 
models (Fig. 1, Additional file 2: Supp. Table S1). The 13 
loci that are unique to NDMI 850 are also unique to the 
850K array, and the 7 loci unique to NDMI 450 are pre-
sent on the 850K array. The NDMI 450 is capable of clas-
sifying DEX use from a linear composite score, which we 
will term as the NDMI 450 score and can be calculated as 
follows:

For each sample, the linear composite score is cal-
culated by taking the sum of the intercept ( β0 ) and the 
summation of the 22 beta coefficients for each CpG and 
their covariate values. Each beta coefficient represents 
the change in mean response to DEX, per unit increase 
in methylation for that particular CpG, when all other 21 
CpGs are held constant.

Cross-platform compatibility of NDMI in adult whole 
blood samples We first evaluated the NDMI in the 12 pilot 
samples from the AGS study based on only the 15 over-
lapping probes that are represented on the 450K array 
(reduced NDMI 850). We found that although the Pear-
son correlation to NDMI 850 scores was high (r = 0.99, 
p < 0.0001), the value of the reduced NDMI 850 scores was 
biased considerably using only the overlapping probes 
(Additional File 1: Supp. Fig. S1). For NDMI 850, the 

p = probability of taking DEX at blood draw

=
ex

1+ ex
, where x = NDMI 450

NDMI 450 score =β0 + β1 ∗ cg00052684

+ β2 ∗ cg13077031

+ · · · + β22 ∗ cg27094376
mean (standard deviation) of the scores was − 0.53 (2.86), 
and for the reduced NDMI 850, the mean was 4.10 (1.86), 
making the comparison of scores across the two plat-
forms problematic. We then evaluated the NDMI 450 bio-
marker. The pilot cases that were run on both arrays had a 
correlation of r = 0.97 (p < 0.0001) between the NDMI 450 
and NDMI 850 scores. Therefore, we identified additional 
CpG sites that retain the high correlation but improved 
the accuracy of the 450K based NDMI. In training and 
test datasets, the NDMI 450 and NDMI 850 scores were 
highly correlated. In the training data of IPS pre-surgery 
samples, correlation was r = 0.99 (p < 0.0001). In AGS gli-
oma cases, those with IDH/1p19q/TERT-WT WHO 2016 
classification of glioma had r = 0.97 (p < 0.0001), and other 
AGS glioma cases had r = 0.98 (p < 0.0001). In the adult 
controls, the correlation was 0.97 (p < 0.0001) (Fig. 2). The 
agreement between NDMI 850 and NDMI 450 scores was 
examined with Bland–Altman analysis (Additional file 1: 
Supp. Fig. S2).

Fig. 1 Workflow. A Venn diagram demonstrating the 
neutrophil-specific CpG probes present on 450K and 850K 
platforms, the output of elastic net regression, and calculation of 
the linear composite score for NDMI 450 and NDMI 850. Of the 2621 
neutrophil-specific probes of interest on the 850K array, 897 probes 
were available in the 450K. While for NDMI 850, elastic net chose 28 
CpG probes as discriminative of DEX use, 22 were chosen for NDMI 
450. 15 of these probes were shared between the two algorithms. 
The coefficients of the respective CpG probes were used to calculate 
the linear composite score (NDMI score) for each patient
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We assessed the predictive accuracy of NDMI 450 of 
DEX use in a subset of the samples used for the corre-
lation analyses (Fig. 3). NDMI 450 score was highly pre-
dictive of DEX exposure in the IPS training set (AUROC: 
0.99; 95% CI 0.99, 1), similar to the performance of the 
NDMI 850 score (AUROC: 0.99; 95% CI 0.99, 1). Using 
the same AGS test set (n = 552) used to evaluate NDMI 
850, where it was highly predictive of DEX exposure 
(AUROC: 0.92; 95% CI 0.88, 0.96), the NDMI 450 score 
performed similarly (AUROC: 0.92; 95% CI 0.89, 0.96). 
For the AGS pilot cases, AUROCs from both NDMI 450 
and NDMI 850 were 1 (95% CI 1–1). Using the likeli-
hood ratio test for comparing nested logistic models of 
the NDMI 450 and NDMI 850 score predicting DEX 
exposure, there was no evidence that the fit of the smaller 

model (with only the NDMI 450 score) differed from that 
of the larger model for the given data. Thus, the mod-
els fit using both the NDMI 450 and NDMI 850 scores 
as covariates do not fit the data significantly better than 
models fit using only the NDMI 450 score as a covari-
ate  in the IPS training set (χ2 = 1.43, p = 0.23) and the 
AGS test set (χ2 = 0.35, p = 0.55).

