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Abstract
Introduction  In the treatment of the individual patient, a vision is to achieve the best possible balance between benefit and 
harm. Such tailored therapy relies upon the identification and characterisation of risk factors for adverse drug reactions. 
Information relevant to risk factor considerations can be captured in adverse event reports and could be utilised in statistical 
signal detection.
Objective  The aim of this study was to explore whether statistical screening of a broad range of risk factors within a global 
database of adverse event reports could uncover signals of risk groups for adverse drug reactions.
Methods  Subgroup disproportionality analysis was applied to 15.4 million reports entered in VigiBase, the World Health 
Organization (WHO) global database of individual case safety reports, up to August 2017. Disproportionality analyses for 
drug–adverse event pairs were performed (1) in the full database and (2) across a range of subgroups defined by the following 
covariates: patient age, sex, body mass index, pregnancy, underlying condition, reporting country, and geographical region. 
Drug–adverse event pairs disproportionately over-reported in such subgroups, but not in the full database, and with a sub-
stantial difference between the two observed-to-expected ratios, were highlighted as statistical signals. These were further 
prioritised, through filtering and sorting, for clinical assessment, whereafter clinically relevant signals were communicated 
to the pharmacovigilance community and the public.
Results  Assessments were performed for 354 prioritised statistical signals, resulting in seven communicated signals describ-
ing previously unrecognised potential risk groups related to age (elderly), sex (male and female), body mass index (under-
weight and obese), and geographical region (Asia), all except one for already established adverse drug reactions. Important 
aspects considered in the assessments included an evaluation of the disproportionate over-reporting in the subgroup by 
reviewing alternative explanations and reporting patterns for similar drugs/adverse events/subgroups, and a search for plau-
sible mechanisms to support the risk hypothesis.
Conclusions  This study reveals that it is possible to uncover signals of risk groups for adverse drug reactions through incor-
poration of broad risk factor screening into statistical signal detection in a global database of adverse event reports. Our 
findings suggest the potential to use such statistical methodologies for risk characterisation in subpopulations of concern.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s4026​4-020-00957​-w) contains 
supplementary material, which is available to authorized users.
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1  Introduction

Within the scientific community, there is growing attention 
to precision medicine, most often considered in the context 
of using genetic diversity to predict which patients are more 
likely to receive benefit from certain medicines. However, it 
is also true that individual risk factors can be used to predict 
which patients are more likely to experience adverse drug 
reactions (ADRs). With the identification and characterisa-
tion of risk factors for ADRs, steps can be taken to minimise 
harms from medications.
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Risk factors for the development of ADRs have been 
documented in a range of populations and from a variety of 
healthcare settings [1, 2]. Patient-level factors increase the 
risk of ADRs largely through an effect on either the phar-
macokinetics or pharmacodynamics of drugs. Changes in 
physiology resulting from decreased renal or liver function, 
pregnancy, or increased/decreased body mass can affect the 
absorption, distribution, metabolism, and excretion of medi-
cations, while genetic polymorphisms or hormonal controls 
on genetic expression can affect both metabolic enzymes 
involved in pharmacokinetic pathways or the receptors/
targets of pharmacodynamic pathways [3–6]. Risk factors 
for ADRs with an immunological pathophysiology, such as 
human leukocyte antigen (HLA)-associated ADRs, can also 
be genetically determined. Many of these patient-level risk 
factors, such as age, sex, and concomitant illness, can be 
captured in adverse event reports.

Historically, the main emphasis of signal detection in 
pharmacovigilance has been on the early identification of 
previously unknown causal associations between medicines 
and ADRs. Signal detection in large databases of spontane-
ous reports of adverse events is performed in a statistical 
screening process that uses a pair-wise analysis to detect 
disproportionality between the number of observed versus 
expected reports of a single drug and a single adverse event. 
Review of patient-level data for recognition of potential risk 
factors for the ADR occurs in general only after detection of 
a drug–ADR signal, during signal assessment.

The incorporation of risk factor considerations earlier in 
the signal management process has the potential to improve 
the efficiency and precision of action on post-marketing 
safety signals. The aim of this study was to explore whether 
statistical screening of a broad range of risk factors within 
a global database of adverse event reports could uncover 
signals of risk groups for ADRs.

2 � Methods

2.1 � Dataset

The source of data was VigiBase, the World Health Organi-
zation (WHO) global database of individual case safety 
reports, which includes reports of adverse events shared by 
national pharmacovigilance centres in the member countries 
of the WHO Programme for International Drug Monitor-
ing [7]. The reports in VigiBase come from a variety of 
sources, including physicians, pharmacists, and consumers, 
are mostly spontaneously submitted, or, less commonly, 
come from studies, and—importantly—indicate varying 
degrees of probability that the adverse event is drug related.

