2 eLife

*For correspondence:
stephen_piccolo@byu.edu

Competing interest: The authors
declare that no competing
interests exist.

Funding: See page 14

Preprinted: 01 May 2021
Received: 09 June 2021
Accepted: 27 September 2021
Published: 13 October 2021

Reviewing Editor: C Daniela
Robles-Espinoza, International
Laboratory for Human Genome
Research, Mexico

© Copyright Piccolo et al. This
article is distributed under the
terms of the Creative Commons
Attribution License, which
permits unrestricted use and
redistribution provided that the
original author and source are
credited.

3

TOOLS AND RESOURCES

©

Simplifying the development of portable,

scalable, and reproducible workflows

Stephen R Piccolo', Zachary E Ence’, Elizabeth C Anderson’, Jeffrey T Chang?,
Andrea H Bild®

'Department of Biology, Brigham Young University, Provo, United States;
’Department of Integrative Biology and Pharmacology, University of Texas Health
Science Center at Houston, Houston, United States; *Department of Medical
Oncology and Therapeutics, City of Hope Comprehensive Cancer Institute,
Monrovia, United States

Abstract Command-line software plays a critical role in biology research. However, processes
for installing and executing software differ widely. The Common Workflow Language (CWL) is a
community standard that addresses this problem. Using CWL, tool developers can formally describe
a tool’s inputs, outputs, and other execution details. CWL documents can include instructions for
executing tools inside software containers. Accordingly, CWL tools are portable—they can be
executed on diverse computers—including personal workstations, high-performance clusters, or the
cloud. CWL also supports workflows, which describe dependencies among tools and using outputs
from one tool as inputs to others. To date, CWL has been used primarily for batch processing of
large datasets, especially in genomics. But it can also be used for analytical steps of a study. This
article explains key concepts about CWL and software containers and provides examples for using
CWL in biology research. CWL documents are text-based, so they can be created manually, without
computer programming. However, ensuring that these documents conform to the CWL specification
may prevent some users from adopting it. To address this gap, we created ToolJig, a Web applica-
tion that enables researchers to create CWL documents interactively. ToolJig validates information
provided by the user to ensure it is complete and valid. After creating a CWL tool or workflow, the
user can create ‘input-object’ files, which store values for a particular invocation of a tool or work-
flow. In addition, ToolJig provides examples of how to execute the tool or workflow via a workflow
engine. ToolJig and our examples are available at https://github.com/srp33/ToolJig.

Introduction

Software is fundamental to modern scientific research (Hey et al., 2009; Wilson, 2014). It can accel-
erate the pace of research, formalize algorithmic logic, and support reproducibility (Piccolo and
Frampton, 2016). In a 2014 survey, 92 % of academic scientists reported using software in their
research (Hong, 2014). Our article focuses on command-line tools, which scientists use in many disci-
plines (Kumar and Dudley, 2007) and which provide advantages over point-and-click tools. In partic-
ular, the process of executing command-line tools can be formalized (Kumar and Dudley, 2007,
Piccolo and Frampton, 2016). Our article also focuses on computational workflows, which are defined
series of steps for processing or analyzing data (Leipzig, 2017). Each step in a workflow applies one
or more command-line tools to the data with specific inputs, outputs, and configuration settings.
A workflow engine is a software system for executing workflows. For example, the Snakemake and
Nextflow workflow engines facilitate execution of workflows and are used widely for scientific research
(Di Tommaso et al., 2017; Késter and Rahmann, 2012). These and other workflow engines provide
flexibility regarding the computing environment in which a workflow is executed, allowing researchers

Piccolo et al. eLife 2021;10:e71069. DOI: https://doi.org/10.7554/eLife.71069

10of 17

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/
https://doi.org/10.7554/eLife.71069
https://github.com/srp33/ToolJig
mailto:stephen_piccolo@byu.edu
https://doi.org/10.1101/2021.04.30.442204
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

ELlfe Tools and resources

Computational and Systems Biology

to use local, cluster-, or cloud-based computers. In many cases, workflow steps can be executed in
parallel. With this flexibility comes the challenge of ensuring that operating system and tool configu-
rations are consistent across all computers used. This process is made easier when workflows provide
instructions for executing the steps within software containers (Boettiger, 2015).

In scientific research, the use of workflows can be classified into two main categories. One cate-
gory includes orchestration systems, in which workflow engines repeatedly process data of a given
type. For example, a genomics core facility might use a workflow to ingest DNA-sequencing data,
align reads to a reference genome, and call DNA variants, as well as other steps in between. The
core facility might have other workflows for processing RNA-sequencing or bisulfite-sequencing
data. In some cases, a modular design might be useful; for example, some command-line tools
could be reused in multiple workflows. In this scenario, data throughput is a key concern, so the
workflow engine might be connected to cluster- or cloud-based computer environments, allowing
throughput to scale as needs fluctuate. Arvados and Tibanna are examples of cloud-based orches-
tration systems (Amstutz, 2015; Lee et al., 2019). Scientists might also take advantage of error
handling provided by some workflow engines. For example, if a power outage occurred while a
workflow was being executed, it would be possible to restart the workflow at the point of failure
rather than needing to rerun the entire workflow. A second way that workflows are used in scientific
research is to support reproducibility of a particular analysis. When performing research studies,
scientists often use existing software and write custom code to process data, apply statistical tests,
create graphics, etc. Inherently, the particular combination of computational tasks used in a given
study should be unique. Therefore, there is no need to orchestrate the tasks for repeated execution.
However, much benefit can come from sharing the code with the scientific community and ensuring
that others can easily re-execute the code (Piccolo and Frampton, 2016). Workflows aid in this
process because they provide a way to encapsulate the logic for executing code in a fully specified
computational environment with all necessary software dependencies installed. For many studies,
a relatively simple workflow engine like cwltool (RRID:SCR_015528) can be used to re-execute the
analyses.

Different workflow engines use different methodologies and vocabularies for defining workflows
and for interfacing with software within those workflows (Leipzig, 2017). For example, to use Snake-
make or Nextflow, a researcher can specify a workflow using a custom programming language that
is specific to either workflow engine. These languages are extensions of Python and Groovy, respec-
tively. Python and Groovy are familiar to many researchers, making them relatively easy for these
researchers to adopt. However, if a researcher does not have programming expertise, is not familiar
with these programming languages, or wants to switch between workflow engines, workflow creation
might be difficult or time-consuming. Such challenges motivated creation of the Common Workflow
Language (CWL), a formal specification for describing command-line tools and workflows (Amstutz
et al., 2016). The CWL project is a community-based, collaborative effort driven by individuals and
institutions across diverse disciplines; participation is open to anyone. These efforts should help
to ensure the project’s longevity and acceptance among researchers. Indeed, CWL documents are
already recognized by many workflow engines, including Snakemake (Késter and Rahmann, 2012),
cwltool, Toil (Vivian et al., 2017), Apache Airflow (Kotliar et al., 2019), Tibanna (Lee et al., 2019),
and Arvados (Amstutz, 2015).

By creating CWL documents, scientists can describe tools and workflows in a way that is standards-
based and agnostic to the workflow engine(s) on which they are executed. CWL documents are text-
based files and thus can be created via a text editor without doing any computer programming.
Despite this simplicity, many researchers have yet to adopt CWL. Useful tutorials are available online
(Common Workflow Language working group, 2021), but the CWL specification provides great
flexibility, so researchers face a learning curve to ensure that documents are specified correctly. Some
software applications are available to aid in this process. For example, Rabix Composer is a desktop
application that enables researchers to create and edit CWL documents (Amstutz et al., 2021).
This application supports many features in the CWL specification and provides text-based as well
as visual editors. However, researchers unfamiliar with nuanced details of the CWL specification may
find Rabix Composer too advanced for their needs, and it does not support the latest versions of
CWL. Alternatively, CWL plugins exist for many code editors (Common Workflow Language working
group, 2021). In addition, developers have created application programming interfaces that enable

Piccolo et al. eLife 2021;10:e71069. DOI: https://doi.org/10.7554/eLife.71069 2 of 17

https://doi.org/10.7554/eLife.71069
https://identifiers.org/RRID/RRID:SCR_015528

ELlfe Tools and resources

Computational and Systems Biology

researchers to build CWL documents. However, many researchers who could benefit from CWL lack
the programming expertise to use these resources.

In this article, we illustrate how to use CWL to describe command-line tools and workflows
and to perform reproducible research analyses. We provide 27 examples of CWL documents for
completing diverse types of research tasks, ranging from simple (e.g., printing custom messages to
the console) to advanced (identifying differentially expressed genes or calling somatic mutations in
cancer genomes). In addition, we introduce ToolJig, a Web application that enables researchers to
create CWL documents. ToolJig provides a simple, interactive interface that requires no installation
and includes prompts to guide the user. Via ToolJig, a researcher can specify details about a tool’s
expected inputs and outputs, operating-system environment, and auxiliary files (e.g., scripts, config-
uration files). Researchers can also create workflows that integrate these tools. ToolJig checks the
information provided by the user to ensure it is complete and valid. After successfully describing a
tool or workflow, the researcher can download CWL files and use ToolJig to create ‘input-object’ files,
which store input values for a particular invocation of a tool or workflow. In addition, ToolJig provides
examples of how to execute the tool or workflow via a workflow engine.

