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ABSTRACT:
Epithelial cancer of the colon and rectum, also known as colorectal cancer (CRC), 

results from a progressive accumulation of genetic and epigenetic alterations that lead 
to uncontrolled growth of colonocytes, the cells lining the colon and rectum. CRC is 
the second leading cause of cancer-related deaths and the third most common cancer 
in men and in women in the U.S. Of all the patients diagnosed with CRC every year, 
it is estimated that the vast majority of CRCs are non-hereditary “sporadic cancers” 
with no apparent evidence of an inherited component. Sporadic CRC results from the 
cumulative effects of multiple genetic and epigenetic alterations caused by somatic 
mutations, which may themselves be the indirect result of several environmental 
factors. This review examines our current understanding of the major genetic 
alterations leading to colon cancer, options for prevention and early detection of 
CRC, and the currently available treatment approaches that may target these different 
genetic alterations. 

INTRODUCTION: 

CRC is a common, heterogeneous disease that arises 
through the aggregate effects of multiple genetic mutations 
and epigenetic alterations involving genes that regulate 
cell growth and differentiation. There are approximately 
160,000 new cases of CRC every year in the United States 
and approximately one-third of CRC patients die from 
the disease [1]. In the United States, the lifetime risk of 
developing CRC for both men and women is 6% and the 
average age at diagnosis is 66 years [2]. Though there 
has been considerable advancement in the management 
of CRC, mortality remains high and unchanged with the 
5-year survival rate of only 62%, which is attributable 
largely to complications of metastatic disease [2].

CRC presents with a broad spectrum of neoplasms, 
ranging from benign growths to invasive cancer. CRC 
starts in the inner lining of the colon and/or rectum as a 

growth of tissue called a polyp slowly growing through 
some or all of its layers. A particular type of polyp called 
the adenomatous polyp or adenoma is a benign tumor 
that may undergo malignant transformation to cancer. 
This malignant transformation is the result of mutation 
or deletion of major regulator genes, resulting first in 
hyperplasia moving toward adenoma to carcinoma and 
then metastasis [3]. 

A present estimate is that between 15–30% of 
CRCs may have a major hereditary component, given the 
occurrence of CRC in first- or second-degree relatives 
[4]. Most of the colorectal heritable syndromes are 
attributable to either familial adenomatous polyposis 
(FAP) or hereditary nonpolyposis colorectal cancer 
(HNPCC) [5]. It is important to note, however, that most 
cases of CRCs (70–85%) are “sporadic” and the patients 
have no identifiable genetic risk factors. The development 
of sporadic colon cancer is thought to be influenced 
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by diet, lifestyle, environmental factors, and acquired 
somatic mutations [6]. The spectrum of somatic mutations 
contributing to the pathogenesis of CRC is likely to be 
far more extensive than previously appreciated. Thus 
elucidating the underlying genetic pathways in the genesis 
of CRC would provide fertile ground for basic research 
and may also lead to potential prognostic information and 
targets for novel therapies.

Genetic pathways of sporadic colon cancer:

It is well established that sporadic CRC is a genetic 
disease caused by sequential accumulation of mutations 
in multiple genes. Over the past three decades, molecular 
genetic studies have identified several crucial gene 
defects that underlie predisposition to sporadic CRC 
[5]. As shown in Figure 1, there are three major genetic 

mechanisms responsible for sporadic CRC, namely 
chromosomal instability (CIN); microsatellite instability 
(MSI) and the CpG island methylator phenotype (CIMP) 
pathways [7]. The majority of sporadic CRCs are due to 
events that result from aberrations in the CIN pathway [8]. 

CIN pathway:

The CIN pathway is an adenoma-carcinoma 
sequence model (Fig. 1A) which suggests that a 
stepwise pattern of mutational activation of oncogenes 
and inactivation of tumor suppressor genes result in 
CRC [9]. The genomic changes include activation of 
proto-oncogenes KRAS, c-Src, c-Myc and inactivation 
of at least three tumor suppressor genes, such as the 
loss of Adenomatous polyposis coli (APC) gene, tumor 
suppressor p53 (TP53) gene, and heterozygosity for the 