The dataset used for this study consisted of all reports 
entered in VigiBase up to 28 August 2017. Suspected dupli-
cate reports were identified with the vigiMatch algorithm 
[8] and excluded from the dataset, resulting in 15.4 million 
reports for analysis.

Analyses were performed on the active ingredient level of 
drugs, coded according to WHODrug Global [9], and on the 
Preferred Term level of adverse events, coded according to 
MedDRA®, the Medical Dictionary for Regulatory Activi-
ties terminology (version 20.0). Only reports where the drug 
was characterised as suspected or interacting were counted 
in the statistical screening.

2.2 � Scope

A selection of risk factors for ADRs defined the set of 
covariates to be screened in the statistical signal detection. 
The risk factors were selected based on clinical relevance 
and technical feasibility and included patient age, sex, body 
mass index (BMI), pregnancy, underlying condition, report-
ing country, and geographical region. Within each covari-
ate, one or several subgroups were defined, representing the 
potential risk groups to be explored. The covariates and their 
corresponding subgroups with justifications are presented 
in Table 1.

For patient age, the subgroups were 0–27  days, 
28 days–23 months, 2–11 years, 12–17 years, 18–44 years, 
45–64 years, 65–74 years, and ≥ 75 years, and for patient 
sex, female and male formed the two subgroups. For BMI, 
only underweight adults and obese adults were chosen as 
subgroups; the underweight subgroup comprised adults 
with BMI < 18.5, and the obese subgroup comprised adults 
with BMI ≥ 30, as defined by the reference cut-off values 
described by WHO [10].

The pregnancy subgroup aimed to identify harms pri-
marily for the pregnant woman, not the foetus; however, 
there is no single structured field in VigiBase indicating the 

Key Points 

The identification of specific patient subpopulations at 
increased risk for adverse drug reactions can help mini-
mise harms from medicines.

This study identified clinically relevant signals of at-risk 
groups through the incorporation of risk factor consid-
erations into statistical signal detection in adverse event 
reports.

The findings from this study may be a step on the way 
towards increased precision in pharmacovigilance and 
may inspire future research in the area.
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pregnancy status of a patient. To capture reports of likely 
pregnant patients, a simple algorithm was constructed to 
infer the pregnancy status from available information in Vigi
Base, such as reported terms, indications, medical history, 
tests and procedures, and the case narrative. For details, see 
Table S1 in the Electronic Supplementary Material.

Subgroups within the underlying condition covariate were 
defined using the reported drug indications grouped by Med-
DRA High Level Group Terms. The reported indications 
were used to infer the comorbidities of the patients, and thus 
the indications for all drugs on the reports were considered, 
not only the indication for the drug of interest.

Subgrouping by country or geographical region was 
primarily intended to be a surrogate for pharmaco-ethnic 
vulnerability. For the country covariate, each individual 
country holding reports in VigiBase represented a subgroup. 
The countries were grouped into regions to form subgroups 
within the geographical region covariate.

2.3 � Statistical Signal Detection

Subgroup disproportionality analysis, as described by Hop-
stadius and Norén [11], was employed as the basis for the 
statistical signal detection. As in regular disproportionality 
analysis, observed-to-expected (OE) ratios contrast the num-
ber of reports on drug x with adverse event y to an expected 
value based on the total number of reports on drug x and 
the overall relative frequency of adverse event y. Here, the 

computation is restricted to subgroup z (e.g. reports for a 
specific patient age group):

Statistical shrinkage of the OE ratio towards 1 (the value 
implying no association) provides protection against spuri-
ous associations [12]. The base 2 logarithm of such a shrunk 
OE ratio is referred to as the Information Component (IC), 
and this is the disproportionality measure used throughout 
this paper:

If the IC value exceeds zero, it means that the corre-
sponding OE ratio exceeds 1, i.e. there are more reports than 
would be expected.

Bayesian credibility intervals indicating a range of IC 
values compatible with the data can be calculated, with pre-
specified coverage probabilities. The lower limit of a 95% 
credibility interval for the IC is denoted IC025 and is com-
monly used in regular disproportionality analysis. For sub-
group analyses, broader coverage credibility intervals are 
used to control the rate of spurious associations, because of 
the multiple comparisons [11].

