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Background: Keratoconus (KC) is a complex corneal disorder with a strong

genetic component. The present study aimed to identify candidate genes

related to KC in Chinese families.

Methods: Family-based exome sequencing was performed in ten patients

suffering from KC who belong to five families with two affected members in

each. The candidate rare variants were identified with multi-step bioinformatics

analysis. The STRINGwebsite was used to perform the protein interaction of the

identified genes.

Results:Our analyses identified 32 candidate rare variants in 13 genes by family-

based exome sequencing. The molecular analyses of identified genes showed

that EPCAM directly interacted with CTNNB1 of the Hippo signaling pathway

and focal adhesion pathway, and directly interacted with CTNNB1, CDH1 of the

WNT signaling pathway. SHROOM3 directly interacted with ROCK2, ROCK1 of

the focal adhesion pathway. SYNE1 directly interacted with MUSK of the

extracellular matrix organization pathway. TEK directly interacted with

VEGFA, SHC1, PIK3R1, GRB2 of the focal adhesion pathway. TTN directly

interacted with CAPN3 of the extracellular matrix organization pathway.

Conclusion: The EPCAM, SHROOM3, SYNE1, TEK, and TTN genes were

potential high-risk candidate pathogenic genes of familial KC. The findings

might significantly improve our understanding of the genetic etiology of the

disease, providing novel insights on KC pathogenesis.
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Introduction

Keratoconus (KC) is characterized by progressive corneal

protrusion and thinning, leading to irregular astigmatism

and impairment of visual function (Rabinowitz, 1998). The

estimated prevalence of KC in the whole population is

1.38 per 1,000 people (Hashemi et al., 2020). The disease

usually begins at puberty and progresses into the third or

fourth decades (Santodomingo-Rubido et al., 2022).

Currently, no curative treatments are available for KC

(Mohammadpour et al., 2018). The progressive corneal

thinning can be stabilized with corneal cross-linking when

it is recognized at an early stage (Gomes et al., 2015).

However, corneal transplantation is necessary for

advanced cases (Sarezky et al., 2017). Thus, an early

diagnosis of KC is crucial for improving its prognosis.

Notably, understanding the pathogenesis of KC could help

in the achievement of an early diagnosis and timely treatment

of the disease.

KC is considered as a complex corneal disorder

determined by a combination of environmental and

genetic factors (Lucas and Burdon, 2020). Environmental

factors included eye rubbing, allergies, diabetes, and sleeping

position, as highlighted in previous studies (Ahuja et al.,

2020; Mazharian et al., 2020; Ates et al., 2021). The higher

concordance rate in monozygotic twins (Tuft et al., 2012),

and a positive family history of 5%–23% in KC cases

(Rabinowitz et al., 2021) suggested a strong genetic

component in the development of KC. Indeed, many

researchers have identified KC susceptibility genes by

genome-wide association studies (Hosoda et al., 2020;

Hardcastle et al., 2021), linkage studies (Hughes et al.,

2011; Karolak et al., 2015) and candidate gene sequencing

analyses (Abdelghany et al., 2021; Lopes et al., 2021). The

genetic studies on KC significantly contributed to the

biological basis of its pathogenesis. However, the genetic

basis of KC susceptibility has not been fully understood due

to the genetic heterogeneity and population differences, and

the pathogenesis underlying the genetic variants remains

unclear.

Currently, several genetic studies have been performed on

KC in Chinese populations, and identified some genetic variants

accounted for the disease (Hao et al., 2017; Xu et al., 2020; Zhang

et al., 2020; Lin et al., 2022; Yuan et al., 2022). Nevertheless, the

majority of the studies were performed in sporadic cases or one

pedigree. The complex etiology of KC with a strong genetic

heterogeneity still needs to be fully elucidated. Thus, the aim of

this study was to identify candidate genes potentially related to

KC predisposition in families with KC. Consequently, family-

based exome sequencing of ten patients with KC from five

Chinese families were performed in the present study, and

bioinformatics approaches were used to determine the genetic

factors contributing to the onset of the disease.