Identifying maternal risk factors in newborns using 
NDMI scores The cord blood datasets consisted of com-
paring newborns born to individuals with low versus 
high anxiety, full-term versus preterm newborns, and 
newborns born to individuals with normal for glucose 
tolerance (NGT) versus GDM. In determining cutoffs 
for low and high anxiety, the upper and lower quar-
tiles of the (pregnancy-related anxiety questionnaire) 

Fig. 2 High correlation between NDMI 450 and NDMI 850 scores in the IPS and AGS samples. Those taking dexamethasone at the time of blood 
draw are in blue, and those who are not are in red. A In the AGS pilot cases comparing the same set of patients run on both arrays, the Pearson 
correlation was r = 0.97 (p < 0.0001). B In IPS training data, correlation was r = 0.99 (p < 0.0001). C In AGS glioma cases, those with IDH/1p19q/
TERT-WT WHO 2016 classification of gliomas denoted by circles had r = 0.97 (p < 0.0001), and other AGS gliomas denoted by triangles had r = 0.98 
(p < 0.0001). D In the adult controls, the correlation was r = 0.97 (p < 0.0001)
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PRAQ-integrity scores were taken, and the mean (stand-
ard deviation) of the low and high anxiety individuals was 
2.1 (0.4) and 5.2 (0.7), respectively [20]. NDMI 450 score 
distributions in the cord blood datasets available on the 
GEO database were significantly lower than that of whole 
blood samples from the AGS non-glioma adult controls 
(Table 1, Fig. 4A). Between these risk factors, NDMI 450 
score distributions were not significantly different from 
the Wilcoxon rank-sum test except in GSE152380, the 
full-term versus preterm newborns dataset (W = 346, 
p = 0.002, Additional file  2: Supp. Table  S3). The NDMI 
score distributions were significantly higher in full-
term newborns than in preterm newborns (Additional 
file  1: Supp. Fig. S3). From logistic regression models 
with NDMI 450 score as a predictor, a one-unit increase 
in NDMI 450 score led to a 72% decrease in odds (OR: 
0.58; 95% CI 0.39, 0.80, p = 0.002) of being a preterm 
newborn compared to a full-term newborn (Fig. 5, Addi-
tional file 2: Supp. Table S2). NDMI score was not a sig-
nificant predictor in the other the cord blood datasets. 
For a one-unit increase in NDMI 450 score, there was an 
11% increase (OR: 1.11; 95% CI 0.82, 1.52, p = 0.51) in the 
odds of having high pregnancy anxiety compared to the 
baseline of low pregnancy anxiety. There were conflicting 
results with the 450K dataset (GSE153219) and the com-
bined 850K datasets (GSE122288, GSE122086) compar-
ing NGT and GDM. There was a 49% increase (OR: 1.49; 
95% CI 0.98, 2.47, p = 0.087) in the odds of having GDM 
in the 450K dataset with every unit increase in NDMI 
450 score, whereas a 17% decrease (OR: 0.86; 95% CI 

0.59, 1.22, p = 0.40) in the odds of being GDM compared 
to the baseline of NGT in the 850K dataset. Neither of 
these results was statistically significant.

Granulocytes were detected with high variance infla-
tion factors (VIF) and removed due to multicollinear-
ity. Therefore, the final logistic models included the 6 
immune cell proportions used in the logistic models 
that included only cell proportions and the NDMI score 
(Additional file  2: Supp. Table  S2). When only cell pro-
portions were included in the model, an increase in NK 
cells (OR: 1.25; 95% CI 1.05, 1.52, p = 0.018) and B cells 
(OR: 1.29; 95% CI 1.05–1.67, p = 0.027) was indepen-
dently associated with higher odds of being preterm new-
born, and the effects of NK and B cells were no longer 
observed. When NDMI 450 score was also included in 
the model, an increase in CD4T proportions was associ-
ated with a decrease in the odds of being a preterm new-
born (OR: 0.85; 95% CI 0.71–0.99, p = 0.045). In the 450K 
dataset of NGT and GDM, an increase in the proportion 
of CD8T cells was associated with a decrease in the odds 
of having gestational diabetes mellitus (OR: 0.74, 95% CI 
0.53–0.98, p = 0.047). In logistic models of immune cell 
profiles including or excluding the NDMI score, no cell 
subset proportions were found to be significant predic-
tors of NGT and GDM in the 850K dataset.