Using containers to manage software installation and configuration

First, we address software installation and configuration, which are essential steps to creating CWL
tools and workflows. These seemingly simple steps are fraught with challenges. Although the software
may be downloadable from a public website, installation instructions are sometimes vague, the process
may involve many steps, and these steps may differ for each operating system. Such challenges led
computational biologist lan Holmes to quip, “You can download our code from the URL supplied.
Good luck downloading the only postdoc who can get it to run” (Holmes, 2013). Package managers,
such as bioconda and bioconductor, have helped to ameliorate these challenges, providing mecha-
nisms for installing software dependencies and tracking versions. These package managers function
in a way that is mostly agnostic to the user’s operating system (Griining et al., 2018; Huber et al.,
2015). However, some software tools are not available via package managers, package managers may
depend on operating-system components that cannot be installed using the package managers them-
selves, and package managers may not guarantee that older versions of software and their depen-
dencies remain available (Piccolo and Frampton, 2016). Software containers have gained popularity
among scientists in recent years because they help to overcome these limitations.

Software containers provide a mechanism to encapsulate specific versions of software and their
dependencies in a fully configured, operating-system environment (Boettiger, 2015). Here, we focus
on the Docker ecosystem, which is commonly used for building, managing, and sharing software
containers (Boettiger, 2015). Other containerization systems are also available (https://coreos.com/
rkt; Gomes et al., 2018; https://github.com/hpc/charliecloud, Charliecloud collaborators, 2021;
Priedhorsky and Randles, 2017, https://podman.io); these systems are typically compatible with
Docker. In academic-computing environments, such as university-run cluster computers, Singularity
has gained popularity because containers can be executed without administrative privileges (Kurtzer
et al., 2017).

Steps for configuring the operating-system environment and installing software within a container
are documented in a ‘Dockerfile’. Using such a file, researchers can build a container image, a layered
set of operating-system components. Commonly, the base layer is a minimal implementation of a Linux
distribution (e.g., Debian 10.3 or Ubuntu 18.04). Subsequent layers consist of software dependencies,
configuration files, environment variables, etc. Once a container image has been created, it is portable
and immutable. This is advantageous for computational reproducibility because one researcher can
share an image with another researcher and know that its contents have remained static.

Docker Hub (https://hub.docker.com) is a common way to share container images. After building an
image on a local computer, a researcher can ‘push’ the image to Docker Hub using a single command.
Subsequently, others can ‘pull’ the image and reuse it on a different computer (again, using a single
command). Tags can be attached to each image for versioning. Currently, Docker Hub is free to use
when specific requirements have been met. The Docker engine also provides a ‘registry’ tool that
enables individuals or organizations to host their own registry of container images. For example, Red
Hat, Inc offers https://quay.io, which hosts the container images from the BioContainers project (da
Veiga Leprevost et al., 2017).

Piccolo et al. eLife 2021;10:e71069. DOI: https://doi.org/10.7554/eLife.71069 3o0f17

https://doi.org/10.7554/eLife.71069
https://coreos.com/rkt
https://coreos.com/rkt
https://github.com/hpc/charliecloud
https://podman.io
https://hub.docker.com
https://quay.io

ELlfe Tools and resources

Computational and Systems Biology

A software container is an actively executing instance of a particular container image. Multiple
containers of the same image can be executing simultaneously on the same computer (or different
computers). Docker containers are always Linux-based; this is convenient for biology research
because bioinformatics software is predominantly designed for Linux. But even though a container
is Linux-based, it can be executed on non-Linux operating systems, such as Windows or Mac OS, via
a container engine. Container engines use virtual machines to facilitate this interaction (Piccolo and
Frampton, 2016).

In addition to packaging scientific software, container images can package analysis code. For
example, upon analyzing a given dataset, a researcher may wish to share the code with the research
community. Many researchers post analysis code on websites such as GitHub (https://github.com)
or Open Science Framework (Foster and Deardorff, 2017). This practice can enable others to
verify and reuse the code; it also benefits the original researcher who otherwise might lose track of
analysis details (Piccolo and Frampton, 2016). But even when analysis code resides in the public
domain, third-party researchers may experience difficulty executing it. Scripting languages like Python
(RRID:SCR_008394) and R (R Project for Statistical Computing, RRID:SCR_001905) require inter-
preters. Analysis scripts may depend on specific versions of interpreters, but the third-party researcher
may have a different version on their computer. In addition, most analyses rely on ancillary software
packages. Such packages provide logic for parsing a certain type of file, performing statistical tests,
creating graphics, etc. Versioning is critical: older (or newer) versions of software packages may be
incompatible with the analysis code. Researchers can facilitate reproducibility by providing container
images that include specific versions of any script interpreters or software packages that are necessary
to execute an analysis.

Binder facilitates the containerization process for analysis code stored in GitHub repositories
(Project Jupyter et al., 2018). To use Binder, a researcher creates a configuration file that indicates
which software is needed in the container image. For Python and R analyses, these configuration files
indicate packages that must be installed, as well as version information. In other cases, a Dockerfile
can be used to configure the environment more flexibly. After the researcher places the configuration
file (and analysis code) in a GitHub repository, other researchers can visit the Binder website and
re-execute the analysis. Behind the scenes, Binder provisions a cloud-based computer and executes
the code within a container. This solution is effective for relatively short-running analyses that require
modest computational resources, that use small datasets, and that are ready to be released publicly.
However, many analyses do not meet these criteria. Longer, more data-intensive analyses are a better
fit for workflow engines.

Basic elements of a CWL tool description

To describe execution of a command-line tool, a researcher creates a text-based file according to the
CWL Command Line Tool Description specification (Amstutz et al., 2016). CWL files can be struc-
tured using either the YAML or JSON data-serialization formats (https://yaml.org; https://www.json.
org). Here, we provide an overview of key components of CWL tool descriptions.

A CWL tool describes inputs that will be used when the command-line tool is executed. A data
type (or schema) should be defined for each input, indicating whether it represents a string, number,
Boolean value, file, directory, or array (a data structure with multiple values). In practice, these inputs
are generally data files and configuration settings for the software. These definitions help users of the
tool understand the nature of each input and make it easier for inputs to be validated. For example,
if a command-line tool expects a particular input value to be an integer (e.g., number of threads), a
workflow engine can verify that the user has specified an integer before executing the tool.

After inputs have been defined, a tool description must provide instructions for constructing a
command from the inputs. These commands can be based on a sorted ordering of the inputs. Alter-
natively, the researcher can specify a template for the command, using placeholders for the inputs.
Such templates can represent either a single command or multiple commands.

As a tool executes, it can generate three types of outputs that might be useful to a researcher: (1)
standard output, (2) standard error, and (3) new files. Standard output often consists of informational
messages printed to the console; but it may also contain data to be used as input for another tool.
Standard error typically consists of errors, warnings, or diagnostic information printed to the console.
Many command-line tools produce new data files that have resulted from execution of the tool. A

Piccolo et al. eLife 2021;10:e71069. DOI: https://doi.org/10.7554/eLife.71069 4 of 17

https://doi.org/10.7554/eLife.71069
https://github.com
https://identifiers.org/RRID/RRID:SCR_008394
https://identifiers.org/RRID/RRID:SCR_001905
https://yaml.org
https://www.json.org
https://www.json.org

ELlfe Tools and resources

Computational and Systems Biology

CWL tool description must indicate which of these outputs are expected so that a workflow engine
can “collect” them after executing the tool.

CWL tool examples for printing simple command-line messages

In the GitHub repository that accompanies this article, we have provided example tool descrip-
tions, formatted in YAML according to the CWL specification (https://github.com/srp33/ToolJig/
tree/master/examples, copy archived at swh:1:rev:ae8d3b358ccc44e45604125257c5361d20c26832,
Stephen, 2021). The first series of examples is stored in the hello subdirectory.

The first example, 01_hello.cwl, requires two inputs: (1) a person’s given name and (2) the person’s
surname. It uses the baseCommand field to construct a command based on ordinal positions specified
for the inputs; the resulting command prints a greeting for that person. In this simple example, the
only output is the greeting sent to standard output, which is redirected to a file called 01_output.txt.
In the GitHub repository, hello_objects.yml is an example input-object file for this tool. It species a
person'’s given name (‘Fernanda’) and surname (‘Dantas’). The user could execute the tool via the cw/
workflow engine using this command: cwltool 01_hello.cwl hello_objects.yml. The output would be,
'Hello, Fernanda Dantas’.

