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The type B γ-aminobutyric acid receptor (GABAB receptor) is an important
neurotransmitter receptor in the midbrain auditory structure, the inferior colliculus (IC).
A functional GABAB receptor is a heterodimer consisting of two subunits, GABABR1 and
GABABR2. Western blotting and immunohistochemical experiments were conducted to
examine the expression of the two subunits over the IC including its central nucleus, dorsal
cortex, and external cortex (ICc, ICd, and ICx). Results revealed that the two subunits
existed in both cell bodies and the neuropil throughout the IC. The two subunits had
similar regional distributions over the IC. The combined level of cell body and neuropil
labeling was higher in the ICd than the other two subdivisions. Labeling in the ICc and
ICx was stronger in the dorsal than the ventral regions. In spite of regional differences,
no defined boundaries were formed between different areas. For both subunits, the
regional distribution of immunoreactivity in the neuropil was parallel to that of combined
immunoreactivity in the neuropil and cell bodies. The density of labeled cell bodies
tended to be higher but sizes of cell bodies tended to be smaller in the ICd than in the
other subdivisions. No systematic regional changes were found in the level of cell body
immunoreactivity, except that GABABR2-immunoreactive cell bodies in the ICd had slightly
higher optic density (OD) than in other regions. Elongated cell bodies existed throughout
the IC. Many labeled cell bodies along the outline of the IC were oriented in parallel to the
outline. No strong tendency of orientation was found in labeled cell bodies in ICc. Regional
distributions of the subunits in ICc correlated well with inputs to this subdivision. Our
finding regarding the contrast in the level of neuropil immunoreactivity among different
subdivisions is consistent with the fact that the GABAB receptor has different pre- and
postsynaptic functions in different IC regions.
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INTRODUCTION
γ-aminobutyric acid (GABA) is an important inhibitory neu-
rotransmitter in the central nervous system (Enna and Möhler,
2007). This neurotransmitter exists at a high level in the mid-
brain auditory structure, the inferior colliculus (IC) (Roberts and
Ribak, 1987; Merchán et al., 2005). Neurons in the IC receive
GABAergic projections from extrinsic sources as well as local
inhibitory interneurons (Adams and Mugnaini, 1984; Helfert
et al., 1989; Li and Kelly, 1992; Vater et al., 1992; Shneiderman
et al., 1993; Merchán et al., 1994; González-Hernández et al.,
1996; Zhang et al., 1998; Kulesza and Berrebi, 2000; Riquelme
et al., 2001; Saldaña et al., 2009). GABAergic receptors in the
IC include the metabotropic GABAB receptor as well as the
ionotropic GABAA receptor (Glendenning and Baker, 1988;
Marianowski et al., 2000; LeBeau et al., 2001; Shiraishi et al., 2001;
Zhang and Kelly, 2003; Malmierca and Merchán, 2004; Kelly and
Caspary, 2005; Hilbig et al., 2007; Caspary et al., 2008; Jamal et al.,
2011).

The GABAB receptor contributes to sound-driven responses
in the IC (Faingold et al., 1989; Szczepaniak and Møller, 1995,

1996; Vaughn et al., 1996; Burger and Pollak, 1998). These con-
tributions are dependent on the pre- and/or postsynaptic func-
tions of the receptor (Zhang and Wu, 2000; Ma et al., 2002;
Sun et al., 2006; Sun and Wu, 2009). Activation of presynaptic
GABAB receptors reduces the release of neurotransmitters includ-
ing glutamate and GABA (Ma et al., 2002; Sun et al., 2006). This
reduction is a result of decreased calcium influx (Mintz and Bean,
1993; Filippov et al., 2000; Kornau, 2006; Ulrich and Bettler,
2007). Activation of postsynaptic GABAB receptors leads to pro-
longed membrane hyperpolarization (Sun and Wu, 2009). This
membrane-voltage change is due to an increase in the opening
probability of potassium channels (Luscher et al., 1997; Ulrich
and Bettler, 2007). The receptor also contributes to long-term
enhancement of excitatory neural responses in the IC (Zhang and
Wu, 2000).

A functional GABAB receptor is a heterodimer consisting of
two subunits, GABABR1 and GABABR2 (Huang, 2006). Both of
these subunits are made in the endoplasmic reticulum. Due to a
retention signal, the GABABR1 subunit remains within the endo-
plasmic reticulum after it is made. Binding by the GABABR2
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subunit masks the retention signal, allowing the two subunits to
form a heterodimer and to traffic toward the plasma membrane
(Pin et al., 2004; Pooler and McIlhinney, 2007).

The GABAB receptor is not homogeneously expressed in the
IC. Receptor autoradiographic studies have revealed that func-
tional GABAB receptors are more abundant in the dorsomedial
than the ventral region of the structure (Milbrandt et al., 1994;
Fubara et al., 1996; Hilbig et al., 2007). Our recent immuno-
histochemical study on the GABABR2 subunit revealed a similar
distribution in the rat’s IC (Jamal et al., 2011).

It has yet to be determined whether the GABABR1 subunit
has a similar distribution in the IC. Also, it is important to find
how the level of the GABAB receptor in the IC is dependent on
the density of cell bodies expressing the receptor and the abun-
dance of the receptor in the neuropil. Furthermore, it is important
to examine the morphological features of cells expressing the
receptor. Addressing these questions can provide an insight into
the role of the receptor in auditory processing. Therefore, we
conducted Western blotting and immunohistochemical experi-
ments to examine the expression of the GABABR1 and GABABR2
subunits in the IC.

EXPERIMENTAL PROCEDURES
ANIMAL PREPARATION
Experiments were conducted using 11 male adult Wistar albino
rats (Rattus norvegicus). These rats had a body weight of
250–400 g and were obtained from Charles River Canada Inc.,
St. Constant, Quebec. The animals were housed in the University
of Windsor animal care facility for at least a week before exper-
iments were conducted. The noise level in the animal facility
was 55–60 dB SPL. All experimental procedures were approved
by the University of Windsor Animal Care Committee and were
in accordance with the guidelines of the Canadian Council on
Animal Care.

WESTERN BLOTTING
For each experiment, an animal was euthanized by an overdose of
sodium pentobarbital (120 mg/kg, i.p.). The brain was extracted
and sliced in the coronal plane into 240 μm thick sections using a
VT1000S vibratome (Leica Microsystems, Heidelberg, Germany).
Tissues of the central nucleus, the dorsal cortex, and the exter-
nal cortex of the IC (ICc, ICd, and ICx) were collected from the
resulting brain slices using a scalpel blade and an SZX7 stereo-
scope (Olympus, Tokyo, Japan). The IC was subdivided based on
a standard rat brain atlas (Paxinos and Watson, 2007) and current
anatomical results on this structure (Malmierca et al., 1993, 1995,
2011; Oliver, 2005; Loftus et al., 2008). The lateral and the rostral
cortices of the IC as suggested by recent publications (Loftus et al.,
2008; Malmierca et al., 2011) were combined into an external
cortex in the present study.

For Western blotting analysis, a sample of a subdivision of the
IC was formed by combining tissue from all the different slices
with the subdivision. The entire cerebellum and a part of the liver
were also collected and used as controls. Thus, a set of five samples
was formed for Western blotting analyses for each independent
case (i.e., each individual animal). During slicing and tissue col-
lection, the brain was submerged in artificial cerebrospinal fluid

containing (in mM): 126 NaCl, 3 KCl, 1.4 KH2PO4, 26 NaHCO3,
4 glucose, 1.3 MgSO4, and 1.4 CaCl2.