Cross-platform compatibility of NDMI in cord blood 
data For the combined 850K datasets of gestational dia-
betes mellitus (GSE122086) and normal for glucose tol-
erance (GSE122288), NDMI 450 score distributions were 
significantly lower than the NDMI 850 score distributions 

Fig. 3 Comparable classification accuracy of DEX exposure by NDMI 450 in IPS and AGS patients. A In the training set (IPS pre-surgery samples), 
the AUROC of the NDMI 450 (blue) is compared to that of the NDMI 850 (the gold standard, light blue), which was 99.4% (95% CI 98.7%, 100%). B In 
the test set of 552 AGS cases and controls used to evaluate NDMI 850, the AUROC was 92.3% (95% CI 88.5%, 96%) for the NDMI 450 (red) and 91.9% 
(95% CI 88.3%, 95.6%) for the NDMI 850 (light orange)
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(Kolmogorov–Smirnov D = 0.958, p < 0.0001, D = 0.967, 
p < 0.0001, respectively, Additional file 2: Supp. Table S3). 
There was a moderate correlation between NDMI 450 
and NDMI 850 scores (r = 0.77, p < 0.0001, Fig.  4B) in 
the combined dataset. The NDMI 850 score distribu-
tions were slightly more positive than that of the other 
450K GEO datasets. Assessment of mean methylation (β) 
between whole blood controls and the 850K cord blood 
showed that: of the 15 shared CpG probes, 8 showed 
beta differences < 0.1, 5 between 0.1 and 0.2, and 2 > 0.2 
(Fig. 4C).

Discussion
The goal of this study was to evaluate the NDMI bio-
marker on the 450K array using the same set of glioma 
patients and controls to train and evaluate the original 
biomarker built on the 850K array. In addition, we com-
pared the two biomarkers in other clinical scenarios and 
applied the NDMI 450 to explore the glucocorticoid 
pathway in other datasets. We first evaluated the NDMI 
850 with only the 15 overlapping probes on the 450K 
array, but the NDMI scores showed to be biased from 
using only the overlapping probes, confirming the need 
to rebuild NDMI on the 450K array. From the analy-
ses performed, we observed high correlations between 
NDMI 450 scores and NDMI 850 scores, as well as 
cross-platform compatibility in both glioma patients 
and non-glioma controls. NDMI 450 was shown to be 
an accurate predictor of DEX use at blood draw in adult 
whole blood. The NDMI 450 should be considered in the 
clinical setting of dosing glucocorticoid treatment, as it 
requires fewer probes compared to NDMI 850 to iden-
tify variabilities in DEX response. Further, the NDMI 450 
biomarker may be a valuable marker to include in analy-
ses of biobank and archived methylation 450K data for 
samples collected from patients with other diseases and 
conditions where glucocorticoids are widely used, e.g., 
infectious diseases, non-glioma cancers, autoimmune 
conditions, and organ transplantation.

Newborn cord blood is inherently different from adult 
whole blood, so differences in NDMI scores comparing 
samples of each are not surprising. However, differences 
between NDMI 450 and NDMI 850 scores in the same 
dataset were not expected. To further explore the utility 
of NDMI 450 in determining reproductive outcomes, we 
analyzed data from cord blood to assess NDMI 450’s abil-
ity to identify maternal risk factors involved in the gluco-
corticoid pathway and factors that could lead to adrenal 
insufficiency in newborns. Our results showed that 
NDMI 450 was not associated with pregnancy anxiety 
(low vs. high, GSE104376) or with glucose tolerance dur-
ing pregnancy (NGT vs. GDM, GSE153219, GSE122288/

GSE122086). Results from the 450K and 850K datasets 
of GDM and NGT were inconsistent; NDMI 450 scores 
in the 450K dataset were higher in GDM than in NGT, 
whereas NDMI 450 scores in the 850K datasets were 
similar between the phenotypes. Though the NDMI 450 
score was not statistically significant in either of these 
datasets, there was a trend toward significance in the 
450K dataset. Finally, results suggest that NDMI 450 
scores might be useful to distinguish full-term versus 
preterm newborns (GSE152380).