Suppose we wished to alter the greeting to include an exclamation point and to indicate the
person’s age. First, we would add an input for the person’s age (an integer). Second, we would update
the command that will be executed. However, CWL's baseCommand field provides limited flexibility
for constructing commands. Instead, our example provides a command template using the ShellCom-
mandRequirement and arguments fields and uses placeholders within the template for each input. As
shown in 02_hello.cwl (and Figure 1A), we use the following template: echo Hello, $(inputs.given_
name) $(inputs.surname)! You are $(inputs.age) years old.

We use a $ character and parentheses to indicate placeholders for input variables. We prefix each
input variable with ‘inputs’ to indicate that they will be specified as inputs.

By default, the above two examples would be executed within the same operating-system environ-
ment as the workflow engine. Accordingly, these tools could only be executed on operating systems
that support the echo command. Many commands, including echo, are only supported on particular
operating systems—or their behaviors differ by operating system. So in 03_hello.cwl (and Figure 1B),
we use a Docker image based on the ‘buster’ release (version 10.3) of the Debian Linux operating
system. The DockerRequirement field is added (in this case, two lines of text). Before executing the
tool, a researcher would install a container engine such as Docker Desktop (RRID:SCR_016445). Then,
when executing the tool, the workflow engine would integrate itself with the container engine, which
would identify any input files or directories and create container volumes so that the files or directories
could be accessed from within the container. When a command-line tool executes within a Docker
container, it becomes portable—it can be executed on any computer that supports the container and
workflow engines.

CWL tool examples for performing simple data analyses
The second series of examples is stored in the examples/bmi subdirectory on the GitHub site. The
01_bmi.cwl tool provides a simple example of a reproducible, quantitative analysis that could be
performed using CWL. It accepts as input a tab-separated file containing names, weights, and heights
of (fictional) individuals. A second input specifies the name of the column in the tab-separated file that
contains weight information. The third input specifies the column name containing height information.
The fourth input is the name of an output file that will be created. This example illustrates the use of
an auxiliary file. Under the InitialWorkDirRequirement field, the contents of a Python script are stored.
This script is used to calculate body mass index (BMI) values for each person in the input file and store
those values in a BMI column in the output file. Below is the command template that we use.
python calculate bmi.py "$ (inputs.input file.path)" "S (inputs.weight
column name)" "$ (inputs.height column name)" "$ (inputs.output file name)"

The command template specifies the inputs as arguments to the Python script. When a file input is
used, the workflow engine stores metadata about the file in an object with multiple attributes. Thus
to reference the file's path within the command template, we append ‘path’ to the input name. As the
workflow engine executes the tool, it stores the auxiliary Python script inside the container, invokes
the script, and collects the output file that the script generates.

Piccolo et al. eLife 2021;10:e71069. DOI: https://doi.org/10.7554/eLife.71069 50f 17

https://doi.org/10.7554/eLife.71069
https://github.com/srp33/ToolJig/tree/master/examples
https://github.com/srp33/ToolJig/tree/master/examples
https://archive.softwareheritage.org/swh:1:dir:3e7275dd8056207f3f9c2d7af2143ae59325b606;origin=https://github.com/srp33/ToolJig;visit=swh:1:snp:f8ea5fce17127ca3aace81ffa4e20f50a1d8a5d8;anchor=swh:1:rev:ae8d3b358ccc44e45604125257c5361d20c26832
https://identifiers.org/RRID/RRID:SCR_016445

ELlfe Tools and resources

Computational and Systems Biology

A

Host computer (Mac OS)

02_hello.cwl

Inputs:

given name (string)
surname (string)
age (int)

Command template:

echo "Hello, $(inputs.given name)
You are $(inputs.age) years old."

$ (inputs.surname) !

Outputs:

standard_output:
type: stdout
stdout: 02_output.txt

e E

hello_objects age.yml

given_name: Fernanda
surname: Dantas
age: 28

02_output. txt

Hello, Fernanda Dantas! You are 28 years old.

Host computer (Mac OS)

03_hello.cwl

Inputs:

given_name (string)
surname (string)
age (int)

Command template:

echo "Hello, $(inputs.given_name)
You are $(inputs.age) years old."

$ (inputs.surname) !

Outputs:

standard_output:
type: stdout
stdout: 02_output.txt

S ICN

hello_objects_age.yml

given_name: Fernanda
surname: Dantas
age: 28

\ /

Software container (Debian Linux)

echo

U

02_output. txt

Hello, Fernanda Dantas! You are 28 years old.

Figure 1. lllustration of tool descriptions for printing simple greetings. In the examples associated with this article, we provide tool descriptions that
illustrate how to print custom greetings at the command line. These diagrams illustrate the 02_hello.cwl (A) and 03_hello.cwl (B) examples. In (A), the
tool description indicates which inputs that must be specified, along with a template for executing the command; it also indicates that a message will
be printed to standard output and that this message should be stored in a file called 02_output.txt. The hello_objects_age.yml input-object file stores

Figure 1 continued on next page

Piccolo et al. eLife 2021;10:e71069. DOI: https://doi.org/10.7554/eLife.71069

6 of 17

https://doi.org/10.7554/eLife.71069

ELlfe Tools and resources Computational and Systems Biology

Figure 1 continued

values for a particular invocation of the tool. In (A), the cwltool workflow engine uses the host computer’s operating system to execute the tool; thus,
the echo command must be supported on that operating system. In (B), the tool description defines a software container environment; thus, cwltool
executes the command within a container, which provides the echo command (packaged with the Debian Linux operating system).

If a researcher wished to ensure that others could reproduce the BMI calculations, they would need
only to share the CWL file, the input-object file (01_bmi_objects.yml), and the data file (biometric_
data.tsv). However, many analyses use data stored in online repositories. In such cases, it is convenient
for a CWL tool to pull data directly from an online repository. The 02_bmi.cwl tool description and
Figure 2 illustrate this approach. Similar to the previous example, it extracts names, weights, and
heights from a tab-separated file and adds a BMI column. However, it pulls the file from a Web server
(in this case, our GitHub repository). The command template is similar to the previous example. Again,
we use a software container based on Debian Linux. But this time, we also use the NetworkAccess
field to enable the container to connect to external computers. The tool emits messages to both
standard output and standard error; these messages are stored in files called ‘02_output.txt’ and '02_
error.txt’, respectively.

CWL tool examples for processing transcriptomic data

The third series of examples (examples/transcriptomic subdirectory) are wrappers around existing
tools for processing transcriptomic data. In both cases, we use R packages from the Bioconductor
suite (Huber et al., 2015). Although R and Bioconductor are designed to be compatible with all major
operating systems, some packages require dependencies that are operating system-specific. Further-
more, many Bioconductor packages provide a large number of functions and options. Researchers
can create CWL tool descriptions that install dependencies (within a container image) and support a
narrower range of options. The researchers might then share this tool with other researchers, enabling
them to apply the tool more easily to their own data. Alternatively, they might use the tool as a way
to support reproducibility for their own analyses.

The single-channel array normalization (SCAN) algorithm normalizes data from gene-expression
microarrays, correcting for background noise and oligonucleotide-binding biases (Piccolo and Sun,
2012). The SCAN method is implemented in the SCAN.UPC package in Bioconductor. It can download
data directly from Gene Expression Omnibus (GEO) (Barrett et al., 2011). The scan_normalize.cwl
example illustrates how this functionality could be incorporated into a CWL tool. The base container
image in this example includes the core Bioconductor components; our Dockerfile extends this image
by installing the SCAN.UPC package. In addition, our example uses an auxiliary file containing R code
that invokes the SCAN function within this package to normalize a given GEO series. Upon executing,
this tool produces a tab-separated output file containing normalized measurements for all biological
samples in the series. The tool could be customized further, for example, to perform gene-level rather
than probeset-level summarization or to perform a quality-control analysis.

Commonly, researchers seek to identify genes that are differentially expressed between two condi-
tions. The DESeq2 package is popular for performing such analyses with RNA-sequencing data (Love
et al., 2014). Our deseqg2.cwl example illustrates how this process could be incorporated into a CWL
tool. Similar to the previous example, this tool uses a container image with Bioconductor core compo-
nents and installs the ‘DESeq2’ package. In addition, it installs the readr and dplyr packages (Wickham,
2018a; Wickham, 2018b), which we use to read and parse the data before identifying differentially
expressed genes. The first two inputs are URLs to data files containing gene counts and phenotype
information in tab-separated formats. The third input is a string representing a design formula; users
of the tool can customize the differential-expression calculations based on the dependent variable of
interest as well as any covariates. In the example input-object file (deseq2_objects.yml), we use data
from an RNA-sequencing experiment that compared two inbred mouse strains commonly used for
neuroscience research (Bottomly et al., 2011); the data had been aligned to a reference genome, and
gene counts had been quantified previously.

