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ABSTRACT The full-genome sequences of three drug- and multidrug-resistant Strep-
tococcus pneumoniae clinical isolates of serotype 19A were determined by PacBio
single-molecule real-time sequencing, in combination with Illumina MiSeq sequenc-
ing. A comparison to the genomes of other pneumococci indicates a high nucleo-
tide sequence identity to strains Hungary19A-6 and TCH8431/19A.

Streptococcus pneumoniae (pneumococcus), a frequent colonizer of the human
naso-oropharynx, causes severe invasive and noninvasive infections in susceptible

patients (1, 2). Clinical pneumococcal isolates were obtained from patients suffering
from septic pneumonia (SP49) or pleuritis (SP61) and from the auditory canal of an
asymptomatic patient (SP64) (University Hospital Aachen, Germany). They were sero-
typed and tested for antimicrobial susceptibility at the German Reference Center for
Streptococci (Aachen). The strains differed strikingly in their susceptibility to the
macrolide ketocarbonic acid carolacton: while SP49 was highly susceptible, growth of
SP61 and SP64 was only slightly inhibited (3).

Bacterial DNA was isolated using the NucleoSpin tissue kit (Macherey-Nagel) and
processed for PacBio single-molecule real-time (SMRT) sequencing and Illumina MiSeq
paired-end sequencing (2 � 250 bp). The read count obtained during SMRT sequencing
varied between 48,710 and 119,441 reads/sample, resulting in a 114- to 180-fold
coverage of the genomes. De novo genome assemblies were constructed with PacBio’s
SMRT Portal version 2.3.0 using the Hierarchical Genome Assembly Process (HGAP3) (4).
Insertion/Deletion (InDel) errors were corrected by mapping of Illumina reads onto
finished genomes using Burrows–Wheeler alignment (5) with subsequent variant and
consensus calling using VarScan (6); automated sequence annotation was performed
by Prokka version 1.8 (7).

The genome sequences of SP49, SP61, and SP64 were 2,206,644 bp, 2,071,812 bp,
and 2,073,113 bp in length and contained 2,183, 2,025, and 2,024 coding sequences,
respectively. The G�C content was consistently 39.9%.

The three genomes were compared to all 29 complete pneumococcal genomes
publicly available at the NCBI. SP49 showed the highest in silico DNA-DNA hybrid-
ization (isDDH) values (�86%) to S. pneumoniae Hungary19A-6 (NC_010380.1),
while SP61 and SP64 were most similar (�99% isDDH) to S. pneumoniae TCH8431/
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19A (NC_014251.1), as calculated by the Genome-to-Genome Distance Calculator
(GGDC) version 2.1 (8).

S. pneumoniae Hungary19A-6 and TCH8431/19A are virulent strains of serotype 19A
and are often associated with invasive pneumococcal disease and antibiotic resistance
(9, 10).

According to ARG-ANNOT (11), the genomes of all pneumococcal isolates carry resis-
tance loci that coincide with their recorded antibiotic resistance phenotypes (3). They
encode mutations in genes of penicillin-binding proteins, causing amino acid substitutions
known to mediate resistance to �-lactam antibiotics, e.g., T338-A for Pbp2x (SP49, SP61, and
SP64) or V586-I for Pbp2A (SP61 and SP64) (12). Moreover, the dihydrofolate reductase
(DHFR, folA) genes carry multiple mutations, causing, inter alia, an I100-L substitution in
FolA, which is commonly associated with insensitivity to trimethoprim (13). Resistance to
tetracycline and macrolides in S. pneumoniae TCH8431/19A is mediated by the Tn916-like
transposon Tn2010 (AB426620.1), which contains the macrolide efflux genetic assembly
(mega) element, harboring the resistance genes tet(M), erm(B), and mef(E)-msr(D) (14).
Tn2010 was identified in SP61 and SP64 but not in SP49. The presence of the
mef(E)-msr(D) macrolide efflux transport system may present an unspecific resistance
mechanism to carolacton in SP61 and SP64.

The full-genome sequences of the three S. pneumoniae isolates presented here will
help to understand their different susceptibilities to carolacton and evaluate possible
cross-resistances in the future.

Accession number(s). The full-genome sequences of isolates SP49, SP61, and SP64
have been deposited in GenBank under the accession numbers CP018136, CP018137,
and CP018138, respectively.
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