Preterm newborns are at higher risk of adrenal insuf-
ficiency due to the immaturity of the adrenal gland and 
reliance on the mother for cortisol until the third tri-
mester, and they also have lower cortisol stress reactivity 
compared to full-term infants when subject to medical 
procedures at 4  months, which may explain the lower 
NDMI score distributions [21, 22]. Higher NDMI score 
distributions in full-term newborns could be attributed 
to fetal exposure to higher maternal cortisol during the 
third trimester, which is critical for neurodevelopment. 
There is insufficient evidence to support routine use of 
glucocorticoids for preterm and full-term newborns with 
low cortisol, especially given the heterogeneity in severity 
and potential adverse events. Glucocorticoid treatment 
in extremely preterm infants can result in spontaneous 
gastrointestinal perforation from hydrocortisone therapy, 
whereas some term infants require treatment that may be 
due to their transition to extrauterine life, and for other 
late preterm and full-term infants treatment is even more 
unclear [21]. As records of exogenous antenatal corticos-
teroids were not available, further evaluation of NDMI 
450 in other publicly available cord blood datasets is war-
ranted to help determine its potential clinical utility for 
predicting glucocorticoid-induced adrenal insufficiencies 
and serving as a tool to aid in glucocorticoid dosage deci-
sions for mothers and infants.

The different maternal risk factors, including GDM, 
pregnancy anxiety, and preterm birth, may play a role 
in altering immune profiles. Our analyses of immune 
cell profiles showed that decreased odds of being a pre-
term infant were associated with increased CD4T cells 
when NDMI 450 was accounted for, and with increased 
NK and B cell proportions when NDMI 450 was not 
accounted for. This conflicts with published literature 
reports that preterm infants exhibited reduced frequen-
cies of  CD56bright NK cells and increased frequencies of 
CD4+ T cells and transitional B cells [19]. Additionally, 
our analyses of glucose tolerance showed an increase 
in CD8T proportions was associated with a significant 
decrease in odds of GDM. However, CD8T frequencies 
were not associated with GDM in previous published 
studies [18].
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Current publicly available data are significantly lim-
ited by a lack of clear measures of adrenal activity that 
are required to confirm a role of NDMI in glucocorti-
coid pathways in cord blood and other patient samples. 
What may be interesting to note is that when measuring 
the same loci in the 850K array, NDMI 850 scores of the 
adult non-glioma controls are similar to that of the cord 
blood, yet NDMI 450 is very different between the two 
samples. The difference cannot be attributed to platform 
type, as the 450K and 850K array produced similar NDMI 
scores and deconvoluted cell proportions. In addition, 
the 22 selected loci of NDMI 450 do not overlap with 
epigenetic clock CpGs or CpGs associated with the fetal 
cell origin signature, FCO, and differences in methylation 
between whole blood and cord blood were not specific to 
either the shared or non-shared probes with NDMI 850 
[23–25]. Cross-platform compatibility was not observed 
in cord blood samples with the NDMI biomarker.

Although potential clinical implications have been 
established with NDMI for glioma, its application in 
other contexts will need further studies including clinical 
trials, to assess the clinical value of NDMI in cord blood 
and other sample types. Limitations associated with pool-
ing publicly available data, including sequencing from 
different laboratories and missing covariates, precluded 
our ability to adjust for batch effects in the GEO datasets 
without losing the ability to detect biological differences 
in our analyses. Clinical trials studying maternal stress or 
antenatal glucocorticoid treatment in addition to short- 
and long-term effects on development are needed to bet-
ter assess NDMI in a cord blood setting although ethical 
challenges currently prevent such studies.