CWL workflow examples for performing mathematical calculations
The examples so far have illustrated how to execute command-line tools in isolation, whereas work-
flows execute multiple tools in defined sequences. CWL workflows must specify at least one input(s)

Piccolo et al. eLife 2021;10:e71069. DOI: https://doi.org/10.7554/eLife.71069 7 of 17

https://doi.org/10.7554/eLife.71069

ELlfe Tools and resources Computational and Systems Biology

Host computer (Mac OS)
02_bmi.cwl
Inputs:
input_file url (string)
weight column_name (string)
height column_name (string)
output_file name (string)
Aucxiliary files:
- entryname: calculate bmi.py
emitEys = 02_output. txt

from sys import argv .
Calculations were completed successfully!

input_file url = argv[l]
weight column name = argv[2]

height_column_name = argv[3] 02_error.txt
output file name = argv[4] cwltool
- [Blank]

c p—— A 02_biometric_data_with_bmi.tsv
CHHERL (RS Software container (Debian Linux)
. Surname GivenName Weight Height BMI
pysho? calcu}ate_bm%.py \ " python Carson Hafsa 82.4 167.4 29.4
"$(}nputs.lnPutiflleiurl) \ " Alvarado Yasmine 69.2 172.4 23.3
9 (ioppuies sueight_eellum_neme) T . Green Vanessa 66.8 194.0 17.7

"$ (inputs.height column_name)" \
"$ (inputs.output_file name)"

Outputs: .

output_file:
type: File
outputBinding:
glob: "$ (inputs.output_file name)"
standard_output: :
type: stdout .
standard_error: .
type: stderr
stdout: 02_output.txt
stderr: 02_error.txt

02_bmi_objects.yml .
input_file url: https://.../biometric_data.tsv
weight column_name: Weight

height column name: Height .
output_file name: 02 _biometric_data with_bmi.tsv .

v

Internet server

biometric_data.tsv

Surname GivenName Weight Height
Carson Hafsa 82.4 167.4
Alvarado Yasmine 69.2 172.4
Green Vanessa 66.8 194.0

Figure 2. lllustration of tool descriptions for calculating individuals’ body mass index (BMI). In the examples associated with this article, we provide

tool descriptions that illustrate how to calculate BMI values based on individuals’ weights and heights stored in a tab-separated value file. This diagram
illustrates the 02_bmi.cwl example. The tool description indicates the expected inputs. In this case, the URL of a data file must be provided. That file
must contain a column that stores weights (in kilograms) and a column that stores heights (in centimeters). In the input-objects file (02_bmi_objects.yml),
the user specifies the names of these columns. The final input is the name of an output file that will be generated. This file will store the original data
and a new column with the calculated BMI value for each individual. As the tool executes, Python (within a software container) downloads the input file,
performs the calculations, generates the output file, and stores the standard output and standard error in text files.

Piccolo et al. eLife 2021;10:e71069. DOI: https://doi.org/10.7554/eLife.71069 8 of 17

https://doi.org/10.7554/eLife.71069

ELlfe Tools and resources

Computational and Systems Biology

and one output(s) for the entire workflow. In addition, the researcher must define steps that each
consist of a tool with input(s) and output(s). The researcher indicates whether each step's input should
be populated by an input for the entire workflow or by the output of a previously completed step.
The workflow's output(s) consist of the output(s) of one or more of the steps. As with CWL tools, the
researcher must create an input-object file that provides input values for a particular execution of the
workflow. Upon executing the workflow, the workflow engine evaluates the sequence of steps that
must be executed and connects inputs with outputs, as needed.

We provide three example workflows in the examples/workflows/math subdirectory of the GitHub
repository. The add_sqrt_workflow.cwl example accepts two integers as inputs, sums them, calculates
the square root of the sum, and then stores the square root of the sum in an output file. This example
illustrates the basic process of using an output from one tool as input to another. The recursive_sqrt_
workflow.cwl example reads a number from a file, calculates the square root of that number, calculates
the square root of the resulting number, and saves the output to a file. This workflow demonstrates
the ability to invoke the same tool recursively. The secondary_sqrt_workflow.cwl example calculates
the square root of a number stored in a file and saves the result to an output file. It does the same for
two secondary files. It then sums those values and writes the sum to a file. This example demonstrates
using secondary files within a workflow. Secondary files are commonly used in genomics and simplify
the process of working with groups of related files that are necessary to complete a particular task.

CWL workflow example for identifying somatic variants in a cancer
genome
The examples in the examples/workflows/somatic subdirectory demonstrate a process for calling
somatic variants from lllumina sequencing reads. We use paired-end reads from tumor and normal
cells for an individual from the Texas Cancer Research Biobank (Becnel et al., 2016). (Although these
data are publicly available, they are subject to some data-use restrictions; Becnel et al., 2016.) To
shorten execution times, we use a subset of the data: the first 10,000,000 reads from lane 2 of the
sequencing run. Furthermore, our analysis is limited to essential steps for preparing the data and
calling variants. Additional steps like annotation and filtering would improve sensitivity and specificity
of the variant calls; accordingly, researchers should interpret our variant calls with caution.

In these examples, somatic-variant calling occurs in a series of steps (Figure 3):

1. Download and index a human reference genome (version hg38). We use the Linux wget and
gunzip utilities to download and decompress a FASTA file from the UCSC genome repos-
itory (Haeussler et al., 2019). We also use bwa, samtools, and Picard Tools to index the
FASTA file and create a sequence dictionary (Li et al., 2009; Li and Durbin, 2009; Picard,
RRID:SCR_006525).

2. Preprocess reference files containing known polymorphic sites in preparation for base-quality
score recalibration (BQSR). We download Variant Call Format files (Danecek et al., 2011)
from the Genome Analysis Toolkit (GATK) resource bundle (Depristo et al., 2011) and use
a custom Python script to adjust chromosome identifiers that may differ across reference
genomes. We also use Picard Tools to sort the reference files.

3. Download the raw sequencing reads (FASTQ files). The files are stored in a publicly available,

Open Science Framework repository (Foster and Deardorff, 2017).

. Trim adapter sequences and low-quality bases using atropos (Didion et al., 2017).

. Align the trimmed reads to the reference genome using bwa mem (Li and Durbin, 2009). A

read-group string is also specified.

. Sort and index the resulting BAM files (Li et al., 2009) using sambamba (Tarasov, 2015).

. Mark duplicate reads and re-index the resulting BAM files using sambamba.

. Derive a BQSR table from each BAM file using GATK.

. Apply the BQSR table to the BAM files using GATK.

. Call somatic single-nucleotide variants and small insertions/deletions using Mutect2 (Benjamin

et al., 2019). This step produces a VCF file.

11. Call somatic structural variants using Delly (Rausch, 2012). This step produces a VCF file.

(S0

O 0 00N O

This workflow executes many of the same steps for a normal DNA sample and a tumor DNA
sample. These steps are independent of each other. Accordingly, when multiple computing cores are
available, the workflow engine may execute these steps in parallel.

Piccolo et al. eLife 2021;10:e71069. DOI: https://doi.org/10.7554/eLife.71069 9 of 17

https://doi.org/10.7554/eLife.71069
https://identifiers.org/RRID/RRID:SCR_006525

ELlfe Computational and Systems Biology

Prepare reference ﬁles Process genomic data
‘ prep_ref genome.cwl R Ucsc genome server ‘ download file.cwl }
@ ‘ download file.cwl } . ‘. .
FASTA file (hg38) " Open Science Framework
Index files ‘ download file.cwl } N
‘ download file.cwl } :
FASTQ_ 1 FASTQ 2 FASTQ 1 FASTQ_ 2
(normal) (normal) (tumor) (tumor)
‘ prep_recalibration_vcf.cwl } ., trim fastq.cwl trim fastq.cwl
‘. . (normal) (tumor)
‘ prep_recalibration_vcf.cwl }- et ’ Broad Institute server iyl iyl
‘ prep recalibration vef.cwl } . align_fastq.cwl align_ fastq.cwl
- - (normal) (tumor)
BAM BAM
1000 Genomes recalibration file (normal) (tumor)
dbSNP recalibration file U
Indel recalibration file
Index files sort_bam.cwl sort_bam.cwl
(normal) (tumor)
mark_dups_bam.cwl mark_dups_bam.cwl
(normal) (tumor)
calculate bgsr_table.cwl calculate bgsr_table.cwl
(normal) (tumor)
BQOSR table BQSR table
(normal) (tumor)
apply_bgsr_bam.cwl apply_bgsr_bam.cwl
(normal) (tumor)
BAM BAM
(normal) (tumor)
call small variants.cwl call_structural variants.cwl
(normal, tumor) (normal, tumor)
VCF VCF
(SNVs, indels) (SVs)

Figure 3. lllustration of tool descriptions for calling somatic variants from a cancer genome. In the examples associated with this article, we provide

tool descriptions that illustrate how to call somatic variants from second-generation sequencing data for a cancer genome (compared against a normal
genome from the same patient). This process requires execution of 11 distinct tools in a defined succession of steps (a workflow). Two tools (prep_ref_
genome.cwl and prep_recalibration_vcf.cwl) prepare reference files associated with a given human reference genome. These tools download data files
from public Internet servers and then create index files and standardize contig identifiers. The third tool (download_file.cwl) downloads FASTQ files from
an Internet server. The remaining tools process the normal and tumor sequences separately before comparing the tumor genome against the normal
genome to identify single-nucleotide variants, indels, and structural variants.