In this study, two requirements were set up to identify 
statistical signals that may suggest risk groups for an ADR: 
(1) that the drug and adverse event be disproportionately 
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Table 1   Covariates and the corresponding subgroups with justifications

HLGTs High Level Group Terms

Covariate Subgroups Justification for consideration as a risk factor

Age 0–27 days, 28 days–23 months, 2–11 years, 12–17 years, 
18–44 years, 45–64 years, 65–74 years, ≥ 75 years

Variations in drug usage (e.g. dosage, route of administra-
tion), maturity/efficiency of renal clearance and hepatic 
metabolism, volume of distribution, comorbidities and 
polypharmacy especially in the elderly

Sex Male, female Pharmacokinetics affected due to e.g. body composition and 
variations in hepatic metabolism and renal clearance

Body mass index Underweight adult, obese adult Pharmacokinetics, e.g. drug distribution, affected due to 
body composition

Pregnancy Pregnant Pharmacokinetics affected due to e.g. changed activity of 
hepatic metabolising enzymes and increased renal blood 
flow

Underlying condition Reported indications (MedDRA HLGTs) The patient’s underlying medical condition/comorbidities 
may affect the pharmacokinetics or pharmacodynamics, 
e.g. chronic kidney disease may affect renal clearance, and 
polypharmacy may cause drug–drug interactions

Country Individual reporting countries Variations in drug usage and genetic polymorphisms of 
metabolising enzymes in different populations

Geographical region Africa, Asia, Europe, Latin America and the Caribbean, 
Northern America, Oceania

Variations in drug usage and genetic polymorphisms of 
metabolising enzymes in different populations
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over-reported in subgroup z, but not in the database as a 
whole; and (2) that there be a substantial difference between 
the OE ratio for subgroup z and that for the rest of the 
database.

The first requirement seeks to highlight associations that 
would not be detected in regular disproportionality analysis. 
It identifies drug–adverse event–subgroup associations for 
which the 99.9% credibility interval of the IC exceeds zero 
in subgroup z while the 95% interval of the IC for the entire 
database does not. Or, alternatively, that the 99% interval of 
the IC exceeds zero simultaneously in two subgroups for the 
same covariate (for example, two different age groups) while 
the 95% interval of the IC for the entire database does not. 
The latter allows patterns that exist in multiple subgroups 
to be detected with a less strict credibility interval for each 
individual subgroup [11].

The second requirement seeks to highlight associations 
with pronounced contrast between the subgroup and the rest 
of the database. It identifies drug–adverse event–subgroup 
associations for which the OE ratio in subgroup z is at least 
twice as large as the OE ratio in the rest of the database, 
when adjusted for the corresponding covariate (e.g. age, if 
the subgroup of interest is children). The adjusted OE ratio 
for the rest of the database is computed as a weighted aver-
age of the OE ratios in the other subgroups. It simplifies to 
an OE ratio where the observed and expected counts are 
summed across subgroups [12]:

Technically, a new OE ratio is constructed by dividing the 
subgroup-specific OE ratio and the adjusted OE ratio for the 
rest of the database [12]:

The corresponding IC value (ICΔ) is then computed and 
is required to exceed 1, corresponding to a ratio of at least 
2 between the subgroup-specific OE ratio and the adjusted 
OE ratio for the rest of the database:

2.4 � Triages for Signal Assessment

In the prioritisation for clinical review, triages were applied 
to filter and sort the statistical signals.
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2.4.1 � Filters

In a first phase of the study, the statistical signals fulfilling 
any of the below triage criteria were excluded:

•	 No reports entered in VigiBase since 2012
	 To focus on current concerns. Related to reports on the 

drug–adverse event pair within the subgroup of interest.
•	 Non-specific drug
	 To avoid non-actionable associations where the reported 

drug names were too general to support an assessment, 
such as “vaccines” or “analgesics”.

•	 Drug with at least 80% of the reports within the subgroup
	 To avoid drugs that were almost exclusively reported 

within the subgroup of interest, thus difficult to argue 
for a risk group.

•	 Adverse event with at least 80% of the reports within the 
subgroup

	 To avoid adverse events that were almost exclusively 
reported within the subgroup of interest, thus difficult to 
argue for a risk group.

In a second phase of the study, the scope was narrowed to 
focus on signals for serious events within certain covariates. 
In addition to the criteria listed above, the following exclu-
sion criteria were applied:

•	 Adverse event not classified as serious
	 To focus on the potentially more clinically significant 

events. Serious events were defined as either being an 
Important Medical Event as per the European Medicines 
Agency (EMA) [13] or at least 75% of the E2B reports in 
the case series being described as serious [14].