Conclusions
We have developed an algorithm that reproduces the glu-
cocorticoid response score using 450K data for glioma 
patients and controls. This may increase the accessibil-
ity for researchers to assess glucocorticoid response in 
archived or publicly available datasets that use the 450K 
version of the Illumina BeadChip array. However, since 
the NDMI 450 and NDMI 850 were not concordant in 
samples from cord blood, applications of NDMI to other 
samples and array data require further clarification.

Methods
Patient and control samples
The UCSF Immune Profiles Study (IPS) is a prospec-
tive longitudinal study of glioma patients pre- and post-
surgery, with the goal of collecting clinical, blood, and 
MRI data over multiple time points, including, before 
treatment/pre-surgery, before treatment/after surgery, 
after treatment/after surgery, and at each subsequent 

follow-up MRI. Treatment refers to the GBM standard of 
care (surgery, chemotherapy, and radiation). All patients 
who have their blood samples drawn are given a ques-
tionnaire upon consent to participate, which asks for 
information on comorbidities, demographics, and medi-
cation use. Blood samples are obtained either at UCSF (at 
the phlebotomy clinics, by the hospital phlebotomist or 
UCSF Clinical Research Center, or at the UCSF radiology 
clinics) or at outside blood draw laboratories (through 
mailed blood kits). Data and sample collection are ongo-
ing at UCSF; blood is collected at each follow-up blood 
collection, which usually coincides with scheduled MRIs 
or doctor’s appointments. Patients are followed until 
drop out, loss to follow-up, tumor progression, death, 
or other competing events. The training dataset derived 
from this study consists of 135 pre-surgery glioma 
patients, of which 59 were exposed to DEX, and 76 were 
not.

The test set is based on patients in the Adult Glioma 
Study (AGS), a case–control study of patients recruited 
from 1991 to 2013 [26–30]. The study consisted of five 
recruitment series, including population- and clinic-
based cases and controls. Questionnaires were adminis-
tered by study interviewers either in-person or by phone. 
A blood sample was collected at the time of interview 
by a study phlebotomist, usually a few months after the 
glioma surgery. Only one blood sample was obtained per 
patient, usually after surgery, compared to multiple blood 
draws for IPS. From the AGS participants, the test data-
set was formed from with 195 IDH/1p19q/TERT-WT 
gliomas, 140 other gliomas, and 453 non-glioma controls. 
150 of the AGS glioma samples were exposed to DEX, 
and 184 glioma samples were not, with 1 missing DEX 
status. In the 453 AGS controls, 6 were missing DEX sta-
tus. The IPS and AGS data are all run on the 850K array. 
There are also pilot samples available from the AGS 
study, 12 of which were run on the 450K and 850K array. 
These 12 samples were also included in the analysis.

Public data
This study uses Illumina HumanMethylation450 and 
HumanMethylationEPIC BeadChip methylation data 
available at the Gene Expression Omnibus (GEO) 
Database under accession GSE104376, GSE152380, 
GSE153219, GSE101840, GSE122086, and GSE122288. 
GSE104376, GSE152380, GSE153219, and GSE101840 
were profiled on the Infinium Methylation450 platform 
(GPL13534), and GSE122086 and GSE122288 were 
profiled on the Infinium MethylationEPIC platform 
(GPL21145). These were all cord blood samples, with 
183 samples on the 450 platform (450K), and 226 sam-
ples on the EPIC platform (850K).
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Processing DNA methylation array
Blood samples obtained from IPS and AGS were frozen 
at − 80 °C until DNA isolation and bisulfite conversion 
for the Illumina MethylationEPIC BeadChip arrays. The 
12 AGS pilot samples were also run on the Illumina 
Methylation450 BeadChip array [31]. In both adult 
whole blood and cord blood samples, preprocessing 
remained the same. The minfi Bioconductor package 
for preprocessing and quality control of the methyla-
tion data was obtained from ratios of the fluorescent 
signals in methylated versus unmethylated loci [32]. If 
the detection p values for a particular CpG locus were 
above the predetermined threshold (P > 10E−5) in more 

than 25% of the samples, that locus was consequentially 
removed. A ‘noob’ background correction (normal-
exponential convolution using out-of-band probes) and 
dye bias equalization were applied to correct for back-
ground fluorescence and dye bias within the array [33]. 
Beta-mixture quantile normalization (BMIQ) was then 
applied to correct for probe design bias. CpG sites on 
sex chromosomes, single nucleotide polymorphisms 
(SNPs), and probes targeting non-CpG sites (ch probes) 
were removed from the data. For GEO datasets with 
missing data on sex, the predicted sex was obtained 
from the methylation data using the getSex function in 
the minfi package. The two GEO datasets of gestational 