Most of the tools in this workflow use container images from the BioContainers project, which
provides thousands of Docker images that encapsulate biology-related software (da Veiga Leprevost
et al.,, 2017). In some cases, we used a BioContainers image that had been built for a specific version
of a software package in the Bioconda project (Griining et al., 2018). In cases where we used multiple

Piccolo et al. eLife 2021;10:e71069. DOI: https://doi.org/10.7554/eLife.71069 10 of 17

https://doi.org/10.7554/eLife.71069

ELlfe Tools and resources

Computational and Systems Biology

packages for a given task, we started with a base image from BioContainers and used Bioconda to
install the packages. In the case of GATK, we used container images that had been created by the
Broad Institute and stored on Docker Hub.

In most cases, we followed the recommendation that a single container image use only a single
software package (Gruening et al., 2019). However, in some cases, we determined that it was more
sensible to use multiple software packages in a single CWL tool. For example, when preparing index
files for the reference genome, we use three separate software packages. In contrast, sometimes we
used the same software in multiple CWL tools. For example, the BQSR steps are computationally
intensive; thus, we separated them into distinct CWL tools so that computational resources can be
allocated at a more granular level. In this sense, each CWL tool represents a practical unit for data
processing, not necessarily a particular software package.

Materials and methods
Using ToolJig to create CWL tool descriptions

In manufacturing, a ‘jig’ is used by toolmakers to ensure that products are created in a repeatable,
consistent pattern. Similarly, ToolJig provides a means to generate CWL tool descriptions, workflows,
and input-object files in a repeatable, consistent manner. ToolJig is a Web application that uses the
Vue.js framework (https://vuejs.org). Its functionality is divided into two pages: one for creating CWL
tools and one for creating workflows. It is available from https://srp33.github.io/ToolJig. To create a
tool description in ToolJig, users specify the following:

1. A unique identifier. This identifier is used in the name of the CWL file that is generated, as

well as for tagging the Docker image.
2. A short label that describes the tool's purpose and function.
. Optionally, a longer description that provides more detailed documentation about the tool.
4. Dockerfile contents. These instructions indicate the base container image that should be
used and any additional commands necessary to build and configure a container image for
the tool. A tutorial by Nust, et al. provides recommendations on authoring Dockerfiles (Niist
et al., 2020).

5. Author information. Optionally, the tool author can specify their name and ORCID identifier
(Haak et al., 2012). This information helps to ensure that authors are credited for their work.

6. Software license. The tool author can select from among seven popular licenses, thus indi-
cating conditions under which others can use the CWL document. This license may or may
not be identical to the license specified for the software itself.

. Inputs. Users specify a name, type, and description for each input. Supported types are
integer, string, File, and ‘Output File’. The File type allows the user to indicate that an input
file is expected and asks the user to specify the EDAM format of the file (Ison et al., 2013).
Additionally, input files may be associated with secondary files. For instance, as our examples
illustrate for somatic-variant calling, BAM files must be accompanied by index files. Rather
than specify these as two separate inputs, we indicate that an index file is secondary to a
BAM file. ‘Output File' is a convenience type that is used when a tool author wants users
to be able to specify the name of an output file that will be generated as the tool executes.
Because this requires user input, ToolJig provides it as an input option. When a tool author
specifies this type, ToolJig creates a string input for the file name, along with a corresponding
output file, thus simplifying this process for the user.

8. Auxiliary files. The tool author can enter the name and contents of any auxiliary files that will
be used. Commonly, these tools are programming scripts and can be written in any program-
ming language that the Docker image supports.

9. Command template. The tool author specifies a template for executing the tool at the
command line. Each input must be specified at least once in this template; ToolJig provides
syntax suggestions to the user. ToolJig uses these command templates as an alternative to the
baseCommand field. As our examples illustrate (Figure 4), command templates provide flexi-
bility in the ways that commands are constructed and support the use of multiple commands.
They provide the additional benefit that inputs do not have an inherent order and thus can be
specified in the command template in any order (and multiple times, if desired).

10. Outputs. Aside from any ‘Output Files’ that may have been specified as inputs, the user may

declare output files. For instance, the somatic/trim_fastq.cwl example specifies that trimmed
FASTQ files should have the same names as the corresponding input FASTQ files. To indicate

w

~

Piccolo et al. eLife 2021;10:e71069. DOI: https://doi.org/10.7554/eLife.71069 11 of 17

https://doi.org/10.7554/eLife.71069
https://vuejs.org
https://srp33.github.io/ToolJig

ELlfe Tools and resources Computational and Systems Biology

A echo "Hello, $(inputs.given name) $(inputs.surname)! You are $(inputs.age) years old."

B Rscript run deseq2 analysis.R "$ (inputs.read counts url)" "$(inputs.phenotypes url)" \
"S (inputs.design formula)" "$ (inputs.output file name)"

a N

C bwa mem -t $(inputs.threads) $(inputs.args) \
-R "$ (inputs.read group string)" \

"$ (inputs.fasta file.path)" \

"$ (inputs.fastg file 1.path)" \

\ "$S (inputs. fastqg file 2.path)" | samtools view -b > "$ (inputs .output file name)" /

4 N

D sambamba sort -t $(inputs.threads) -o "$ (inputs .output file name)"
"$ (inputs.bam_file.path)"

sambamba index -t $(inputs.threads) "S$(inputs.output file name)"

)
E /wget S (inputs.exclude template url) \
delly call -x “basename "$ (inputs.exclude template url)" ™ \
-o output.bcf -g "$(inputs.fasta file.path)" \
"$ (inputs.tumor bam file.path)" "$(inputs.normal bam file.path)"
\bcftools view output.bcf > "$ (inputs.output file name)" /

Figure 4. Examples of command templates used in Common Workflow Language (CWL) tool descriptions. These examples illustrate diverse types

of command templates for configuring execution of CWL tools. In each example, placeholders are used for inputs. When the tools are executed, the
placeholders are replaced with input-object values. (A) A simple greeting is printed to standard output. (B) An R script (stored as an auxiliary file within
the tool description) is executed; this script performs a differential-expression analysis using the DESeq2 package. (C) The bwa software aligns FASTQ
files to a reference genome and pipes the output to samtools; the output is then converted to BAM format. This example illustrates a scenario in

which two complementary software packages are used to perform a data-analysis task. Although these packages could be incorporated into distinct
CWL tools, we combine them because read alignment and BAM conversion are typically performed jointly. (D) The sambamba software sorts and then
indexes a BAM file. (E) The Delly software identifies structural variants in a cancer genome. Delly can be configured to exclude telomere and centromere
regions as well as unplaced contigs. This example downloads an exclusion file, invokes Delly, and converts the output to VCF format. Examples (D) and
(E) illustrate additional scenarios in which related tasks are executed as practical units.

this, the user specifies a CWL-based expression: $(inputs.fastq_file.basename). Additionally,
if the user wishes to collect standard output or standard error, they may specify the names of
files that will store these messages.

After a user has specified all required elements, ToolJig generates a YAML document that conforms
to the CWL specification; the user may download this document. ToolJig also generates a form in
which the user can indicate a value for each input. Subsequently, the user can download an input-
object file in YAML format.

Using ToolJig to create CWL workflows

When using ToolJig to create a workflow, researchers first enter metadata: a unique identifier, label,
description, author information, and software license. Subsequently, the researcher uploads at least
one tool description. The researcher then defines two or more workflow steps. For each step, they
specify a unique name and the tool that will be used in that step. For each of the tool's inputs, the
researcher indicates whether the input will be populated from the output of a preceding step or from

Piccolo et al. eLife 2021;10:e71069. DOI: https://doi.org/10.7554/eLife.71069 12 of 17

https://doi.org/10.7554/eLife.71069

ELlfe Tools and resources Computational and Systems Biology

Vs

.

dockerPull: python:3.8.2-slim-buster

\

D

4 N\

-

dockerImageld: prep recalibration vcf
dockerFile: |-
FROM quay.io/biocontainers/picard:2.22.3--0

-

dockerImageId: call structural variants
dockerFile: |-
FROM biocontainers/biocontainers:v1.0.0 cv4

RUN conda install -c bioconda/label/cf201901 delly bcftools

v

dockerImagelId: scan normalize
dockerFile: |-
FROM bioconductor/bioconductor docker:RELEASE 3 10

RUN R -e 'BiocManager::install ("SCAN.UPC")'

Figure 5. Examples of DockerRequirement specifications used in Common Workflow Language (CWL) tool descriptions. These examples illustrate
diverse ways to configure CWL tools to be executed in software containers. In (A), a container image is pulled from Docker Hub; this image
encapsulates a minimal (‘slim’) version of Debian Linux 10.3 (‘buster’) and includes the Python 3.9 interpreter. In (B), the contents of a Dockerfile are
included within the CWL description. In this case, the Dockerfile is simple—it pulls an existing image from https://quay.io. This image is provided as part
of the BioContainers project and includes the Picard Tools software. (C) uses a base image from BioContainers and the Bioconda package manager

to install the Delly and bcftools software within the image. (D) uses a base image from Bioconductor and executes R code to install the SCAN.UPC
package within the image.

a workflow input. The user may also indicate that any of the tool’s outputs will become outputs for
the overall workflow. As with tool descriptions, ToolJig validates the user’s input and then generates
a CWL document and input-object file that can be downloaded.