•	 Selected covariates
	 To focus on the covariates more likely to qualify for in-

depth assessment (based on interim results from the first 
phase of the study1). Patient age (restricted to the age 
groups within 0–17 years and ≥ 65 years), sex, country, 
and geographical region were kept, while BMI, preg-
nancy, and underlying condition were excluded.

2.4.2 � Sorting

The remaining statistical signals were further prioritised 
using vigiRank, a predictive model for emerging safety 
signals that accounts for multiple aspects of strength of 
evidence in the case series [15]. To achieve the maxi-
mal vigiRank score, there needs to be disproportionate 

1  The preliminary assessments for some of the signals for BMI even-
tually selected for in-depth assessment (see Table  2) had not been 
finalized at the time of the interim evaluation.
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over-reporting, reports from at least seven countries, four or 
more reports in the preceding 3 years, at least five reports 
with narratives, and at least five reports with high complete-
ness of information. Signals with identical vigiRank scores 
were secondarily sorted through stratified random sam-
pling across subgroups to favour the variety of subgroups 
explored, mitigating the risk of imbalanced representation 
of signals for certain subgroups. Equal weight was given 
to all subgroups within a covariate regardless of their total 
number of statistical signals.

2.5 � Signal Assessment

Top prioritised statistical signals were clinically reviewed 
in a two-step process to decide whether a signal should be 
communicated.

2.5.1 � Preliminary Signal Assessment

Preliminary assessments were performed according to the 
review decision tree presented in Fig. 1. Three main aspects 
were considered: (1) the actionability of the signal (e.g. Is 
the drug/adverse event specific enough? Is the drug on the 
market?), (2) the previous awareness of the risk group (i.e. 
Is the risk group adequately described in the product label?), 
and (3) supportive evidence for a risk group from the case 
series (e.g. Are there any obvious alternative reasons for the 
disproportionate reporting in the subgroup? Are the cases 
informative enough to conduct an in-depth assessment?). 
The signals were then classified as “closed” or as “signal 
for in-depth assessment”.

To identify previous awareness of a risk group, the Sum-
mary of Product Characteristics in the electronic Medi-
cines Compendium (eMC) [16] and the US Food and Drug 
Administration (FDA) drug labels in DailyMed [17] were 
consulted. To further support the assessments, a collec-
tion of points to consider was compiled for the purpose of 
this study (see Table S2 in the Electronic Supplementary 
Material).

The preliminary assessments were conducted by phar-
macovigilance researchers at Uppsala Monitoring Centre 
(UMC), working in interdisciplinary teams of medical doc-
tors, pharmacists, and data scientists. To ensure that signals 
from all covariates were explored in a balanced way, the 
different covariates were divided between the teams and 
reviewed separately. To reduce the risk of systematic bias, 
the covariates were regularly redistributed to different teams.

2.5.2 � In‑Depth Signal Assessment

Experienced pharmacovigilance assessors further evalu-
ated the signals selected for in-depth assessment to decide 
if there was enough supporting evidence to communicate a 

signal. The individual case reports were reviewed in detail to 
investigate if these were supportive of a risk group or if the 
disproportionate reporting in the subgroup was more likely 
due to other reasons, and the literature was consulted for any 
further supporting evidence.

2.6 � Signal Communication

Signals which were considered to potentially describe 
previously unrecognised risk groups for ADRs were com-
municated in the form of a report to the national pharma-
covigilance centres participating in the WHO Programme 
for International Drug Monitoring and to the public through 
the WHO Pharmaceuticals Newsletter.

No
Is the statistical signal relevant to

review at all?

Yes

Is the adverse event
the label?

Is the subgroup described as a risk
group in the label?

Is use of the drug limited to the
subgroup?

Is the adve limited to
occur in the subgroup?

Does the case series support further
review?

Signal for in-depth
assessment

Closed signal

Yes

No

No

No

Yes

Yes

Yes

Yes

No

No

Fig. 1   Review decision tree with the main aspects of the preliminary 
signal assessment
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3 � Results

Preliminary assessments were performed for 354 statistical 
signals, representing the highest prioritised signals for each 
covariate according to the filtering and sorting approaches.2 
Of these, 19 (5.4%) were selected for in-depth assessment, 
resulting in seven (2.0%) signals for communication: hepati-
tis with ceftriaxone in patients 75 years and older [18], myo-
clonus with levofloxacin in patients 75 years and older [19], 
anaphylactic shock with omalizumab in females [20], deep 
vein thrombosis and pulmonary embolism with aflibercept 
in males [21], gynaecomastia with esomeprazole in obese 
adults [22], hypoglycaemia with selegiline in underweight 
adults [23], and palpitations with glibenclamide in the Asian 
population [24].