Figure 1:Multiple genetic pathways in colorectal cancer pathogenesis. Three distinct parallel pathways are implicated in CRC 
pathogenesis: Chromosomal Instability (CIN), Microsomal Instability (MSI), and Serrated Pathway. The sequential genetic and epigenetic 
changes occurring in each pathway are simplified. (A) The CIN pathway is driven by inactivating mutations in tumor suppressor genes, 
such as the adenomatous polyposis coli (APC) gene and activating mutations in proto-oncogenes, such as KRAS etc. which lead to 
increased clonal expansion of the cells. Subsequent loss of heterozygosity (LOH) for the long arm of chromosome 18 (18q) and loss of 
tumor suppressor TP53 confer these expanding cells with additional growth advantages which ultimately leads to invasive cancers. (B) 
The MSI pathway is driven by the loss of APC gene, and is characterized by inactivation of the mismatch repair (MMR) genes, such as 
MutL homolog 1 (MLH1) etc. The inactivation of MMR genes mostly is caused by epigenetic silencing via promoter hypermethylation. 
The failure of MMR genes subsequently leads to mutations in specific target genes involved in proliferation and cellular differentiation 
such as transforming growth factor β receptor II (TGFβRII); proteins involved in apoptosis regulation such as BAX and others, ultimately 
leading to microsatellite unstable invasive tumors. (C) The Serrated Pathway is driven by hypermethylation of genes and is characterized 
by presence of proto-oncogene BRAF mutation which causes increased MAPKs/ERKs signaling, leading to increased cell proliferation. 
Subsequent methylation of other genes and loss of tumor suppressor genes such as TP53, p16 etc. will lead to CRC.
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long arm of chromosome 18 (18q LOH) [10, 11]. 
Among the earliest events in sporadic CRC 

progression pathway is the loss of the APC gene. 
Genetic disruption of the APC gene or its inactivation by 
hypermethylation of the APC promoter leads to Wnt/β-
catenin signaling activation. This process is hypothesized 
to be the key event for adenoma initiation [12, 13]. 
Mutant APC protein increases stabilization of β-catenin 
and leads to its accumulation in the cytoplasm and its 
eventual translocation into the nucleus to act as a co-
activator of the T-cell factor/lymphoid enhancer factor 
family (TCF/LEF) transcription factors. This process in 
turn will activate a repertoire of genes that are involved 
in cell proliferation and growth [14]. The importance of 
Wnt/β-catenin signaling in the genesis of CRC is further 
reflected in many CRCs (50%) with intact APC genes but 
high frequency of activating mutations in β-catenin that 
harbors functionally significant phosphorylation sites [15]. 

Another important genetic pathway contributing 
to CIN is KRAS. The KRAS gene belongs to the RAS 
family of oncogenes and is mutated in 30–50% of CRCs 
[16]. RAS proteins play important roles in cell division, 
cell differentiation, and apoptosis. Multiple cellular 
functions are regulated by activated RAS through different 
pathways. One of the best characterized pathways 
regulated by RAS family is the Raf–mitogen-activated 
protein kinase kinase (MEK)–extracellular signal-
regulated kinase (ERK) pathway, which is involved in 
the control of cell cycle progression [17]. Mutation in 

KRAS disrupts the RAS signaling pathway leading to 
tumorigenesis. These mutations impair the intrinsic 
Guanosine-5’-triphosphate (GTP)ase activity of KRAS, 
allowing KRAS to accumulate in the active, GTP-bound 
conformation and lead to constitutive activation of its 
downstream pro-proliferative signaling pathways [18]. 

Studies have also demonstrated the loss of tumor 
suppressor TP53 gene and 18q LOH as major contributors 
to the CIN phenotype [19]. The TP53 gene is significantly 
involved in the control of the cell cycle and apoptosis 
and is commonly mutated in CRC, leading to uninhibited 
cell growth [9]. SMAD4, an important tumor suppressor 
present in chromosome 18q21.1 is lost by 18q deletion, 
resulting in tumorigenesis via the transforming growth 
factor β (TGFβ) pathway [20]. The presence of 18q LOH 
has been proposed as a worse prognostic marker for 
patient survival in CRC [21]. Recently, mutations in genes 
of phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic 
subunit α (PIK3CA) and TGFβ receptor (TGFBR) also 
have been shown to play a role in CRC development [22]. 

MSI pathway: 

In addition to CIN pathway, about 10–15% of 
sporadic CRC are due to the MSI pathway (Fig. 1 B). MSI 
is the condition of genetic hypermutability that results 
from impaired DNA mismatch repair (MMR). In other 
words, MSI is the phenotypic evidence that MMR isn’t 
functioning normally. The proteins involved in MMR form 
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a complex that binds to the mismatch, identifies the correct 
strand of DNA, then subsequently excises the error and 
repairs the mismatch. Cells with abnormally functioning 
MMR tend to accumulate mutations (insertions or 
deletions) in microsatellites located in DNA coding 
regions, generating frameshift mutations and subsequently 
leading to sporadic CRCs [23]. 