Discussion
Progress in biology research is hindered when software tools are difficult to install, when inputs and
outputs are inadequately or inconsistently specified, and when it is difficult to combine tools into work-
flows. The CWL specifications—in combination with package managers and software containers—are
helping to alleviate these longstanding challenges. Moreover, CWL tool and workflow descriptions
can facilitate reproducible research. Rather than simply providing analysis code alongside journal
manuscripts, researchers can provide CWL documents. As illustrated in our examples, CWL docu-
ments provide instructions for executing analyses in software containers that encapsulate all relevant
dependencies (Figure 5), along with ancillary scripts and instructions for accessing data files. People
who read (or review) the manuscripts can then repeat the analyses, without needing to install any
software other than a relevant workflow engine and container engine, even if their operating system
or configuration differs from the authors'.

Multiple online repositories provide CWL documents, including the Dockstore tool registry
(O’Connor et al., 2017) and GitHub. For example, a search on GitHub for CWL documents that use
the FastQC software (Brown et al., 2017) resulted in 667 matches (August 30, 2021). Researchers can

Piccolo et al. eLife 2021;10:e71069. DOI: https://doi.org/10.7554/eLife.71069 13 of 17

https://doi.org/10.7554/eLife.71069
https://quay.io

ELlfe Tools and resources

Computational and Systems Biology

reuse and adapt these documents. However, in cases where reuse is infeasible or extensive adaptations
are necessary, scientific progress may be accelerated as researchers, including non-bioinformaticians,
gain greater efficiency in creating CWL documents. ToolJig aims to facilitate this process, enabling
researchers to build CWL tools interactively, without needing to gain a deep understanding of the
CWL specification or YAML syntax.

One advantage of CWL is that it can be used with diverse workflow engines. Whether or not
they support CWL, most workflow engines provide custom languages or programming interfaces
for creating workflows. Relatively little support is available for migrating from these engine-specific
solutions to CWL in an automated manner. However, when these engines support execution within
Docker-compatible containers, researchers can migrate these tools manually using ToolJig (or other
means). Providing better support in existing workflow engines for exporting to CWL will be a posi-
tive step toward ensuring that CWL truly becomes a common language for command-line tools and
workflows.

The CWL specification provides considerable flexibility for describing command-line tools and
workflows. Our goal was to support common use cases for biology research. For the sake of simplicity
and to reduce barriers of entry for new creators of CWL documents, ToollJig does not support some
optional features within the CWL specification. These include input directories, dependent and exclu-
sive parameters, process requirements, hints, and output directories. The CWL specifications provide
details about these features.

ToolJig has no dependencies other than a modern Web browser. Accordingly, it can be used from
virtually any computer with no installation process. When Toollig is updated, the user simply needs
to refresh their browser. A tradeoff to this simplicity is that ToolJig does not provide a direct means
of testing tools or workflows. However, the cwltest utility provides a command-line testing frame-
work, enabling researchers to compare tool and workflow outputs with expected results. In particular,
researchers implementing CWL in production systems would benefit from using such a utility for
validation.

Conclusions

CWL documents can formalize execution of command-line tools and workflows. We have summa-
rized the key components of these documents and provided examples to illustrate key concepts.
In addition, we have described ToolJig, a Web application that enables researchers to create CWL
documents interactively. We hope these resources will benefit researchers from diverse training back-
grounds to more easily create CWL documents and thus advance sharing of methods and computa-
tional reproducibility.

Acknowledgements

We acknowledge the Texas Cancer Research Biobank and Baylor College of Medicine Human Genome
Sequencing Center for providing cancer-genome data used in some of our examples.

Additional information

Funding

Funder Grant reference number Author

National Institutes of U54CA209978 Stephen R Piccolo

Health Zachary E Ence
Jeffrey T Chang
Andrea Bild

The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Author contributions
Stephen R Piccolo, Conceptualization, Funding acquisition, Software, Supervision, Visualiza-
tion, Writing - original draft, Writing — review and editing; Zachary E Ence, Elizabeth C Anderson,

Piccolo et al. eLife 2021;10:e71069. DOI: https://doi.org/10.7554/eLife.71069 14 of 17

https://doi.org/10.7554/eLife.71069

ELlfe Tools and resources

Computational and Systems Biology

Conceptualization, Software, Writing — review and editing; Jeffrey T Chang, Conceptualization,
Funding acquisition, Writing — review and editing; Andrea H Bild, Funding acquisition, Writing —
review and editing

Author ORCIDs
Stephen R Piccolo (& http://orcid.org/0000-0003-2001-5640

Decision letter and Author response
Decision letter https://doi.org/10.7554/elife.71069.sa
Author response https://doi.org/10.7554/¢elife.71069.sa2

Additional files

Supplementary files
¢ Transparent reporting form

Data availability

We did not generate data for this manuscript. However, we did create software for this manuscript.
The full code for the software are available on GitHub using a liberal, open-source license: https://
github.com/srp33/ToolJig (copy archived at https://archive.softwareheritage.org/swh:1:rev:ae8d3b35
8ccc44ed5604125257c5361d20c26832).

References

Amstutz P. 2015. Portable, reproducible analysis with Arvados. F1000Research 4: 114. DOI: https://doi.org/10.
7490/f1000research.1110114.1

Amstutz P, Crusoe MR, Tijani¢ N, Chapman B, Chilton J, Heuer M, Kartashov A, Leehr D, Ménager H,
Nedeljkovich M, Scales M, Soiland-Reyes S, Stojanovic L. 2016. Common workflow language, v1.0. Figshare.
https://figshare.com/articles/dataset/Common_Workflow_Language_draft_3/3115156/2DOI: https://doi.org/
10.6084/m¢9.figshare.3115156.v2

Amstutz P, Soiland-Reyes S, Crusoe MR. 2021. Rabix: Power tools for the Common Workflow Language. Seven
Bridges. http://www.rabix.io

Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH,
Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A. 2011. NCBI GEO: archive for
functional genomics data sets--10 years on. Nucleic Acids Research 39: D1005-D1010. DOI: https://doi.org/10.
1093/nar/gkq1184, PMID: 21097893

Becnel LB, Pereira S, Drummond JA, Gingras MC, Covington KR, Kovar CL, Doddapaneni HV, Hu J, Muzny D,
McGuire AL, Wheeler DA, Gibbs RA. 2016. An open access pilot freely sharing cancer genomic data from
participants in Texas. Scientific Data 3: 1-10. DOI: https://doi.org/10.1038/sdata.2016.10, PMID: 26882539

Benjamin D, Sato T, Cibulskis K, Getz G, Stewart C, Lichtenstein L. 2019. Calling Somatic Snvs and Indels with
Mutect2. bioRxiv. DOI: https://doi.org/10.1101/861054

Boettiger C. 2015. An introduction to Docker for reproducible research. ACM SIGOPS Oper Syst Rev 49: 71-79.
DOI: https://doi.org/10.1145/2723872.2723882

Bottomly D, Walter NAR, Hunter JE, Darakjian P, Kawane S, Buck KJ, Searles RP, Mooney M, McWeeney SK,
Hitzemann R. 2011. Evaluating Gene Expression in C57BL/6J and DBA/2J Mouse Striatum Using RNA-Seq and
Microarrays. PLOS ONE 6: e17820. DOI: https://doi.org/10.1371/journal.pone.0017820, PMID: 21455293

Brown J, Pirrung M, McCue LA. 2017. FQC Dashboard: Integrates FastQC results into a web-based, interactive,
and extensible FASTQ quality control tool. Bioinformatics 33: 3137-3139. DOI: https://doi.org/10.1093/
bioinformatics/btx373, PMID: 28605449

Charliecloud collaborators. 2021. Charliecloud. GitHub. https://github.com/hpc/charliecloud