3.1 � Characteristics of Assessed Signals

Breaking down the results, 293 statistical signals were pre-
liminarily assessed in the first phase of the study and 61 in 
the second phase. In the first phase, 14 signals (4.8%) quali-
fied for in-depth assessment, resulting in five signals (1.7%) 
for communication [20–24]. In the second phase, five sig-
nals (8.2%) were assessed in-depth, resulting in two signals 
(3.3%) for communication [18, 19]. Tables 2 and 3 present 
the number of assessments and signals for communication 
by covariate.

The preliminary assessed signals were relatively evenly 
distributed across covariates and subgroups. However, for 
some specific subgroups, there were no assessed signals: 
countries and underlying conditions had too many subgroups 
to consider each one, and for subgroups such as Northern 
America and Oceania, the vigiRank score was limited by the 
low number of countries in these regions. Patient sex and 
BMI yielded the highest number of signals selected for in-
depth assessment, while pregnancy and underlying condition 
yielded none. The communicated signals related to patient 
age (elderly patients), sex (female and male), BMI (under-
weight and obese adults), and geographical region (Asia).

Three of the five communicated signals identified in the 
first phase [20, 21, 23] and both signals identified in the 
second phase [18, 19] described serious events. The adverse 
event terms most commonly assessed in the two phases are 
presented in Tables 4 and 5.

Six of the communicated signals represented previously 
unrecognised risk groups for already known ADRs, whereas 

one [19] suggested a risk group for a previously non-estab-
lished ADR.

3.2 � Rationales of Signal Assessment Outcomes

3.2.1 � Closed Signals

Signals were closed if the subgroup of interest was already 
characterised as a risk group in the product label or if the 
adverse event was known to occur very commonly with the 
drug. Signals were also closed if there were no explanations 

Table 2   Signals by covariate in the first phase of the study

Shows all covariates as well as individual subgroups with at least one 
signal subjected to in-depth signal assessment

Covariate
 Subgroup

Preliminary 
assessed 
signals

Signals 
assessed in-
depth (%)

Communi-
cated signals 
(%)

Sex 32 5 (16) 2 (6.3)
 Female 16 4 (25) 1 (6.3)
 Male 16 1 (6.3) 1 (6.3)

Body mass index 41 5 (12) 2 (4.9)
 Underweight adult 16 3 (19) 1 (6.3)
 Obese adult 25 2 (8.0) 1 (4.0)

Geographical 
region

50 2 (4.0) 1 (2.0)

 Asia 18 2 (11) 1 (5.6)
Country 35 1 (2.9) 0 (0.0)
 Korea, Republic of 2 1 (50) 0 (0.0)

Age 43 1 (2.3) 0 (0.0)
 75 years and older 5 1 (20) 0 (0.0)

Pregnancy 32 0 (0.0) 0 (0.0)
Underlying condi-

tion
60 0 (0.0) 0 (0.0)

Total 293 14 (4.8) 5 (1.7)

Table 3   Signals by covariate in the second phase of the study

Shows all covariates as well as individual subgroups with at least one 
signal subjected to in-depth signal assessment

Covariate
 Subgroup

Preliminary 
assessed 
signals

Signals 
assessed in-
depth (%)

Communi-
cated signals 
(%)

Age 15 2 (13) 2 (13)
 75 years and older 7 2 (29) 2 (29)

Geographical 
region

19 2 (11) 0 (0.0)

 Europe 18 2 (11) 0 (0.0)
Sex 11 1 (9.1) 0 (0.0)
 Female 7 1 (14) 0 (0.0)

Country 16 0 (0.0) 0 (0.0)
Total 61 5 (8.2) 2 (3.3)

2  Preliminary assessments were performed for an additional 53 sta-
tistical signals which are not presented in the results as these were 
identified further down the order of priority and had been selected to 
be assessed together with higher prioritized signals, for example, due 
to similarities in the type of event or closely connected subgroups.
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found for the disproportionate reporting in the subgroup 
(e.g. lack of plausible mechanisms), if the disproportionate 
over-reporting was not unique to the specific subgroup (e.g. 
too broad subgroup), or if there was no evidence of a similar 
reporting pattern for the subgroup for a clinically related 
adverse event. Finally, if review of the subgroup case series 
identified alternative explanations for the disproportionate 
reporting, or if the case series did not contain enough infor-
mation for an assessment, the signal was closed. Individual 
examples of reasons for closing signals are presented in 
Table 6.