Inactivation of MMR genes occur either through 
aberrant methylation of promoter CpG of the MutL 
homolog 1 (MLH1) gene or point mutations in one of 
the MMR genes, with the former reason accounting for 
most of the cases of MMR inactivation [22]. As a result 
of defects in the DNA MMR system, MSI cancers more 
readily acquire mutations in important cancer-associated 
genes as compared to cells that have an effective DNA 
MMR system. Among the earliest events in the MSI-
dependent CRC progression, similar to the CIN pathway 
(Fig. 1A), loss of function of the APC gene product (Fig. 
1B) also appears to play an important role in predisposing 
persons with germ line APC mutations to sporadic CRCs 
[22]. 

Clinically, solely based on the extent of MSI, CRCs 
can be classified as MSI-high, MSI-low, or microsatellite 
stable (MSS) [23]. As compared with MSS/MSI-low 
tumors, MSI-high tumors form a well-defined group 
with distinct clinicopathological features. This type of 
CRC often arises from the epigenetic silencing of the 
MMR gene, such as MLH1 (Fig. 1B), so it belongs to 
the traditional MSI pathway. In contrast, MSS/MSI-low 
tumors arise through CIN pathway (Fig.1A). Overall, 
MSI-high tumors have a better long-term prognosis 
than MSI-low/MSS tumors. In general, MSI and CIN 
CRC respond differently to chemotherapeutics and have 
implications for specialized management of patients [24, 
25]. 

Serrated pathway:

The name of this pathway is attributable to the 
morphologically serrated appearance of the precursor 
lesions. Different from the CIN (Fig.1A) and MSI (Fig.1B) 
pathways, in which the sporadic CRCs are mainly initiated 
through classical APC mutations, the Serrated pathway 
initiated CRCs are highlighted by the presence of BRAF 
(protein kinase B-Raf) mutation and epigenetic silencing 
of genes that are involved in cell differentiation, DNA 
repair, and cell-cycle control, but not APC (Fig. 1C) [26, 
27]. 

BRAF, a member of the RAF kinase family is 
a serine/threonine-specific protein kinase that plays 
a key role in regulating the MAPKs/ERKs (mitogen-
activated protein kinases/extracellular signal-regulated 
kinases) signaling pathway, which affects cell division, 
differentiation, and secretion. Point mutation in BRAF 
(V600E) causes constitutive activation of this kinase as 
well as its insensitivity to negative feedback mechanisms, 

leading to enhanced MAPK/ERK signaling [28]. This 
overactive signaling cascade reaches cellular DNA 
within the nucleus and triggers downstream effectors to 
induce uncontrolled cell proliferation, evasion of immune 
response, angiogenesis [through MAPK-dependent 
activation of hypoxia-inducible factor 1 α (HIF-1α), 
vascular endothelial growth factor (VEGF)], tissue 
invasion, and metastasis (via upregulation of several 
proteins involved in migration, integrin signaling, and cell 
contractility), as well as resistance to apoptosis [29].

Among the epigenetically silenced genes in Serrated 
pathway, p16 (also known as cyclin-dependent kinase 
inhibitor 2A, multiple tumor suppressor 1) is one of the 
most well- characterized tumor suppressor genes. The 
p16 tumor suppressor protein functions as an inhibitor of 
CDK4 and 6 (cyclin-dependent kinase 4 and 6), the D-type 
cyclin-dependent kinases that initiate the phosphorylation 
of the retinoblastoma (Rb) tumor suppressor protein. 
The progression of sporadic CRCs through the Serrated 
pathway is accelerated by p16 inactivation through 
promoter hypermethylation. 

It is possible that no two CRCs are alike and only 
a few mutations are common to most sporadic CRCs. 
Therefore, each tumor has its own unique combination 
of genetic alterations. In addition to the pathways 
described, the heterogeneity of CRCs is further attributed 
to the interactions of the described pathways (Fig.1) with 
other less described or still undescribed pathways. An 
example can be seen in the Landscaper Defect pathway, 
in which the defective cells are derived from the stroma 
and epithelial tumorigenesis is the result of an abnormal 
microenvironment [30]. These different pathways will 
undoubtedly interact with each other, and may even 
modify these routes to carcinogenesis.