Common Workflow Language working group. 2021. Common Workflow Language User Guide. https://www.
commonwl.org/user_guide/index.htm| [Accessed September 10, 2021].

da Veiga Leprevost F, Grining BA, Alves Aflitos S, Rést HL, Uszkoreit J, Barsnes H, Vaudel M, Moreno P,
Gatto L, Weber J, Bai M, Jimenez RC, Sachsenberg T, Pfeuffer J, Vera Alvarez R, Griss J, Nesvizhskii Al,
Perez-Riverol Y. 2017. BioContainers: An open-source and community-driven framework for software
standardization. Bioinformatics 33: 2580-2582. DOI: https://doi.org/10.1093/bioinformatics/btx192, PMID:
28379341

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT,
Sherry ST, McVean G, Durbin R. 2011. The variant call format and VCFtools. Bioinformatics 27: 2156-2158.
DOI: https://doi.org/10.1093/bioinformatics/btr330, PMID: 21653522

Depristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Del Angel G, a RM, Hanna M, McKenna A,
Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. 2011. A framework for

Piccolo et al. eLife 2021;10:e71069. DOI: https://doi.org/10.7554/eLife.71069 15 of 17

https://doi.org/10.7554/eLife.71069
http://orcid.org/0000-0003-2001-5640
https://doi.org/10.7554/eLife.71069.sa1
https://doi.org/10.7554/eLife.71069.sa2
https://github.com/srp33/ToolJig
https://github.com/srp33/ToolJig
https://archive.softwareheritage.org/swh:1:rev:ae8d3b358ccc44e45604125257c5361d20c26832
https://archive.softwareheritage.org/swh:1:rev:ae8d3b358ccc44e45604125257c5361d20c26832
https://doi.org/10.7490/f1000research.1110114.1
https://doi.org/10.7490/f1000research.1110114.1
https://figshare.com/articles/dataset/Common_Workflow_Language_draft_3/3115156/2
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.6084/m9.figshare.3115156.v2
http://www.rabix.io
https://doi.org/10.1093/nar/gkq1184
https://doi.org/10.1093/nar/gkq1184
http://www.ncbi.nlm.nih.gov/pubmed/21097893
https://doi.org/10.1038/sdata.2016.10
http://www.ncbi.nlm.nih.gov/pubmed/26882539
https://doi.org/10.1101/861054
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1371/journal.pone.0017820
http://www.ncbi.nlm.nih.gov/pubmed/21455293
https://doi.org/10.1093/bioinformatics/btx373
https://doi.org/10.1093/bioinformatics/btx373
http://www.ncbi.nlm.nih.gov/pubmed/28605449
https://github.com/hpc/charliecloud
https://www.commonwl.org/user_guide/index.html
https://www.commonwl.org/user_guide/index.html
https://doi.org/10.1093/bioinformatics/btx192
http://www.ncbi.nlm.nih.gov/pubmed/28379341
https://doi.org/10.1093/bioinformatics/btr330
http://www.ncbi.nlm.nih.gov/pubmed/21653522

ELlfe Tools and resources

Computational and Systems Biology

variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics 43:
491-498. DOI: https://doi.org/10.1038/ng.806, PMID: 21478889

Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. 2017. Nextflow enables
reproducible computational workflows. Nature Biotechnology 35: 316-319. DOI: https://doi.org/10.1038/nbt.
3820, PMID: 28398311

Didion JP, Martin M, Collins FS. 2017. Atropos: Specific, sensitive, and speedy trimming of sequencing reads.
PeerJ 5: €3720. DOI: https://doi.org/10.7717/peerj.3720, PMID: 28875074

Foster ED, Deardorff A. 2017. Open Science Framework (OSF). Journal of the Medical Library Association 105:
203-206. DOI: https://doi.org/10.5195/jmla.2017.88

Gomes J, Bagnaschi E, Campos |, David M, Alves L, Martins J, Pina J, Lépez-Garcia A, Orviz P. 2018. Enabling
rootless Linux Containers in multi-user environments: The udocker tool. Computer Physics Communications
232: 84-97. DOI: https://doi.org/10.1016/j.cpc.2018.05.021

Gruening B, Sallou O, Moreno P, da Veiga Leprevost F, Ménager H, Sendergaard D, Rést H, Sachsenberg T,
O’Connor B, Madeira F, Angel DD, Crusoe MR, Varma S, Blankenberg D, Jimenez RC, Community B,
Perez-Riverol Y. 2019. Recommendations for the packaging and containerizing of bioinformatics software.
F1000Research 7: 742. DOI: https://doi.org/10.12688/f1000research.15140.2, PMID: 31543945

Griining B, Dale R, Sjédin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, K&ster J. 2018. Bioconda:
Sustainable and comprehensive software distribution for the life sciences. Nature Methods 15: 475-476. DOI:
https://doi.org/10.1038/s41592-018-0046-7, PMID: 29967506

Haak LL, Fenner M, Paglione L, Pentz E, Ratner H. 2012. ORCID: A system to uniquely identify researchers.
Learned Publishing 25: 259-264. DOI: https://doi.org/10.1087/20120404

Haeussler M, Zweig AS, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, Lee CM, Lee BT, Hinrichs AS,
Gonzalez JN, Gibson D, Diekhans M, Clawson H, Casper J, Barber GP, Haussler D, Kuhn RM, Kent WJ. 2019.
The UCSC Genome Browser database: 2019 update. Nucleic Acids Research 47: D853-D858. DOI: https://doi.
org/10.1093/nar/gky 1095, PMID: 30407534

Hey T, Tansley S, Tolle K. 2009. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft research.

Holmes I. 2013. You can download our code from the URL supplied. Good luck downloading the only postdoc
who can get it to [Tweet]. Twitter. https://twitter.com/ianholmes/status/288689712636493824 [Accessed
September 10, 2021].

Hong NC. 2014. We are the 92%. Figshare. https://figshare.com/articles/presentation/We_are_the 92 /1243288/
1DOI: https://doi.org/10.6084/m?9.figshare.1243288.v1

Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T,
Gottardo R, Hahne F, Hansen KD, a IR, Lawrence M, Love MI, Macdonald J, Obenchain V, Oles AK, Pages H,
et al. 2015. Orchestrating high-throughput genomic analysis with Bioconductor. Nature Methods 12: 115-121.
DOI: https://doi.org/10.1038/nmeth.3252, PMID: 25633503

Ison J, Kalas M, Jonassen |, Bolser D, Uludag M, McWilliam H, Malone J, Lopez R, Pettifer S, Rice P. 2013.
EDAM: An ontology of bioinformatics operations, types of data and identifiers, topics and formats.
Bioinformatics 29: 1325-1332. DOI: https://doi.org/10.1093/bioinformatics/btt113, PMID: 23479348

Késter J, Rahmann S. 2012. Snakemakea scalable bioinformatics workflow engine. Bioinformatics 28: 2520-
2522. DOI: https://doi.org/10.1093/bioinformatics/bts480, PMID: 22908215

Kotliar M, Kartashov AV, Barski A. 2019. CWL-Airflow: A lightweight pipeline manager supporting Common
Workflow Language. GigaScience 8: giz084. DOI: https://doi.org/10.1093/gigascience/giz084, PMID:
31321430

Kumar S, Dudley J. 2007. Bioinformatics software for biologists in the genomics era. Bioinformatics 23: 1713-
1717. DOI: https://doi.org/10.1093/bioinformatics/btm239, PMID: 17485425

Kurtzer GM, Sochat V, Bauer MW. 2017. Singularity: Scientific containers for mobility of compute. PLOS ONE
12: e0177459. DOI: https://doi.org/10.1371/journal.pone.0177459, PMID: 28494014

Lee S, Johnson J, Vitzthum C, Kirli K, Alver BH, Park PJ. 2019. Tibanna: Software for scalable execution of
portable pipelines on the cloud. Bioinformatics 35: 4424-4426. DOI: https://doi.org/10.1093/bioinformatics/
btz379, PMID: 31077294

Leipzig J. 2017. A review of bioinformatic pipeline frameworks. Brief Bioinform 18: 530-536. DOI: https://doi.
org/10.1093/bib/bbw020, PMID: 27013646

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinforma Oxf
Engl 25: 1754-1760. DOI: https://doi.org/10.1093/bioinformatics/btp324, PMID: 19451168

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The Sequence
Alignment/Map format and SAMtools. Bioinforma Oxf Engl 25: 2078-2079. DOI: https://doi.org/10.1093/
bioinformatics/btp352, PMID: 19505943

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with
DESeqg2. Genome Biology 15: 550. DOI: https://doi.org/10.1186/s13059-014-0550-8, PMID: 25516281

Niist D, Sochat V, Marwick B, Eglen SJ, Head T, Hirst T, Evans BD. 2020. Ten simple rules for writing Dockerfiles
for reproducible data science. PLOS Computational Biology 16: €1008316. DOI: https://doi.org/10.1371/
journal.pcbi. 1008316, PMID: 33170857