Fig. 4 On the 850K array, NDMI 450 and NDMI 850 scores were consistent in whole blood. In cord blood on the 850K array, NDMI scores between 
the two algorithms were very different. NDMI 450 scores were a lot lower than that of AGS controls, but NDMI 850 scores in cord blood were 
relatively similar to that of AGS controls. A The first four rows denote the adult whole blood samples from the AGS and IPS studies that were run on 
the 850K array. The NDMI 450 and NDMI 850 score distributions are similar regardless of platform. In the next three rows, with the first one being 
the 850K cord blood datasets combined for the purpose of analyzing phenotypes of NGT and GDM, NDMI 450 and NDMI 850 score distributions 
are significantly different from each other, but NDMI 850 scores from cord blood are similar to that of the adult whole blood controls. The difference 
between the two score distributions is less extreme when the 2 850K datasets are combined. B Scatterplot of NDMI 450 and NDMI 850 in the 
combined 850K cord blood dataset with moderate correlation (r = 0.77, p < 0.0001), but NDMI 450 scores are more negative. Normal glucose 
tolerance (NGT) samples are denoted in red, and gestational diabetes mellitus (GDM) in blue. C The absolute differences in methylation values of 
the 22 CpGs in NDMI 450 between the AGS controls (whole blood) and 850K cord blood. The 15 shared CpG probes with NDMI 850 are shown in 
green, and the 7 unshared probes are in blue. The color of the points denotes the degree of absolute differences
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diabetes mellitus (GSE122086) and normal for glucose 
tolerance (GSE122288) that were both run on the 850K 
platform by the Department of Maternal–Fetal Biology 
at the National Research Institute for Child Health and 
Development in Japan were processed separately, but 
merged together for NDMI score and phenotype analy-
sis. No ComBat or imputation was performed.

Reference-based deconvolution of whole blood and cord 
blood samples
The optimized reference-based library was used to 
deconvolute the 6 immune cell proportions  (CD4+ T 
cells,  CD8+ T cells, B cells, natural killer cells (NK), 
monocytes (mono), neutrophils (neu)) from whole blood 
and 7 immune cell proportions in cord blood  (CD8+ T, 
 CD4+ T, NK, B cells, monocytes, granulocytes (gran), 
nucleated red blood cells (nRBC)) from cord blood [34]. 