Tissue in each sample was homogenized manually in homoge-
nization buffer (0.32 M sucrose in 5 mM Tris, pH 7.4) contain-
ing protease inhibitors (3 μM aprotinin, 10 μM phenylmethyl
sulfonyl fluoride, 1 μM leupeptin, and 3 μM pepstatin). Lysate
was cleared at 3400 g for 20 min at 4◦C. The protein con-
centration of the supernatant was measured using a Bradford
assay (Sigma-Aldrich, Oakville, ON) and quantified using a
Biomate5 spectrophotometer (Thermo Scientific, Surrey, United
Kingdom).

Thirty micrograms of protein from each sample were added
to 4X sample buffer and subjected to electrophoresis on a 10%
sodium dodecyl sulphate-polyacrylamide gel (SDS-PAGE) for 2 h
at 125 V. Proteins were transferred from the gel to a polyvinyli-
dene fluoride (PVDF)-Plus 0.45 μm membrane (Osmonics Inc.,
Minnetonka, MN) for 2 h at 30 V. The membrane was blocked at
room temperature for 1 h in Tris-Buffered Saline Tween (TBST,
50 mM Tris/HCl, 153 mM NaCl, 0.05% Tween-20, pH 7.6) con-
taining 1% skim milk. The membrane was then incubated
in a primary antibody (see section “Antibodies and Control
Experiments”) overnight at 4◦C. Following three TBST washes
(10 min each), the membrane was incubated in a secondary anti-
body (see section “Antibodies and Control Experiments”) for
1 h at room temperature. Following another three TBST washes
(10 min each), the membrane was developed with an ECL kit
(Pierce, Rockford, IL). Images were acquired using an HD2 gel
imaging system and AlphaEase digital analysis software (Alpha
Innotech, San Leandro, CA).

IMMUNOHISTOCHEMISTRY
A rat was euthanized by an overdose of sodium pentobarbital
(120 mg/kg, i.p.) and transcardially perfused with Tyrode’s solu-
tion followed by 4% paraformaldehyde in 0.1 M PB. The brain
was extracted and cryoprotected in a sucrose gradient (10, 20,
and 30% in 0.1 M PB) at 4◦C. The brain was then sectioned
into 30 μm slices in the coronal plane using a CM1050 S cryostat
(Leica Microsystems, Heidelberg, Germany) and thaw-mounted
onto SuperFrost Plus glass slides (Fisher Scientific, Pittsburg, PA).
Every fourth section over the entire rostrocaudal extent of the IC
was collected to form a set of tissue samples. Out of the four sets of
samples, one or two were used for the present study (see section
“Results”). The other sets were used for purposes not related to
this study. For an immunoreaction, each step was conducted with
all the sections in a set placed in a single container (keeper), so
that the same experimental conditions were applied to the entire
set of sections.

Prior to an immunoreaction, sections were warmed to room
temperature. They were then incubated overnight at room
temperature in a primary antibody (see section “Antibodies
and Control Experiments”) in 0.1 M PBS with 0.05% Triton
X-100 and 5% normal donkey serum (Jackson ImmunoResearch
Laboratories, 017-000-121). Following three thorough washes
with 0.1 M PBS (10 min each), the sections were incubated
in a secondary antibody (see section “Antibodies and Control
Experiments”) in 0.1 M PBS containing 2% normal donkey
serum at room temperature for 2 h. After three additional
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washes (10 min each) in 0.1 M PBS, sections were incubated
in ExtrAvidin®-peroxidase (Sigma E2886, 1:400) in 0.1 M PBS
for 1.5 h at room temperature. The sections were then rinsed
three times (10 min each) and incubated in 0.05% 3, 3-
Diaminobenzidine tetrahydrochloride (DAB) in 0.1 M PB with
0.04% NiSO4 and 0.1% glucose oxidase at room temperature for
15–30 min. The DAB reaction was terminated by a wash with
0.1 M PBS. The tissues were then dehydrated with an ethanol gra-
dient (60, 70, 95, 100, and 100%) and cleared twice with Histosol
(10 min each). The slides were mounted with Permount (Fisher
Scientific, SP-500) and coverslipped. Sections were examined
using a CTR 6500 microscope (Leica Microsystems, Heidelberg,
Germany) and photomicrographic images were taken using a
DFC 380 FX digital camera (Leica Microsystems, Heidelberg,
Germany).

ANTIBODIES AND CONTROL EXPERIMENTS
The primary antibody for probing the GABABR1 subunit
in both Western blotting and immunohistochemical experi-
ments was rabbit polyclonal GABABR1 antiserum (Santa Cruz
Biotechnology R-300, 1:3000 for Western blotting and 1:1000 for
immunohistochemistry). The primary antibody for probing the
GABABR2 subunit in Western blotting and immunohistochemi-
cal experiments was guinea-pig polyclonal GABABR2 antiserum
(Chemicon AB5394, 1:3000 for Western blotting and 1:1000 for
immunohistochemistry). Primary antibodies for probing Actin
and α-Tubulin in Western blotting experiments were mouse mon-
oclonal anti-Actin antiserum (Chemicon MAB1501, 1:1000) and
mouse monoclonal anti-α-Tubulin antiserum (Chemicon 05-829,
1:1000), respectively.

Secondary antibodies used in Western blotting experiments
were horseradish peroxidase (HRP)-conjugated Goat anti-rabbit
IgG (Santa Cruz Biotechnology SC-2004, 1:6000), HRP-
conjugated goat anti-guinea pig IgG (Chemicon AQ108, 1:6000),
and HRP-conjugated goat anti-mouse IgG (Chemicon 12-349,
1:10000). Secondary antibodies used in immunohistochemistry
experiments were biotinylated donkey anti-rabbit IgG (Jackson
ImmunoResearch Laboratories 711-005-152, 1:400) and biotiny-
lated donkey anti-guinea pig IgG (Jackson ImmunoResearch
Laboratories 706-065-148, 1:400).

The effectiveness and specificity of the antibody against the
GABABR2 subunit had been verified by our previous Western
blotting and immunohistochemical experiments (Jamal et al.,
2011) and were confirmed by control experiments in the
present study. In agreement with previous findings (Charles
et al., 2001; Benke et al., 2002; Panzanelli et al., 2004), our
Western blotting experiments using the antibody against the
GABABR1 subunit and cerebellar tissue revealed two bands at
100 and 130 kDa, respectively, (Figure 1A). These bands were
absent in the lane for liver tissue. Further experiments using
antibodies against Actin and α-Tubulin revealed that loading
was even, and that α-Tubulin can serve as a selective load-
ing control for neural tissue. Immunohistochemical experi-
ments using cerebellar tissue revealed labeling by the antibody
against the GABABR1 subunit in the molecular layer, Purkinje
cell layer, and granule cell layer (Figure 2A). Immunoreactivity
was absent in white matter. No labeling was found in the