O'Connor BD, Yuen D, Chung V, Duncan AG, Liu XK, Patricia J, Paten B, Stein L, Ferretti V. 2017. The Dockstore:
Enabling modular, community-focused sharing of Docker-based genomics tools and workflows. F1000Research
6: 52. DOI: https://doi.org/10.12688/f1000research.10137.1, PMID: 28344774

Piccolo SR, Sun Y. 2012. A single-sample microarray normalization method to facilitate personalized-medicine
workflows. Genomics 100: 337-344. DOI: https://doi.org/10.1016/j.ygeno.2012.08.003, PMID: 22959562

Piccolo et al. eLife 2021;10:e71069. DOI: https://doi.org/10.7554/eLife.71069 16 of 17

https://doi.org/10.7554/eLife.71069
https://doi.org/10.1038/ng.806
http://www.ncbi.nlm.nih.gov/pubmed/21478889
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
http://www.ncbi.nlm.nih.gov/pubmed/28398311
https://doi.org/10.7717/peerj.3720
http://www.ncbi.nlm.nih.gov/pubmed/28875074
https://doi.org/10.5195/jmla.2017.88
https://doi.org/10.1016/j.cpc.2018.05.021
https://doi.org/10.12688/f1000research.15140.2
http://www.ncbi.nlm.nih.gov/pubmed/31543945
https://doi.org/10.1038/s41592-018-0046-7
http://www.ncbi.nlm.nih.gov/pubmed/29967506
https://doi.org/10.1087/20120404
https://doi.org/10.1093/nar/gky1095
https://doi.org/10.1093/nar/gky1095
http://www.ncbi.nlm.nih.gov/pubmed/30407534
https://twitter.com/ianholmes/status/288689712636493824
https://figshare.com/articles/presentation/We_are_the_92_/1243288/1
https://figshare.com/articles/presentation/We_are_the_92_/1243288/1
https://doi.org/10.6084/m9.figshare.1243288.v1
https://doi.org/10.1038/nmeth.3252
http://www.ncbi.nlm.nih.gov/pubmed/25633503
https://doi.org/10.1093/bioinformatics/btt113
http://www.ncbi.nlm.nih.gov/pubmed/23479348
https://doi.org/10.1093/bioinformatics/bts480
http://www.ncbi.nlm.nih.gov/pubmed/22908215
https://doi.org/10.1093/gigascience/giz084
http://www.ncbi.nlm.nih.gov/pubmed/31321430
https://doi.org/10.1093/bioinformatics/btm239
http://www.ncbi.nlm.nih.gov/pubmed/17485425
https://doi.org/10.1371/journal.pone.0177459
http://www.ncbi.nlm.nih.gov/pubmed/28494014
https://doi.org/10.1093/bioinformatics/btz379
https://doi.org/10.1093/bioinformatics/btz379
http://www.ncbi.nlm.nih.gov/pubmed/31077294
https://doi.org/10.1093/bib/bbw020
https://doi.org/10.1093/bib/bbw020
http://www.ncbi.nlm.nih.gov/pubmed/27013646
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.1371/journal.pcbi.1008316
https://doi.org/10.1371/journal.pcbi.1008316
http://www.ncbi.nlm.nih.gov/pubmed/33170857
https://doi.org/10.12688/f1000research.10137.1
http://www.ncbi.nlm.nih.gov/pubmed/28344774
https://doi.org/10.1016/j.ygeno.2012.08.003
http://www.ncbi.nlm.nih.gov/pubmed/22959562

ELlfe Tools and resources

Computational and Systems Biology

Piccolo SR, Frampton MB. 2016. Tools and techniques for computational reproducibility. GigaScience 5: 30. DOI:
https://doi.org/10.1186/s13742-016-0135-4, PMID: 27401684

Priedhorsky R, Randles T. 2017. Charliecloud: unprivileged containers for user-defined software stacks in HPC.
SC "17: Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis 1-10. DOI: https://doi.org/10.1145/3126908.3126925

Project Jupyter, Bussonnier M, Forde J, Freeman J, Granger B, Head T, Holdgraf C, Kelley K, Nalvarte G,
Osheroff A, Pacer M, Panda Y, Perez F, Ragan-Kelley B, Willing C. 2018. Binder 2.0 - Reproducible, interactive,
sharable environments for science at scale. Python in Science Conference. Austin, Texas, 113-120. DOI: https://
doi.org/10.25080/Majora-4af1f417-011

Rausch T. 2012. DELLY: Structural variant discovery by integrated paired-end and split-read analysis.
Bioinformatics 28: i333-i339. DOI: https://doi.org/10.1093/bioinformatics/bts378

Stephen P. 2021. Tooljig: An app for building simplified common workflow language tool and workflow
descriptions. swh:1:rev:ae8d3b358ccc44e45604125257¢5361d20c26832. Software Heritage. https://archive.
softwareheritage.org/swh:1:dir:3e7275dd80562073f9c2d7af2143ae59325b606;0rigin=https://github.com/
srp33/Toollig;visit=swh:1:snp:f8ea5fce17127ca3aace81ffade20f50a1d8a5d8;anchor=swh:1:rev:ae8d3b358ccc
44e45604125257c5361d20c26832

Tarasov A. 2015. Sambamba: Fast processing of NGS alignment formats. Bioinformatics 31: 2032-2034. DOI:
https://doi.org/10.1093/bioinformatics/btv098

Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, Pfeil J, Narkizian J, Deran AD,
Musselman-Brown A, Schmidt H, Amstutz P, Craft B, Goldman M, Rosenbloom K, Cline M, O’Connor B,
Hanna M, Birger C, Kent WJ, et al. 2017. Toil enables reproducible, open source, big biomedical data analyses.
Nature Biotechnology 35: 314-316. DOI: https://doi.org/10.1038/nbt.3772, PMID: 28398314

Wickham H. 2018a. Dplyr: A grammar of data manipulation. Dplyr.

Wickham H. 2018b. Readr: Read Rectangular Text Data. Readr.

Wilson G. 2014. Best Practices for Scientific Computing. PLOS Biology 12: e1001745. DOI: https://doi.org/10.
1371/journal.pbio.1001745

Piccolo et al. eLife 2021;10:e71069. DOI: https://doi.org/10.7554/eLife.71069 17 of 17

https://doi.org/10.7554/eLife.71069
https://doi.org/10.1186/s13742-016-0135-4
http://www.ncbi.nlm.nih.gov/pubmed/27401684
https://doi.org/10.1145/3126908.3126925
https://doi.org/10.25080/Majora-4af1f417-011
https://doi.org/10.25080/Majora-4af1f417-011
https://doi.org/10.1093/bioinformatics/bts378
https://archive.softwareheritage.org/swh:1:dir:3e7275dd8056207f3f9c2d7af2143ae59325b606;origin=https://github.com/srp33/ToolJig;visit=swh:1:snp:f8ea5fce17127ca3aace81ffa4e20f50a1d8a5d8;anchor=swh:1:rev:ae8d3b358ccc44e45604125257c5361d20c26832
https://archive.softwareheritage.org/swh:1:dir:3e7275dd8056207f3f9c2d7af2143ae59325b606;origin=https://github.com/srp33/ToolJig;visit=swh:1:snp:f8ea5fce17127ca3aace81ffa4e20f50a1d8a5d8;anchor=swh:1:rev:ae8d3b358ccc44e45604125257c5361d20c26832
https://archive.softwareheritage.org/swh:1:dir:3e7275dd8056207f3f9c2d7af2143ae59325b606;origin=https://github.com/srp33/ToolJig;visit=swh:1:snp:f8ea5fce17127ca3aace81ffa4e20f50a1d8a5d8;anchor=swh:1:rev:ae8d3b358ccc44e45604125257c5361d20c26832
https://archive.softwareheritage.org/swh:1:dir:3e7275dd8056207f3f9c2d7af2143ae59325b606;origin=https://github.com/srp33/ToolJig;visit=swh:1:snp:f8ea5fce17127ca3aace81ffa4e20f50a1d8a5d8;anchor=swh:1:rev:ae8d3b358ccc44e45604125257c5361d20c26832
https://doi.org/10.1093/bioinformatics/btv098
https://doi.org/10.1038/nbt.3772
http://www.ncbi.nlm.nih.gov/pubmed/28398314
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745

	Simplifying the development of portable, scalable, and reproducible workflows
	Introduction
	Using containers to manage software installation and configuration
	Basic elements of a CWL tool description
	CWL tool examples for printing simple command-line messages
	CWL tool examples for performing simple data analyses
	CWL tool examples for processing transcriptomic data
	CWL workflow examples for performing mathematical calculations
	CWL workflow example for identifying somatic variants in a cancer genome

	Materials and methods
	Using ToolJig to create CWL tool descriptions
	Using ToolJig to create CWL workflows

	Discussion
	Conclusions

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References