3.2.2 � Communicated Signals

The rationales for the seven communicated signals were 
multi-layered with some common themes. In all signals, 
the assessor brought forward the unique disproportionate 
over-reporting of the drug–adverse event pair in the sub-
group of interest in contrast to the full data. All assessors 
also proposed plausible mechanisms for why the subgroup 
of patients may be at increased risk for the adverse event. 
Even though a causal relationship between the drug and 
the adverse event was previously known for most signals, 

standard causality assessments were performed for the case 
series subgroup. Some assessors also characterised the case 
series outside the subgroup to exclude any obvious alter-
native explanations for the imbalanced reporting patterns. 
Table 7 lists the communicated signals and suggested mech-
anisms for risk group susceptibility.

4 � Discussion

This study reveals that it is possible to uncover signals of 
risk groups for ADRs through incorporation of broad risk 
factor screening into statistical signal detection in a global 
database of adverse event reports. Using subgroup dispro-
portionality analysis, we identified seven clinically relevant 
signals related to patient age, sex, BMI, and geographical 
region for communication to the pharmacovigilance com-
munity and the public. The proportion of signals for commu-
nication identified in this study (2%) is in line with previous 
experience of statistical signal detection in VigiBase for both 
pairwise drug–adverse event associations [25] and specific 
subgroups [26].

The risk factor signal detection approach evaluated here 
is based on subgroup disproportionality analysis. Strati-
fied analyses, commonly used in epidemiology to adjust 
for possible confounding factors, also divide data into sub-
groups, but then compute a single measure, for example as a 
weighted average across the subgroups; by design they will 
fail to appreciate any variation in risk between the strata. 
A previous study evaluated the performance of subgroup 
and stratified disproportionality analyses within spontane-
ous report databases of differing sizes and characteristics, 
using a reference set of established ADRs [27]. Overall, sub-
group analyses were found to perform better than stratified 
analyses for use in first pass signal detection; subgrouping 
by age, country, and geographical region showed the highest 
improvement in precision and sensitivity, while subgrouping 
by sex showed modest improvement (BMI, pregnancy, and 
underlying condition covariates were not investigated) [27]. 
The findings for patient sex and BMI in the current study 
might thus be especially worth noting; to our knowledge, 
screening for these risk factors is not currently applied in 
routine statistical signal detection.

The screening of a broad variety of risk factors to explore 
different types of risk groups concurrently is a novel 
approach and a strength of this study, allowing for more 
open-ended signal detection with less pre-set hypothesis 
around a certain risk factor. Inclusion of single risk group 
considerations into statistical signal detection approaches 
have been described, especially for age. UMC has previ-
ously performed a signal detection exercise to identify sig-
nals from the paediatric subgroup of case reports contained 
within VigiBase [26]. Similarly, the EMA has implemented 

Table 4   Top assessed adverse events in the first phase of the study 
(total number of assessed signals = 293)

Adverse event (MedDRA Preferred Term) Preliminary assessed 
signals (%)

Headache 19 (6.5)
Pyrexia 11 (3.8)
Drug ineffective 10 (3.4)
Pruritus 10 (3.4)
Urticaria 7 (2.4)
Dizziness 6 (2.0)
Dyspnoea 6 (2.0)
Malaise 6 (2.0)
Nausea 6 (2.0)
Palpitations 6 (2.0)

Table 5   Top assessed adverse events in the second phase of the study 
(total number of assessed signals = 61)

Adverse event (MedDRA Preferred Term) Preliminary assessed 
signals (%)

Overdose 3 (4.9)
Anaemia 2 (3.3)
Anaphylactic reaction 2 (3.3)
Angioedema 2 (3.3)
Death 2 (3.3)
Loss of consciousness 2 (3.3)
Tachycardia 2 (3.3)
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approaches of using within-group disproportionality to 
identify signals specific to the paediatric and the geriatric 
subpopulations in EudraVigilance [28, 29]. The FDA has 
described its principles to monitor the at-risk groups of chil-
dren, elderly, and pregnant women in a recent draft docu-
ment of best practices for post-marketing safety surveillance 
within the FDA Adverse Event Reporting System (FAERS) 
[30].