FIGURE 1 | Immunoreactivity to antibodies against the GABABR1 and

GABABR2 subunits as revealed by Western blots. (A) Western blots
obtained by using the antibody against the GABABR1 subunit and tissues
from the cerebellum and the liver (top panel). Actin was used as a general
loading control (lower band of the lower panel) and α-Tubulin was used as a
brain tissue-specific loading control (upper band of the lower panel). Two
bands with molecular weights of 100 and 130 kDa are revealed in the blot
for cerebellar tissue. (B) Western blots showing GABABR1 (i) and
GABABR2 (ii) immunoreactivities in the cerebellum, ICc, ICd, and ICx.
In (i) and (ii), blots reflecting α-Tubulin immunoreactivity are shown below
the blots reflecting the GABABR1 and GABABR2 immunoreactivities. The
ratio between the OD of a GABABR1 or GABABR2 band and the OD of an
α-Tubulin band was obtained for each of the four neural structures in each
animal. The ratio from the cerebellum was used for normalization. Group
results based on ratios from four animals are shown in bar charts in
B(i) and B(ii). Error bars indicate standard errors.
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FIGURE 2 | Immunoreactivity to the antibody against the GABABR1

subunit in the cerebellum (A) and the IC (B) as revealed by

immunohistochemistry. The cerebellar section shows molecular, Purkinje
cell, and granule cell layers, and white matter. Inset in (A) shows a labeled
somata of a Purkinje cell, as well as adjacent areas in the molecular and
granule layers. Arrow points toward the labeled Purkinje cell. The diagram in
the bottom panel of (B) is the outline of the section shown in the top panel
of (B) along with a grid used in the measurement of cell body and neuropil
immunoreactivity. The grid was also used in the measurement of
morphological features of immunoreactive cells. Each grid box has
150 × 150 μm dimensions. Scale bars in (A) and (B): 500 μm in low
magnification image; 25 μm in the inset.

cerebellum and the IC when the primary antibody was replaced
by 0.1 M PBS (data not shown). These immunochemical results
are consistent with previous findings (Ige et al., 2000; Charles
et al., 2001). Thus, our control experiments indicated that
the antibody against the GABABR1 subunit was effective and
specific.

DATA ANALYSIS
Analyses of western blotting results
For each case, levels of the GABABR1 subunit, the GABABR2 sub-
unit, Actin, and α-Tubulin were evaluated by using gel images
probed by respective primary antibodies. For each gel image, an
optic density (OD) value was measured for each of the four bands
corresponding to the ICc, ICd, ICx, and cerebellum. For each
structure, the OD value for a receptor subunit (i.e., either the
GABABR1 or GABABR2 subunit) was normalized against the OD
value for α-Tubulin. A ratio was obtained between the normalized
OD value of a collicular subdivision and the normalized OD value
of the cerebellum. The ratios from all the cases studied were then
used to obtain a mean and a standard error to reflect the level of a
receptor subunit in a collicular subdivision in reference to that in
the cerebellum.

Analyses of immunohistochemical images
Digital photomicrographic images were taken for each section
probed by an antibody against the GABABR1 or the GABABR2
subunit. A grid with 150 × 150 μm squares (named as grid boxes
elsewhere in the text) and an arbitrary origin was placed over
the area of the IC (bottom panel of Figure 2B). The origin
was used as a reference point for superimposing the outline
of the IC and a contour showing the regional distribution of
OD or cell body morphological characteristic in the IC (see
below). Images were taken for all the grid boxes or alternat-
ing grid boxes in the IC using a 63X oil immersion objective
at a focal plane 10 μm below the top surface of the tissue.
These images were used to examine the number of GABABR1-
or GABABR2-immunoreactive (GABABR1-IR or GABABR2-IR)
cell bodies as well as the level of immunoreactivity and mor-
phological features of these cell bodies. The images were also
used to evaluate the neuropil level of subunit expression as
well as the overall level (i.e., combined cell body and neuropil
level) of expression. Images for each set of tissue samples were
taken in multiple sessions. At the beginning of each imaging
session, a predetermined area of a cerebellar section was exam-
ined and the mean OD of this area was measured (see below
for measurement of OD) to ensure that illumination condi-
tions of the microscope were consistent across different imaging
sessions.

To assess the overall level of immunoreactivity in an area (e.g.,
an 150 × 150 μm grid box), a gray level was measured at each
pixel within the area. In such a measurement, white and black
colors corresponded to pixel values of 0 and 255, respectively. The
mean and the standard deviation of all the pixel gray levels in
the box were obtained to indicate the OD of this area. To assess
the level of neuropil labeling within a grid box, five small square
areas with 10 × 10 μm dimensions were randomly picked within
the grid box. These squares were devoid of any cell bodies or parts
of cell bodies. A gray level was measured at each pixel in these five
areas and the mean and standard deviation of all the pixel gray
levels were obtained to represent the OD of the neuropil in the
grid box.

A normalized OD value was calculated for an area of inter-
est by using the mean OD from the molecular layer of the
cerebellum and the mean OD from an area with the lightest
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labeling in the entire set of section (typically white matter of the
cerebellum):

Normalized OD = (ODaud − ODl) / (ODcm − ODl)

where ODaud is the mean OD value of an area of interest (i.e., a
grid box, five 10 × 10 μm squares, or a cell body). ODcm and ODl

are the mean OD values of the cerebellar molecular layer and the
area with the lightest labeling, respectively.

Immunoreactive cell bodies were counted in each grid box.
An immunoreactive cell body had an identifiable nucleus and a
mean OD value higher than a threshold OD level for the grid
box. This threshold level equaled the mean neuropil OD plus one
standard deviation of the neuropil OD in the grid box. Only cell
bodies with a major axis (i.e., longest axis) longer than 6 μm were
counted.

For each labeled cell body, the level of labeling and the size
of the cell body were examined. A cell body was outlined man-
ually and the level of labeling in the cell body was obtained by
calculating the mean OD within the outlined area. The perime-
ter, occupied area, length of the major axis, and orientation of the
major axis were also measured for the cell body. The area occu-
pied by a cell (a) and the length of the major axis (l) were used
to calculate an elongation index (EI) to describe the shape of an
immunoreactive cell body:

EI = 1 − a
π
4 l2

An EI value is within the range between 0 and 1. An elongated
cell body results in a large EI value, while a perfect circular cell
body results in an EI value of 0.

Measurements of OD values and cell body morphological fea-
tures from all grid boxes were combined to calculate mean values
or to create histograms for the three subdivisions. For this pur-
pose, a grid box divided by a border between two subdivisions
was assigned to the subdivision that covered a larger part of the
grid box.

Image J software (U.S. National Institute of Health, Bethesda,
MD) was used in the counting and analyses of immunoreac-
tive neurons, and the measurements of OD values. DeltaGraph
software (RedRock software, Salt Lake City, UT) was used
for plotting contours, histograms, and vector charts to show
regional distributions of immunoreactivity and morphological
features of immunoreactive cell bodies. For the purpose of illus-
tration, brightness and contrast of photomicrographic images
was adjusted using Photoshop CS4 Extended software (Adobe
Systems, San Jose, CA). Outlines of neural structures in photomi-
crographic images were traced using Illustrator (Adobe Systems,
San Jose, CA). Areas outside the IC in a contour plot made using
DeltaGraph were cropped using Illustrator.

RESULTS
LEVELS OF THE GABABR1 AND GABABR2 SUBUNITS IN THE IC:
WESTERN BLOTTING
Western blotting experiments were conducted using four rats. In
three of the four animals, both the GABABR1 and the GABABR2

subunits were probed. In the fourth animal, only the GABABR2
subunit was probed. As shown in Figure 1B, both the GABABR1
and GABABR2 subunits were expressed at a higher level in the
ICd than in the other two collicular subdivisions. This area dif-
ference was confirmed by all the other cases examined in this
study (2 and 3 cases for the GABABR1 and GABABR2 subunits,
respectively). The GABABR1/α-Tubulin ratio in the ICc and ICx
were about 65 and 70% of that in the ICd, respectively. The
GABABR2/α-Tubulin ratio in the ICc and ICx were about 55 and
75% of that in the ICd, respectively.