Prevention:

Although the incidence and mortality rates from 
CRC are declining steadily in the United States, health 
disparities in cancer screening, treatment, and survival 
still persist [31]. Because CRC and most adenomatous 
polyps are usually asymptomatic during the early stages, 
screening is critical to reducing morbidity and mortality. 
Over the past two decades, screening has contributed to a 
significant decline in both the number of CRC cases and 
the number of CRC deaths. While several strategies are 
recommended by the three major guideline organizations 
[32-34] (Table 1), the mainstay of screening involves 
fecal occult blood testing with either high-sensitivity 
guaiac-based fecal occult blood tests (FOBT) or fecal 
immunochemical tests (FIT), and bowel examination 
by lower endoscopy. Colonoscopy is the most widely 
used screening test used in the U.S. [35]. While it has 
the highest diagnostic sensitivity and specificity of all 
available tests, it is uncertain whether a strategy of 
colonoscopy every ten years is best. It is possible that 
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a less sensitive test that is frequently applied may be as 
effective as colonoscopy, as suggested by simulation 
models [36-40]. Such uncertainty and resulting equipoise 
constitute the basis for two ongoing randomized trials of 
colonoscopy versus FIT being conducted in Spain [41] 
and by the Veterans Affairs in the U.S. [42], the results of 
which will be available in ten years or so. Recently, stool 
DNA testing has been shown to be more sensitive than FIT 
for both CRC and advanced, precancerous polyps [43] and 
may be an effective non-invasive alternative to annual FIT. 
CRC screening recommendations by all three guideline 
organizations are expected to be updated within 1–2 years.

Treatment:

Depending on the stage and progression state 
of the disease, treatment regimens for CRCs include: 
colectomy (Stage 0, Stage I and early Stage II colon 
cancers), postoperative adjuvant chemotherapy (Stage 
III and some Stage II colon cancers), chemotherapy with 
multi-drug therapy including 5-fluorouracil and leucovorin 
and CapeOx (capecitabine and oxaliplatin) (Stage II) 
and radiation therapy (recurrent or advanced disease). 
Another chemotherapeutic agent, imnotecan (CPT-
11) has been shown to improve efficacy in CRCs [44]. 
Recently, oxaliplatin has been shown to induce immune 
thrombocytopenia in a CRC patient [45]. 

Genetically engineered monoclonal antibodies are 
used in treating CRCs. Cetuximab and panitumumab 
are anti-EGFR monoclonal antibodies that block the 
EGFR signaling pathway. These two drugs are used in 
the treatment of metastatic CRC in combination with 
conventional chemotherapy or as single agent. Clinical 
studies have shown that combination therapy with 
irinotecan plus cetuximab increases the survival rates 
and response in metastatic CRC patients as compared 
to irinotecan alone [22]. Recently, the U.S. Food and 
Drug Administration (FDA) approved bevacizumab 
for treatment of CRC. Bevacizumab is a recombinant 
humanized monoclonal antibody that binds to human 
VEGF, thereby preventing the interaction of VEGF 
with its receptors. Stivarga (regorafenib), a multi-kinase 
inhibitor, is another drug that has been approved by FDA 
for the treatment of metastatic CRC that has continued 
to spread after treatment. Evaluation of recombinant 
vaccines for colon cancer has begun with concurrent 
technologies in the fields of molecular biology and 
immunology. Very recently, Ye et al [46] showed that 
recombinant salmonella-based 4-1BBL vaccine enhances 
T cell immunity and inhibits the development of CRC in 
rats. Research in the field to target alternative pathways 
such as the anti-apoptotic signaling pathways including 
NF-κB, Bcl-2, and the TRAIL receptor to treat CRC is 
still ongoing [47].

The Genetic Sequencing technique has 
revolutionized monitoring of disease progression, relapse, 

and residual disease in CRCs [22]. Bass et al [48] reported 
whole genome sequencing from CRC patients. This study 
led to deeper understanding of the essential gene fusions 
and other oncogenic events in CRC. Leary et al [49] 
provided a massive parallel sequencing using the PARE 
(personalized analysis of rearranged ends) approach for 
the development of personalized biomarkers to enhance 
the clinical management of CRC patients.

The pace of recent advances in our understanding 
of the molecular basis of CRC and expansion in the drugs 
designed to treat CRC have led to substantial gains in 
quality of life in CRC patients. However, the significant 
burden of CRC on public health still remains. Like most 
other cancer therapeutics, these treatment regimens 
are associated with side effects and have not yet shown 
significant efficacy in most instances. Another key 
factor that limits progress in CRC chemoprevention is 
the pace of clinical research. There is a significant lack 
of awareness among people to undergo CRC screening 
despite established and available techniques. Overcoming 
these challenges will bring cause for optimism and room 
for hope in treating CRCs.
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