However, the broad screening approach restricted the 
number of statistical signals assessed for each covariate in 
this study, limiting the ability to draw conclusions for each 
separate risk factor, especially in the cases where no signals 
for a covariate or subgroup were deemed to merit in-depth 
review. A narrower scope, for example limited to a single 
covariate, such as patient sex or even a specific subgroup 
such as females, might also allow assessors to more rapidly 
learn to assess the subgroup signals of interest. It may fur-
thermore allow the statistical signal detection algorithms to 
be customised, with a possible improvement in performance.

Missing data on covariates is an impediment. This is par-
ticularly problematic for covariates such as pregnancy and 
BMI with high degrees of missing data. Improved algorithms 

for identifying reports related to pregnant women may be 
needed in view of the many ways that this can be recorded 
on adverse event reports. The algorithm used in this study 
was designed to promote precision over sensitivity, resulting 
in true pregnancies being missed and thus being represented 
also in the data outside the subgroup. Apart from potentially 
missing relevant signals, another implication was that sig-
nals for drugs exclusively used in pregnancy passed the tri-
ages set up to avoid signals for which no risk group could be 
argued. Missing data on BMI could possibly be approached 
by using weight as a surrogate.

All except one of the communicated signals in this study 
related to risk groups for already established ADRs. By 
design, no highlighted drug–adverse event pair was dispro-
portionately over-reported in the entire database. However, 
requiring absence of disproportionality in the full database 
should perhaps be reconsidered as it may lead to missed risk 
group signals when the adverse event is not unique to the 
risk group and is also disproportionately over-reported in 
the entire database.

Signal assessment of a drug–adverse event–subgroup 
association was found to be more challenging than routine 

Table 6   Examples of reasons for closing signals, grouped by category

Category Reason for closing signal

Too broad subgroup The adverse event was disproportionately over-reported with the drug in several age groups, resulting 
in too broad an age group to assess as a risk group (e.g. 12–64 years)

The adverse event was disproportionately over-reported with the drug for both subgroups (under-
weight and obese adults), hence, difficult to argue for a risk group

The underlying condition was too non-specific, and no common pattern was identified among the 
reported indications (e.g. general system disorders)

Alternative explanations for subgroup 
disproportionality

The drug was used for different indications in males vs females; the overrepresentation of the adverse 
event in one of the subgroups was more likely due to the underlying disease (e.g. prostate cancer vs 
endometriosis for leuprorelin)

The subgroup was, to a greater extent, concomitantly using another drug known to cause the adverse 
event

The underlying condition was closely related to the adverse event, and it was difficult to argue for a 
potential risk group (e.g. acetylsalicylic acid and pruritus in allergic conditions)

Most cases in the subgroup described non-compliance with prescription instructions, including disre-
gard of drug–drug interactions and dosage recommendations

More likely that the increased reporting among females was related to a large number of reports 
describing overdoses, suicidal attempts, and brand switching/reported ineffectiveness

Lack of biological plausibility Unlikely biologic plausibility that the reaction would be influenced by weight
No logical genetic or cultural explanation, and no pharmacological mechanism or metabolism found 

to differ for the geographical region of interest
Lack of subgroup disproportionality for 

related adverse events/drugs
Other related adverse events commonly reported with the drug, but none of them reproduced the 

disproportionate reporting in the geographical region of interest
The adverse event appeared to be a symptom reported with hypersensitivity; however, a similar pat-

tern for other terms related to hypersensitivity was not seen for females
Drug/adverse event exclusive to subgroup The drug was exclusively used in pregnancy; hence, not relevant to talk about a risk group
Targeted monitoring in subgroup The disproportionate reporting within the specific country was likely due to close monitoring of the 

drug
Misclassification of subgroup The patients were not pregnant at the time of exposure
Very common adverse drug reaction The adverse event was labelled as very common in general, hard to justify further highlighting of this 

event specifically for patients 75 years and older
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signal assessment of a pairwise drug–adverse event associa-
tion. The disproportionate over-reporting in the subgroup 
was an important consideration and often involved an initial 
review to determine that it was not due simply to a statistical 
artefact. Often this required a review of the drug–adverse 
event pair in other subgroups, as well as exploration of sub-
group over-reporting for other clinically relevant adverse 
events or drugs. Referring to Bradford Hill’s criteria for 
evidence of causal relationships [31], the strength of the 
association, an analogy with other drugs/adverse events/
subgroups, and the identification of a plausible mechanism 
seemed to be the most prominent aspects weighed into the 
risk group signal assessments.