LOCALIZATION OF THE GABABR1 AND GABABR2 SUBUNITS:
IMMUNOHISTOCHEMISTRY
Immunohistochemical experiments were conducted using a total
of seven rats. In one of these rats, both the GABABR1 and the
GABABR2 subunits were probed. In three rats the GABABR1
subunit was probed, while in another three rats the GABABR2
subunit was probed. Regional and cellular distributions of
immunoreactivity were examined in each of these cases. For each
subunit, OD values were measured in four cases to evaluate the
distribution of neuropil and overall (combined cell body and neu-
ropil) immunoreactivities over the entire IC. In three of the four
cases OD values were measured in alternating grid boxes in each
section, while in one of the four cases OD values were measured
in all the grid boxes in each section. Comparisons made in the
cases in which ODs were measured for all the grid boxes (one
for each subunit) revealed that contours showing distributions of
neuropil and overall immunoreactivity based on measurements
from all the grid boxes were similar to those based on measure-
ments from alternating boxes. Therefore, results presented in the
following section will be based on measurements from alternat-
ing grid boxes for all cases in order to keep consistency. The level
of cell body immunoreactivity, the density of labeled cell bodies,
and the size and orientation of labeled cell body were examined
in two cases for each subunit.

The GABABR1 and GABABR2 subunits were found through-
out the entire IC (Figures 2B and 3). For a section from
the middle portion of the rostrocaudal extent of the IC
[Figures 3A(ii),B(ii)], the overall level of expression was higher
in the dorsomedial region (i.e., the ICd) than the ventrolateral
region of the IC (i.e., the ventral parts of the ICx and ICc). The
dorsal parts of the ICc and ICx also had relatively high level of
expression. The reduction in the level of immunoreactivity from
dorsomedial to the ventrolateral part of the IC was gradual. No
defined boundaries were found among the three subdivisions. In
the rostral part of the IC, an area defined as the rostral cortex of
the IC by recent publications (Loftus et al., 2008; Malmierca et al.,
2011), the level of immnoreactivity was higher in the medial than
in the lateral region [Figures 3A(i),B(i)]. Stronger labeling in the
medial than the lateral region of the IC was also observed in the
caudal part of the IC [Figures 3A(iii),B(iii)]. Across the rostro-
caudal extent of the IC, the level of labeling appeared to be higher
in the caudal than the rostral part. This rostrocaudal difference is
more apparent for GABABR2 immunoreactivity than GABABR1
immunoreactivity.

Over the area of the IC in a section, a mean OD value
was obtained for each of the alternating grid boxes to reflect
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FIGURE 3 | An example showing immunoreactivity to antibodies against

the GABABR1 subunit (A) and the GABABR2 subunit (B) at different

rostrocaudaul locations of the IC. The rostrocaudal locations of the
sections shown in (A) and (B) are indicated in a sagittal diagram in the inset.
Below each photomicrograph in (A) and (B) is a diagram of the section with a

contour plot showing the distribution of a combined level of cell body and
neuropil immunoreactivity over the area of the IC. For making a contour, a
normalized OD was obtained for each of the alternating grid boxes over the
area of the IC. Results in (A) and (B) are from a single animal. Scale bars in
(A) and (B): 500 μm.

the combined level of cell body and neuropil labeling in the
boxes. A contour plot was created by using the mean OD val-
ues from these grid boxes. Contour plots for sections shown
in Figure 3 indicate that the GABABR1 and GABABR2 subunits

displayed similar distributions of a combined level of cell body
and neuropil immunoreactivity. For both subunits, a high level
of immunoreactivity was observed in the medial/dorsomedial
part of the IC. Measurements of OD values in three additional
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FIGURE 4 | Group results from immunohistochemical experiments

showing overall (cell body and neuropil combined) levels of GABABR1

and GABABR2 immunoreactivity (A and B) in three subdivisions of

the IC. For each section in an animal, a normalized OD was obtained for
each of the alternating grid boxes. A mean normalized OD value was
obtained for each collicular subdivision of an animal. Each bar in a bar chart
represents a grand mean value for four animals for a subdivision. Error bars
indicate standard errors.

cases for each subunit supported findings from the case shown in
Figure 3.

For each case, OD values from alternating grid boxes in an
entire set of sections were combined to generate three mean
OD values to reflect overall levels of GABABR1 or GABABR2
immunoreactivity in the ICc, ICd, and ICx. Group results from
four cases for each subunit confirmed that the overall levels of
GABABR1 and GABABR2 immunoreactivity were higher in the
ICd than in the ICc and the ICx (Figure 4). For both subunits,
levels of immunoreactivity in the ICc and ICx were about 75% of
that in the ICd.

Higher magnification images revealed that labeling of cell bod-
ies in the IC by an antibody against the GABABR1 or GABABR2
subunit was either punctate or diffused (Figure 5). Punctate
labeling was observed in the neuropil of the IC. Cell bodies
immunoreactive to the GABABR1 antibody typically had strong
labeling on or close to the cell membrane, while those immunore-
active to the GABABR2 antibody typically had strong labeling
throughout the cell body including areas in and close to the
nucleus.

Distributions of GABABR1-IR and GABABR2-IR cell bodies in
the IC were quantitatively examined in two cases for each sub-
unit. For each case, the density of immunoreactive cell bodies
was examined in an entire set of tissue sections. In each section,
immunoreactive cell bodies were counted in all the alternating

FIGURE 5 | High magnification photomicrographs showing GABABR1

and GABABR2 immunoreactivity (A and B) in the ICc, ICd, and ICx.

Arrows point toward labeled cell bodies while arrowheads point toward
labeled puncta in the neuropil. Scale bars: 25 μm.

grid boxes. As shown by an example in Figure 6, labeled cell bod-
ies were densely packed in the dorsomedial region of the IC in
sections from the mid portion of the rostrocaudal extent of the
structure [Figure 6A(ii) top and bottom panels]. Cell packing
density was low in the ventral region. In the rostral part of the
IC, the density of labeled cells appeared to be slightly higher in
the dorsal or dorsolateral than the other regions [Figure 6A(i)
top and bottom panels]. In sections close to the caudal pole of
the IC, density of labeled cells was higher in the dorsal than the
ventral region [Figure 6A(iii) top and bottom panels]. The over-
all density of labeled cell bodies was reduced at the caudal pole,
with the dorsal-ventral contrast still observed (data not shown).
Densities of labeled cell bodies in all of the alternating grid boxes
in the entire set of sections were summarized in histograms shown
in Figure 6B. Distributions of the density of immunoreactive cell
bodies peaked at higher values in the ICd than in the ICc and
ICx for the GABABR1 subunit (Figure 6B left panel). The mean
number of labeled cells/grid box supported that GABABR1-IR
cells were more densely packed in the ICd than in the ICc and
ICx (Table 1). For the GABABR2 subunit, the difference in the
distribution of density of immunoreactive cell bodies among the
three subdivisions was smaller than for the GABABR1 subunit
(Figure 6B right panel). However, the ICd still had the highest
average density of labeled cells among the three collicular subdivi-
sions (Table 1). The relatively small difference was likely partially
related to the fact that few GABABR2-IR cells were found in the
caudal pole of the ICd. The area difference in the packing density
of immunoreactive cells was confirmed by quantitative analysis of
results from a second case for each subunit.