Fig. 5 Comparison of NDMI 450 and immune profiles in predicting maternal risk factors from cord blood. Three logistic regressions were run on 
the GEO cord blood datasets, with the independent variable set as the phenotype, and NDMI 450 score (purple), immune cell proportions (green), 
or NDMI 450 and immune cell proportions (blue) as predictors. Significance is denoted by the shading and shape of the symbol for the model 
estimate. A GSE152380: 450K, full-term (ref.) versus preterm. NDMI 450 score was significant in the univariate model, and in the model with just 
cell proportions, NK cell and B cell proportions were significant in distinguishing full-term versus preterm. CD4T cell proportion was a significant 
predictor in the third model, but NDMI score was not. B GSE104376: 450K, newborns born to low (ref.) versus high anxiety individuals. C GSE153219: 
450K, normal for glucose tolerance (ref.) versus gestational diabetes mellitus. In the second model, CD8T cell proportions were a significant 
predictor. D GSE122288, GSE122086: 850K, normal for glucose tolerance (ref.) versus gestational diabetes mellitus
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Reconstructing the neutrophil dexamethasone 
methylation index (NDMI) on the Illumina 
HumanMethylation450 BeadChip
The neutrophil dexamethasone methylation index (NDMI), a 
28 neutrophil-specific loci classifier of dexamethasone (DEX) 
exposure, was built using 2621 CpGs that showed a neutro-
phil-specific association with DEX exposure that is available 
on the Illumina HumanMethylationEPIC BeadChip array. 
These probes were identified by applying CellDMC, a statis-
tical algorithm that conducts cell-specific DNA methylation 
analyses based on bulk tissue DNA methylation profiles, in 
glioma patients who had not received any surgery, chemo-
therapy, or radiation in the Immune Profiles Study (IPS) [14, 
35]. Fifty-nine of these patients were DEX exposed, and 76 
were non-exposed, with exposure described as DEX use at 
the time of blood draw (N = 52) or DEX use within the past 
30  days (N = 7). 897 of these 2621 neutrophil-specific loci 
were available on the 450K array. To reconstruct this NDMI 
biomarker, the same set of IPS patients were run on elastic 
net regression, fit with the 897 probes using the glmnet pack-
age in R. The model selected a subset of loci to construct the 
NDMI classifier. Associated target gene names to the chosen 
predictors were identified using the getAnnotation function 
from the IlluminaHumanMethylation450kanno.ilmn12.hg19 
package and the UCSC Genome Browser that references 
the Genome Build 37 (GRCh37/hg19). The resulting elastic 
net model was tested on a subset of the AGS dataset, which 
consisted of 195 IDH/1p19q/TERT-WT gliomas, 140 other 
gliomas, and 453 non-glioma controls. The linear composite 
score calculated from the coefficients of the selected neu-
trophil-specific loci from the elastic net, termed the NDMI 
score, was calculated for the reconstructed NDMI on the 
450K array. We refer to the 450K NDMI algorithm and its 
linear composite score as NDMI 450 and NDMI 450 score, 
respectively, and for the original NDMI algorithm and its 
score as NDMI 850 and NDMI 850 score, respectively. We 
also reduced the NDMI 850 to the 15 CpGs that were avail-
able on the 450K array (reduced NDMI 850) and compared 
its score distributions to that of NDMI 850. To compare the 
NDMI scores and their respective predictive performance, 
we performed Bland–Altman analysis, calculated Pearson 
correlations on the same set of subjects, and plotted receiver 
operating characteristic (ROC) curves to compare NDMI 
450’s classification accuracy of DEX use in the training and 
test datasets with that of NDMI 850.

Assessing cross-platform compatibility with receiver 
operating characteristic curve (ROC) and correlation 
analyses
To assess the correlation and agreement of the NDMI 
450 to the ‘gold standard,’ the NDMI 850 biomarker, we 
estimated Pearson correlation coefficients among the 
IPS pre-surgery glioma samples, the AGS pilot cases, 

combined AGS glioma cases, and the AGS controls. We 
also conducted Bland–Altman analysis of the NDMI 
scores in the same samples. ROC curves were plotted to 
analyze the classification accuracy of dexamethasone use 
at blood draw. In addition to the IPS and AGS samples in 
the correlation analysis, we used the same 552 AGS cases 
and controls to compare the predictive accuracy of DEX 
use at blood draw in NDMI 450. The likelihood ratio test 
was performed to assess differences in the predictive 
accuracy of the NDMI 450 score and NDMI 850 score.

Evaluating NDMI 450 in cord blood data
Anxiety was determined through a pregnancy-related anxi-
ety questionnaire (PRAQ) regarding the parent’s assessment 
of newborn health that provided scores from zero to seven, 
and the low and high anxiety individuals were selected 
based on the lowest and highest quartiles, respectively [20]. 
For GEO cord blood datasets with two phenotypes available, 
NDMI 450 score distributions were compared for significant 
differences using the Wilcoxon rank-sum test. NDMI 450 
score distributions from all GEO cord blood datasets were 
compared to that of the adult AGS control samples using 
Wilcoxon rank-sum tests. For the 2 cord blood datasets run 
on the 850K array, NDMI 850 scores were also compared. 
To evaluate whether NDMI score is associated with the phe-
notype of each cord blood dataset, logistic regression mod-
els were implemented with NDMI scores as the predictors 
and phenotype as the outcome. Additional logistic regres-
sion models including deconvoluted cell proportions with 
and without NDMI score were also performed. In the two 
850K cord blood datasets, cross-platform compatibility was 
determined with the Kolmogorov–Smirnov test, correlation 
analysis, and comparison of logistic regressions between the 
NDMI 450 and NDMI 850 scores. The absolute differences 
in mean methylation values of the 450K probes selected by 
the elastic net regression were calculated between the AGS 
adult controls and the 850K cord blood samples.
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