The statistical signals identified for the underlying con-
dition covariate were considered the most challenging to 
assess. The underlying conditions were inferred from all the 
reported drug indications, regardless of the timing of the 
drug use and regardless of which drug was highlighted in 
the signal, which caused uncertainty and complexity. Con-
versely, the identification of underlying conditions could 
possibly be further advanced beyond drug indications, uti-
lising additional information on the report, for example, the 
patient’s medical history. The subgrouping by MedDRA 
High Level Group Terms could also be further explored as 
it sometimes created case series where the underlying condi-
tions were clinically too diverse to consider the comorbidity 

a common risk factor. With that said, we do not think there is 
evidence to dismiss this covariate as non-relevant, but rather 
that there is room for future improvements.

Since disproportionality analysis is a widely used meth-
odology, familiar to many pharmacovigilance professionals, 
it should be possible to adapt the subgroup approach for 
other databases. Whereas this study used VigiBase, similar 
analyses may be possible in smaller datasets, depending on 
the scope. A small database may not have enough reports to 
support subgroup analysis, especially for rare events, drugs, 
or small subgroups. On the other hand, a potential advan-
tage is that national databases may contain more complete 
information on covariates such as BMI.

While the results in this study are promising, the subgroup 
signal detection methodology can be further improved. Here, 
we have considered each subgroup in isolation, but meth-
ods to automatically identify coherent subgroups, such as 
adjacent age groups or neighbouring countries, in a data-
driven manner may yield better results. It should also be 
emphasised that we only used one approach per risk factor 
for subgrouping and that exploration of other approaches 
may reveal more appropriate groupings. Another possi-
ble improvement would be to flag systematic differences 
between the subgroup of interest and other reports to support 
and enhance the assessments [32]. This might highlight pos-
sible alternative explanations to disproportionality unique 

Table 7   Communicated signals with suggested mechanisms for risk group susceptibility

CNS central nervous system, VEGF vascular endothelial growth factor

Communicated signal Mechanisms for risk group susceptibility suggested in signal

Hepatitis with ceftriaxone in patients 75 years and older [18] Elderly patients have a longer elimination half-life of ceftriaxone than young 
adults, which may increase the risk of hepatotoxicity, as raised liver enzymes 
is a known adverse drug reaction

Myoclonus with levofloxacin in patients 75 years and older [19] Elderly patients with risk factors for myoclonus such as renal impairment and 
CNS conditions may predispose to the event

Anaphylactic shock with omalizumab in females [20] Females suggested to be more sensitive to anaphylactic reactions, possibly 
attributable to oestradiol

Deep vein thrombosis and pulmonary embolism with aflibercept 
in males [21]

Multiple lines of evidence suggest a gender influence on the amount of 
circulating VEGF, with females having higher serum levels than males. 
A hypothesis would be that females have a higher concentration of un-
antagonised VEGF at the same doses of aflibercept than males (although 
a subgroup analysis in clinical development did not reveal any “clinical 
relevant” influence of gender on plasma concentrations of free aflibercept or 
aflibercept–VGEF complex)

Gynaecomastia with esomeprazole in obese adults [22] Obesity is associated with increased oestrogen due to extragonadal conversion 
of androgen by tissue aromatase, and omeprazole known to be associated 
with gynaecomastia due to inhibition of CYP3A4, which is responsible for 
catabolism of oestradiol

Hypoglycaemia with selegiline in underweight adults [23] Underweight is a risk factor of hypoglycaemia and may present an additive 
effect to the known ability of the drug to cause the reaction

Palpitations with glibenclamide in the Asian population [24] Glibenclamide is metabolised by CYP2D6, of which specific polymorphisms 
(*2 and *3), common in Asian populations, lead to poor metabolisation. 
Palpitations may be an adrenergic response to hypoglycaemia secondary to 
poor metabolism of glibenclamide
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to a subgroup, such as a co-reported drug in that subgroup, 
known to cause the adverse event in question. Moreover, 
as this study was limited to a selection of risk factors and 
some of them, such as genetic susceptibility and renal func-
tion, were only indirectly approached, future research could 
involve further exploration of these and additional risk 
factors.

5 � Conclusions

This novel approach, incorporating broad screening of sev-
eral different risk factors of ADRs into statistical signal 
detection in a global collection of adverse event reports, is 
promising. Clinically relevant signals of risk groups were 
identified related to patient age, sex, BMI, and geographical 
region, while refined methods for pregnancy and underlying 
condition may be needed to reach their full potential. Our 
findings suggest the potential to use such statistical method-
ologies for risk characterisation in subpopulations of con-
cern, thereby increasing the precision of pharmacovigilance.
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