The level of cell body immunoreactivity was examined in two
cases for each subunit. For each case, ODs of immunoreactive
cell bodies were measured using an entire set of tissue sections
and measurements were conducted in each of the alternating grid
boxes in each section. Results shown in Figure 7A revealed a nor-
mal distribution of cell body OD in each of the three collicular
subdivisions. For the GABABR1 subunit, the distributions of OD
peaked at a value about one fourth lower than the mean OD
of the cerebellar molecular layer (Figure 7A left panel). For the
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FIGURE 6 | (A) Densities of GABABR1-IR and GABABR2-IR cells (top and
bottom rows) in the IC. Analyses were conducted on two animals for each
subunit. Results in the two rows are from two different animals. In each row,
contour plots in three panels show densities of labeled cells in three coronal
sections at different rostrocaudal locations as indicated in the inset. A density
of labeled cells represents the total number of immunoreactive cells in a

150 × 150 μm grid box. Each contour is made by using densities of cells in
alternating grid boxes over the area of the IC. (B) Histograms showing
distributions of GABABR1-IR cells (left panel, results from the same animal as
in the top row in A) and GABABR2-IR cells (right panel, results from the same
animal as in the bottom row in A) in the ICc (green), ICd (red), and ICx (blue).
Scale bars in (B): 500 μm.

Table 1 | Summary of results from two animals for GABABR1-IR and GABABR2-IR cell bodies, respectively.

GABABR1-IR cells GABABR2-IR cells

mean ± SD mean ± SD

ICc ICd ICx ICc ICd ICx

Total number of neurons examined 2538 1879 3476 2038 1380 3508

Number of cells/grid box 13.4 ± 5.0 16.3 ± 5.7 10.4 ± 4.9 12.0 ± 5.1 14.5 ± 8.2 12.9 ± 6.8

Normalized optic density 0.77 ± 0.12 0.76 ± 0.12 0.76 ± 0.13 0.98 ± 0.17 1.06 ± 0.16 0.98 ± 0.17

Area of cell body (μm2) 67.0 ± 34.6 58.0 ± 26.5 63.4 ± 35.2 69.1 ± 45.9 53.8 ± 27.8 66.7 ± 42.0

Perimeter of cell body (μm) 32.3 ± 11.1 30.3 ± 9.6 31.9 ± 12.0 32.4 ± 12.3 28.7 ± 9.4 32.4 ± 12.1

Major axis of cell body (μm) 11.5 ± 4.1 11.0 ± 3.7 11.6 ± 4.5 11.4 ± 5.0 10.3 ± 3.5 11.7 ± 4.5
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FIGURE 7 | (A) Histograms showing distributions of the normalized OD for
individual GABABR1-IR cell bodies (left panel) and GABABR2-IR cell bodies
(right panel) in the ICc (green), ICd (red), and ICx (blue). Analyses were
conducted on two animals for each subunit. Results in the left and right
panels are from two different animals. (B) Regional distribution of the mean
normalized OD of GABABR1-IR cells (top panels) and GABABR2-IR cells

(bottom panels) over the area of the IC in three coronal sections at different
rostrocaudal locations as indicated in the inset. The mean normalized OD
represents the mean of the normalized ODs of all the labeled cells in a
150 × 150 μm grid box. A contour is made by using the mean normalized OD
values from alternating grid boxes over the area of the IC. Scale bars in
(B): 500 μm.

GABABR2 subunit, the distributions of the cell body OD in
the ICc and ICx peaked at a level slightly lower than the mean
OD of the cerebellar molecular layer (Figure 7A right panel). In
contrast, the distribution in the ICd peaked at a value slightly
higher than the mean OD of the cerebellar molecular layer.
The similarity in the level of cell body GABABR1 immunore-
activity among the three subdivisions and the small difference
in the cell body GABABR2 immunoreactivity between the ICd
and ICc/ICx were also reflected by mean OD values shown in
Table 1   .

A mean value was obtained for the OD values of all the
immunoreactive cell bodies in each of the alternating grid boxes
in a section. These mean OD values were used to create a contour
to show the regional distribution of cell body immunoreactivity.
Contour plots in Figure 7B revealed small variations in the mean

OD over the IC. These variations resulted in a patchy pattern over
the IC for GABABR1 immunoreactivity (Figure 7B top panels).
For GABABR2 immunoreactivity, OD values were slightly higher
in sections from the caudal part of the IC and the dorsomedial
region of the IC in sections from the mid rostrocaudal extent of
the structure (Figure 7B bottom mid and right panels). Relatively
high OD values in these regions were in agreement with the fact
that individual GABABR2-IR cell body ODs had a distribution
that peaked at a higher value in the ICd than in other collicular
subdivisions (Figure 7A right panel). The regional distribution of
cell body OD shown in Figure 7 was verified by one additional
case for each subunit.

The area, perimeter, and major axis of an immunoreactive
cell body were measured over the IC in two cases for each sub-
unit. For each case, measurements were made in alternating grid
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FIGURE 8 | (A) Histograms showing distributions of the area (left panels),
perimeter (middle panels), and major axis (right panels) for individual
GABABR1-IR cell bodies (top panels) and GABABR2-IR cell bodies
(bottom panels) in the ICc (green), ICd (red), and ICx (blue). Analyses
were conducted on two animals for each subunit. Results in the top and
bottom panels are from two different animals. (B) Regional distributions of
the mean area (i), mean perimeter (ii), and mean major axis (iii) of
GABABR1-IR cells (top row) and GABABR2-IR cells (bottom row) over the

IC in a coronal section as indicated in the inset. A mean area, a mean
perimeter, and a mean major axis were obtained by using the
corresponding parameters from all the labeled cells in a 150 × 150 μm grid
box. A contour is made by using the mean values from all the alternating
grid boxes over the area of the IC. Results in the top panels of (B) are
from the same animal as in the top panels of (A) while results in the
bottom panels of (B) are from the same animal as in the bottom panels
of (A). Scale bars in (B): 500 μm.

boxes in each section. Histograms were made to show distribu-
tions of cell body area, perimeter, and major axis in the ICc, ICd,
and ICx. Results from the two cases shown in Figure 8A indi-
cated that GABABR1-IR and GABABR2-IR cell bodies tended to
have smaller sizes in the ICd than in the ICc and ICx. For both
cases, grand mean values for cell body size parameters in the three

subdivisions supported that immunoreactive cell bodies tended to
have smaller sizes in the ICd (Table 1).

Mean area, perimeter, and longest axis were obtained for all
immunoreactive cell bodies in a grid box for the two cases shown
in Figure 8A. Contour plots based on these mean values revealed
that at the mid portion of the rostrocaudal extent of the IC,
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FIGURE 9 | Vector plots reflecting shapes and orientations of

GABABR1-IR cell bodies (A) and GABABR2-IR cell bodies (B) over the IC

in three coronal sections at different rostrocaudal levels as indicated in

the inset. Analyses were conducted on two animals for each subunit.
Results in (A) and (B) are from two different animals. In each section, shapes
and orientations of labeled cell bodies were measured in alternating
150 × 150 μm grid boxes. Each green line is a vector representing results
from one individual neuron, with the length indicating the elongation index

(EI) and the orientation indicating the orientation of the major axis of the
neuron. Each red line indicates the mean of individual vectors in a grid box.
Inset shows individual vectors and the mean vector in a grid box located at
the ventromedial region of the IC in a section from the middle rostrocaudal
level of the IC of the case shown in (A). A small horizontal black line in the
area of IC in each panel and the horizontal line at the bottom of the inset
indicate an EI value of 1. Scale bar (thick horizontal line) in A(iii) and B(iii):
500 μm.

immunoreactive cell bodies tended to be smaller in the dorsome-
dial region (ICd) than in the ventral region (ventral ICc and ICx)
(Figure 8B). In rostral and caudal part of the IC, neurons in the
dorsal region also tended to have relatively small cell body sizes.
However regional differences seemed smaller (data not shown).
The area differences in cell body size as shown in Figure 8 were
verified by one additional case for each subunit.

Many GABABR1-IR and GABABR2-IR neurons in the IC
display elongated cell bodies (see Figure 5 for examples). The
elongated shape of a cell body was quantitatively described by
using an EI (see section “Experimental Procedures” for details).
For each section, an EI was calculated for each of the cell bodies
in all the alternating grid boxes over the area of the IC. A vector
plot was made by using EI values and angles of the major axes
of all these cell bodies. Figure 9 displays results from two cases

respectively for the GABABR1 and GABABR2 subunits. For sec-
tions obtained from the mid portion of the rostrocaudal extent
of the IC [Figures 9A(ii),B(ii)], vectors close to the outline of
the IC had a tendency of orientation parallel to the outline. In
contrast, vectors in the ICc region did not show a strong ten-
dency of orientation. A mean vector was calculated for each grid
box by using the EIs and the angles of major axes of individual
neurons. Mean vectors in grid boxes along the outline of the IC
were larger and had a tendency to follow the outline. In con-
trast, mean vectors in the ICc region were small and did not
show a tendency of orientation. These results are consistent with
observations from individual neurons. In the rostral and caudal
parts of the IC, no strong tendency of orientation was found,
although many neurons in these parts display elongated shapes
[Figures 9A(i),(iii),B(i),(iii)].
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Neurons immunoreactive to the GABABR1 and GABABR2
antibodies were found among fibers in the commissure of the
inferior colliculus (CIC) and the brachium of the inferior col-
liculus (BIC) (Figure 10). In the CIC, immunoreactive cell bodies
existed over the entire lateral-medial extent. These cell bodies had
elongated shapes (as indicated by arrows), which were oriented
in parallel with the commissural fibers. The level of labeling of

FIGURE 10 | Photomicrographs showing GABABR1 and GABABR2

immunoreactivity in the CIC and BIC regions. Arrows point toward
labeled cell bodies while arrowheads point toward labeled puncta in the
neuropil. Scale bars: 25 μm.

these cell bodies was similar to that of cell bodies in the ICd.
Immunoreactive cell bodies in the BIC also had elongated shapes.
These cells tended to have a vertical orientation and the level
of labeling of these cells was similar to that of cell bodies in
the ICx.

Neuropil OD values were measured in four cases for each
subunit. In each case, measurements were conducted in alternat-
ing grid boxes in each section (see “Experimental Procedures”)
and a contour plot was made for the section. Results indicated
that immunoreactivity for both the GABABR1 and the GABABR2
subunits was higher in the medial/dorsomedial part than the ven-
trolateral part of the structure (Figures 11A,B). For each case, OD
values from alternating grid boxes over the area of IC in the entire
set of sections were combined and three grand mean values were
obtained for the three collicular subdivisions. Group results (four
cases for each subunit) indicated that the ICd had a higher level
of neuropil labeling than the ICc and ICx (Figure 12).

DISCUSSION
TECHNICAL CONSIDERATIONS
Sections at 30 μm thickness were used in our immunohistochem-
ical experiments. Strengths of immunoreaction might not have
been even at different depths of a section. In an effort to minimize
this effect, all photomicroscopic images were taken when the focal
plane was at a depth of 10 μm below the tissue surface. In spite of
this effort, differences might have existed in immunopenetration
between sections treated with antibodies against the GABABR1
and GABABR2 subunits, respectively. These differences might

FIGURE 11 | An example showing regional distributions of the level of

neuropil immunoreactivity to antibodies against the GABABR1 (A) and

the GABABR2 (B) subunits over the IC in sections from different

rostrocaudaul locations of the IC indicated in the inset. For making a

contour, normalized OD values were obtained for the neuropil in each of the
alternating grid boxes over the area of the IC. Results in (A) and (B) and
those in Figure 3 are from the same animal. Scale bars in (A) and (B):
500 μm.
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FIGURE 12 | Group results showing levels of GABABR1 (A) and

GABABR2 (B) immunoreactivity in the neuropil in three subdivisions of

the IC. For each section in an animal, normalized OD was obtained for each
of the alternating grid boxes. A mean normalized OD value was obtained for
each collicular subdivision. Each bar in a bar chart represents a grand mean
value for four animals for a subdivision. Error bars indicate standard errors.

have, to some extent, introduced disparities between the two
subunits in the distribution of immunoreactivity.

The relatively thick tissue section might have also affected
measurements of OD values. Although measured OD values were
mainly determined by photons from the focal plane, contribu-
tions from off-focal planes should not be completely ignored.
Photons from off-focal planes would not necessarily affect the
evaluation of the distribution of the overall level of immuno-
ractivity. It might have, to some extent, smeared distributions
of neuropil and cell body immunoreactivity, as measurements
of cell body labeling in the focal plane could be affected by
neuropil in the off-focal planes and vice versa. Even with this pos-
sible effect, a difference between the neuropil and cell bodies in
the area distribution of immunoreactivity was evident (Compare
Figures 7 and 11).

LEVEL AND DISTRIBUTION OF THE GABABR1 AND GABABR2
SUBUNITS OVER THE IC
Our immunohistochemical and Western blotting experiments
reveal that the combined level of cell body and neuropil expres-
sion is higher in the ICd than in the ICc and ICx for both
GABABR1 and GABABR2 subunits. Results based on the two
techniques revealed that for both subunits, the combined level
of expression in the ICc and ICx was about two thirds of that in
the ICd.

Results from the present study support our previous quali-
tative observation regarding the distribution of the GABABR2
subunit in the IC (Jamal et al., 2011). The results also support

findings from receptor autoradiographical studies indicating that
functional GABAB receptors are expressed at a higher level in
the dorsomedial region of the IC and a lower level in the ventral
region of the structure (Big brown bat: Fubara et al., 1996; Rhesus
monkey: Hilbig et al., 2007; Rat: Bowery et al., 1987; Milbrandt
et al., 1994). Results from the rhesus monkey revealed that the
receptor had a higher level in the rostral than the caudal part of
the ICd (Hilbig et al., 2007). This difference was not observed in
the present study.

A question arises as to whether the area differences in the level
of combined cell body and neuropil level of immunoreactivity
are mainly dependent on the immunoreactivity in cell bodies,
the neuropil, or both. For each of the two subunits, the neuropil
OD value was higher in the ICd than the other regions of the IC
while the cell body OD had very small regional differences over
the IC. A relatively high neuropil OD value in the ICd certainly
contributed to the high overall level of labeling in this region
as the brain tissue in the IC was predominately occupied by the
neuropil. The contribution of immunoreactive cell bodies to the
overall level of labeling cannot be compared by only using cell
body OD values. Results shown in Figures 6 and 8 suggest that the
combined area of cell bodies in a grid box in the ICd was almost
equal to or slightly larger than that in the ICc and ICx. Along
with distribution of cell body OD over the IC, the slightly larger
combined cell body area in the ICd likely resulted in a slightly
larger contribution of cell bodies to the overall level of labeling in
the ICd.

Regional dependences in the level of GABABR1 and GABABR2
did not result in clear boundaries within the IC. Contour plots
based on cell body, neuropil, and combined cell body and neu-
ropil OD values had shapes different from the borders between
different collicular subdivisions (Paxinos and Watson, 2007;
Loftus et al., 2008; Malmierca et al., 2011). Differences in the
level of GABABR1 and GABABR2 immunoreactivity also existed
among different regions within a collicular subdivision. The dif-
ferences were especially apparent in the ICc and ICx. Within each
of these two subdivisions, levels of immunoreactivity were higher
in the dorsal than the ventral region. Therefore, it is not appropri-
ate to use the level of expression of the GABAB receptor to define
borders of IC subdivisions.

The GABABR1 and GABABR2 subunits had similar regional
distributions over the IC. This similarity is consistent with find-
ings from many other brain structures (White et al., 1998; Kuner
et al., 1999; Ige et al., 2000; Charles et al., 2001; López-Bendito
et al., 2002; Kulik et al., 2003; Panzanelli et al., 2004; Marshall and
Foord, 2010). It supports that a functional GABAB receptor is a
heterodimer consisting of both subunits.

In spite of the similarity in regional distribution, differences
were observed between the two subunits in cellular/subcellular
distribution. For example, a GABABR2-IR neuron typically
had strong labeling throughout the cell body. In contrast, a
GABABR1-IR neuron typically had stronger labeling on and close
to the cell membrane than the rest of the cell body. Similar
differences were found by previous studies in other brain struc-
tures (Charles et al., 2001; Panzanelli et al., 2004). In the present
study, both subunits were visualized using DAB reaction product.
Therefore, cellular/subcellular distributions of labeling cannot be

Frontiers in Neural Circuits www.frontiersin.org November 2012 | Volume 6 | Article 92 | 13

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Jamal et al. GABAB receptor in IC

directly used to localize functional GABAB receptors in individual
IC neurons. Colocalization of the two subunits and distribu-
tion of functional GABAB receptors can be studied only by
conducting double labeling experiments involving two different
fluorophores for visualizing two subunits respectively. As shown
by previous studies, GABABR1 and GABABR2 subunits are made
separately in the endoplasmic reticulum before trafficking to the
cell membrane to form functional receptors (Pin et al., 2004;
Restituito et al., 2005; Pooler and McIlhinney, 2007) or to the
cell nucleus to regulate gene expression (Gonchar et al., 2001).
Immunoreactivity against a subunit observed in the present study
not only reflected the subunit molecules in functional receptors
but also those available for making functional receptors. The dis-
parity between the cellular/subcellular distributions of GABABR1
and GABABR2 immunoreactivity very likely indicates that a dif-
ference exists between the two subunits in the distribution of
available molecules for making functional receptors.

For both the GABABR1 and the GABABR2 subunits, labeled
puncta were found on cell bodies as well as in the neuropil. In
addition, diffused cytoplasmic labeling was found in cell bod-
ies. While labeled puncta on cell bodies likely indicated the sites
where post- and/or presynaptic GABAB receptors were located,
those in the neuropil could be either associated with bouton
synapses or cross-sections of small dendrites or axons. An ultra-
structural examination has to be conducted to determine whether
the puncta in the neuropil represent functional GABAB receptors.
Diffused labeling in cell bodies likely reflected the subunits avail-
able for making functional receptors, although the possibility that
it was directly associated with functional receptors could not be
ruled out.

Previous anatomical studies have found that neurons in the
IC have specific orientation and thickness of dendritic arbors
(Oliver and Morest, 1984; Faye-Lund and Osen, 1985; Malmierca
et al., 1995, 2011; Oliver, 2005). Disc-shaped (or flat) and stel-
late (or less-flat) cells are the two major cell types in the ICc.
About 80% of the neurons in the ICc are disc shaped. Dendritic
fields of disc-shaped cells are oriented with similar directions and
fibrodendritic laminae are formed among these dendritic fields.
Labeling of cell bodies along with proximal and secondary den-
drites using HRP has revealed that most of the cell bodies of
ICc neurons with disc-shaped dentritic fields have fusiform or
oval shapes (Oliver, 1984). For these neurons, cell bodies have
the same orientations as the dendritic fields, which are highly
oriented in a ventrolateral to dorsomedial direction. With Nissl
staining, although dendritic fields are not visible, a similarity in
orientation among cell bodies is still evident (Oliver, 1984). In
the present study, no strong tendency was observed in the orienta-
tions of immunoreactive cell bodies in the ICc. Further examina-
tions are needed to find whether this lack of similar orientations
indicates that most GABAB receptor-immunoreactive cell bodies
are outside fibrodendritic laminae in the ICc. Dendritic fields of
neurons in the ICx and ICd are less oriented (Malmierca, 1991;
Oliver et al., 1991; Malmierca et al., 2011). In the mid portion
of the rostrocaudal extent of the IC, neurons in the deep layer of
the ICx have dendritic fields perpendicular to the surface of the
structure (Malmierca et al., 2011). Neurons located in the ICd
bordering the ICc appear to have elongated dendritic fields and

are oriented at an obtuse angle with the fibrodendritic laminae
of the ICc (Malmierca et al., 2011). Our immunohistochemical
results indicate that cell bodies in these regions tend to orient
along the surface of the structure, suggesting that orientations of
cell bodies and dendritic fields can be different in the ICd and ICx.

EXPRESSION OF GABAB RECEPTOR SUBUNITS AND SYNAPTIC
INPUTS
The existence of the GABABR1 and GABABR2 subunits in the
ICc is in agreement with inputs to this subdivision. Inputs to
the ICc are predominantly from brainstem structures (see Cant,
2005; Schofield, 2005 for review). Some of these projections are
GABAergic (Saint Marie et al., 1989; Saint Marie and Baker, 1990;
Li and Kelly, 1992; Shneiderman et al., 1993; Oliver et al., 1994;
Riquelme et al., 2001). Within the ICc, levels of immunoreac-
tivity against the two subunits were relatively high in the dorsal
than the ventral region. This difference is likely due to the differ-
ences in the input to these two regions. While the dorsal region
of the ICc receives inhibitory projections predominantly from
the dorsal nucleus of the lateral lemniscus, the ventral part of
the ICc receives inhibitory projections predominantly from the
superior olivary complex (Malmierca and Merchán, 2004). It has
been shown that the dorsal nucleus of the lateral lemniscus is
a major source of GABAergic projections (Shneiderman et al.,
1988; Zhang et al., 1998; Chen et al., 1999). In contrast, the
superior olivary complex is a major source of glycinergic projec-
tions, although GABAergic projections are also provided by this
structure (Saint Marie et al., 1989; Saint Marie and Baker, 1990;
Kulesza and Berrebi, 2000; Saldaña et al., 2009).

Cell bodies and the neuropil in the ICd and the dorsal part of
the ICx are heavily labeled by antibodies against the two GABAB

receptor subunits. This observation is in contrast to the extrin-
sic inputs to these two collicular subdivisions. Major auditory
inputs to these two subdivisions are from the auditory cortex
(AC) and the medial geniculate nucleus (MGN) (Kuwabara and
Zook, 2000; Winer, 2006). Projections from the AC are likely glu-
tamatergic (Feliciano and Potashner, 1995). Projections from the
MGN are also likely excitatory, as less than 1% of neurons in the
rat’s MGN are GABAergic (Winer and Larue, 1996). Therefore,
GABAB receptors in the ICd and ICx cannot be associated with
direct inputs from the two forebrain structures. Possible sources
of projections for activating GABAB receptors in the ICd and ICx
include local interneurons driven by descending inputs from the
AC or the MG as well as neurons in the ICc. In vivo neurophysio-
logical experiments revealed that electrical stimulation of the AC
results in a delayed and long-lasting inhibitory effect on responses
to sounds in the IC (Syka and Popelár, 1984; Torterolo et al.,
1998; Bledsoe et al., 2003). These results support the existence
of local GABAergic interneurons innervated by cortico-collicular
projections.

The existence of GABABR1 and GABABR2 subunits in cell
bodies and the neuropil in the CIC region is interesting. It is well
known that the left and right inferior colliculi are connected by
the CIC (Malmierca et al., 2009b). Some of the CIC fibers are
GABAergic (Hernández et al., 2006). Therefore, the possibility
exists that some GABAB receptors in the IC are associated with
CIC inputs. In vitro physiological recordings have indicated that
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inhibitory postsynaptic potentials elicited in IC neurons by stim-
ulation of CIC fibers can be completely blocked by bicuculline,
an antagonist for the GABAA receptor (Smith, 1992; Moore
et al., 1998). It is therefore unlikely that commissural stimulation
can directly activate postsynaptic GABAB receptors. Inhibitory
postsynaptic potentials elicited by stimulation of CIC display
paired-pulse inhibition that can be suppressed by an antagonist
of the GABAB receptor (Li et al., 1999). This finding suggests
that stimulation of CIC can lead to the activation of presynaptic
GABAB receptors that regulate the release of inhibitory neuro-
transmitters. However, it is still unknown whether these GABAB

receptors are directly activated by CIC fibers or indirectly through
local interneurons. Further research is needed for finding the
relationship between GABAB receptors and CIC projections.

AREA DIFFERENCES IN RECEPTOR EXPRESSION AND SYNAPTIC
FUNCTIONS
As revealed by the present study, area differences exist in the level
and cellular distribution of the GABAB receptor in the IC. While
the level of cell body immunoreactivity was very similar in differ-
ent collicular subdivisions, the level of neuropil immunoreactivity
was higher in the ICd than in the other collicular subdivisions.
Concomitantly, area differences exist in the synaptic function of
the receptor in the IC. In the ICc, GABAB receptors only exist
at presynaptic sites and are responsible for the regulation of the
release of glutamate and GABA (Hosomi et al., 1997; Lo et al.,
1998; Ma et al., 2002; Sun et al., 2006). In the ICd, GABAB recep-
tors exist at both pre- and postsynaptic sites, with postsynaptic
GABAB receptors involved in the mediation of inhibitory post-
synaptic potentials and presynaptic GABAB receptors involved in
the regulation of release of glutamate and GABA (Sun and Wu,
2009). Similar to results from other neural structures including
the hippocampus and substantia nigra pars compact (Isaacson
et al., 1993; Kulik et al., 2003; Saitoh et al., 2004), inhibitory post-
synaptic currents mediated by GABAB receptors in the ICd can
only be evoked by electrical pulses presented at a high repetition
rate (Sun and Wu, 2009). In many brain structures, inhibitory
postsynaptic potentials mediated by GABAB receptor at a high
rate of stimulation are elicited as a result of spillover of GABA
from the synaptic cleft as postsynaptic GABAB receptors exist
mainly at extrasynaptic sites of the cell membrane (Ige et al.,
2000; Gonchar et al., 2001; Kulik et al., 2002, 2003). Our results
regarding higher neuropil levels of the GABABR1 and GABABR2
in the ICd than ICc likely suggest that the postsynaptic function
of the GABAB receptor in the ICd is associated with axodendritic
synapses in the neuropil. The presynaptic function of the GABAB

receptor in the IC may be associated with axosomatic synapses,
although the contribution of axodendritic synapses to the presy-
naptic function of GABAB receptors in the ICd cannot be ruled
out. Moreover, it’s very possible that spillover of GABA from
the synaptic cleft can activate the postsynaptic GABAB receptors
in the neuropil in the ICd. Further experiments have yet to be
conducted to confirm these suggestions.

AUDITORY FUNCTIONS OF THE GABAB RECEPTOR
Previous in vivo neurophysiological studies have shown that
responses elicited by tone bursts and amplitude modulated tones

in the IC can be changed by local application of agonists or antag-
onists of the GABAB receptor (Faingold et al., 1989; Szczepaniak
and Møller, 1995, 1996; Vaughn et al., 1996; Burger and Pollak,
1998). These results indicate that the GABAB receptor is involved
in auditory processing in this structure. It has yet to be deter-
mined what specific aspects of auditory processing are dependent
on the GABAB receptor.

As the GABAB receptor has multiple pre- and postsynap-
tic functions including the mediation of inhibitory postsynaptic
potentials and regulation of the release of glutamate and GABA,
the receptor likely plays an important role in many aspects of
auditory processing in the IC. However, it is unlikely that these
functions are related to the processing of fine temporal structures
of sounds. The reason is that the time course of the activa-
tion of the receptor is relatively slow, as this activation results
in changes in the opening probability of ion channels through
involving a guanine nucleotide-binding protein and multiple
intracellular signaling steps (Chalifoux and Carter, 2011). In the
IC, the duration of the inhibitory postsynaptic current medi-
ated by the GABAB receptor lasts for over 800 ms (Sun and Wu,
2009).

The pre- and postsynaptic functions of the GABAB recep-
tor along with the slow time course of activation suggests that
the receptor is important for regulating the overall neural sen-
sitivity to sounds as well as for setting the gain of signal pro-
cessing in auditory neurons. Long-lasting inhibition mediated by
the GABAB receptor can counteract with long-lasting excitation
mediated by the NMDA receptor. This counteraction can help
maintain a balance between excitation and inhibition in neural
processing (Morrisett et al., 1991; Sun and Wu, 2009).

The GABAB receptor is important for plastic changes of neural
sensitivity to stimuli in the IC. In vitro neurophysiological record-
ings in the ICc have revealed that presynaptic GABAB receptors
contribute to long-term potentiation in the structure (Zhang
and Wu, 2000). Studies in other auditory structures as well as
non-auditory structures have shown that GABAB receptors also
contribute to other forms of plastic changes of neural responses.
For example, postsynaptic GABAB receptors in the lateral supe-
rior olive are important for long-term depression of inhibitory
transmission (Kotak et al., 2001; Chang et al., 2003). Presynaptic
GABAB receptors are important for short-term depression of
glutamatergic transmission in avian auditory brainstem neurons
(Brenowitz et al., 1998) and frequency-dependent depression
of excitatory potentials in perirhinal cortex (Ziakopoulos et al.,
2000). It has yet to be determined whether GABAB receptors
in the rat’s IC can also cause these types of plastic changes in
synaptic responses. In response to sounds, neurons in the IC dis-
play a type of short-term plastic change termed stimulus-specific
adaptation (SSA) (Pérez-González et al., 2005, 2012; Malmierca
et al., 2009a; Lumani and Zhang, 2010; Patel et al., 2012). These
neurons reduce their sensitivity to sounds over repetitive pre-
sentations and increase the sensitivity when novel sounds are
presented in the acoustic environment. Among the three subdi-
visions of the IC, the ICd and ICx have more neurons showing
high-degree of SSA. In the ICd, the generation of SSA is likely
dependent on inhibitory events that are slightly delayed but
long lasting compared with excitatory events (Patel et al., 2012).
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The relatively slow time course of activation of the GABAB recep-
tor makes it an ideal candidate for mediating these long-lasting
inhibitory events. The coincidence between strong SSA in the ICd
and a high level of the GABAB receptor in this collicular subdi-
vision supports the involvement of the receptor in the generation
of SSA. In vivo neuropharmacological experiments have yet to be
conducted to verify this possibility.

The level of sensitivity to sounds and the gain of signal pro-
cessing in auditory neurons are important for many other aspects
of hearing. Age-related hearing loss, tinnitus, and audiogenic
seizures can all be related to an abnormal level of sensitivity and
gain in the IC (Caspary et al., 1995; Faingold, 2002; Wang et al.,
2011). With its pre- and postsynaptic functions in regulating the

sensitivity and gain in auditory neurons, the GABAB receptor has
to maintain a normal level of expression in the IC for preventing
these hearing problems from occurring.
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