Materials and methods

Family recruitment

A total of ten patients with KC from five families with two

affected members in each were selected for the current study. The

diagnosis of KCwas based on clinical manifestations such as localized

stromal thinning, conical protrusion, Vogt’s striae, Fleischer’s ring, or

anterior stromal scar, as well as signs of corneal topography revealing

an asymmetric bowtie pattern with or without skewed axes (Mas Tur

et al., 2017). Patients whose KC was caused by trauma, other disease,

or surgery were excluded from the study. The study was approved by

the Institutional Review Board of Henan Eye Hospital [ethical

approval number: HNEECKY-2019(5) and performed in

accordance with the guidelines of the Declaration of Helsinki.

Written informed consent was obtained from each subject.

Exome sequencing

Total genomic DNA was extracted from peripheral blood

samples according to the manufacturer’s recommendations.

FIGURE 1
An overview of stepwise filtering of variants identified in
keratoconus families.
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DNA quality was examined by Qubit 3.0 and confirmed by

electrophoresis prior to library construction. The DNA was

fragmented to an average size of 180–280 bp and subjected to

DNA library creation with established Illumina paired-end

protocols. The library was then subjected to exome sequence

capture by Agilent SureSelect Human All ExonV6 Kit (Agilent

Technologies, Santa Clara, CA, United States) according to the

manufacturer’s instructions. The Illumina Novaseq 6000 platform

(Illumina Inc., San Diego, CA, United States) was used for genomic

DNA sequencing in Novogene Bioinformatics Technology Co., Ltd.

(Beijing, China).

Bioinformatics analysis

After quality control, the sequencing reads weremapped to hg19

(GRCh37) using Burrows-Wheeler Aligner (Li and Durbin, 2009),

and duplicate reads were marked using Sambamba tools (Tarasov

et al., 2015). SAMtools (Li et al., 2009) were used to perform variant

calling to identify single nucleotide variants (SNVs) and small

insertions or deletions (InDels). The raw calls of SNVs and

InDels were further filtered with the following inclusion

thresholds: (1) read depth >4; (2) Root-Mean-Square mapping

quality of covering reads >30; (3) variant quality score >20. Then
annotation of the variants was performed using ANNOVAR (Wang

et al., 2010). As is shown in Figure 1, the variants were firstly filtered

using the following criteria: (1) variants with a minor allele

frequency less than 0.01 in 1,000 genomic data (1000 g_all),

esp6500siv2_all, and gnomAD data (gnomAD_ALL and

gnomAD_EAS); (2) variants located in exons or splicing sites; (3)

variants predicted to influence splicing or amino acid alternation; (4)

variants predicted to be harmful in more than half of the software

programs (SIFT, Polyphen, MutationTaster and CADD) according

to the scores. Secondly, the variants presented in both relatives and

variants with a minor allele frequency less than 0.01 in

NovoDb_WES database (2,573 healthy Chinese control

individuals) were selected. Finally, the variants located in genes

presented in two or more families and differentially expressed in KC

were considered as candidate rare variants (Lee et al., 2009; Mace

et al., 2011; Bykhovskaya et al., 2016; Kabza et al., 2017; Khaled et al.,

2018; You et al., 2018; Sharif et al., 2019; Shinde et al., 2020; Sun et al.,

2022). The STRING website was used to predict the relationships of

proteins with previously reported genes in KC and known KC-

associated pathways, including extracellular matrix organization,

WNT signaling, Hippo signaling, focal adhesion and TGF-β
pathways (Cai et al., 2020; Hao et al., 2021).

Results

Clinical characteristics of patients with
Keratoconus

The pedigrees of the five investigated families are presented

in Figure 2. The clinical characteristics of the ten patients with

KC are listed in Table 1. The mean age at diagnosis was 28 years

(range from 18 to 54). In this study, three patients were male and

seven patients were female. The clinical investigation revealed the

presence of Vogt’s striae in one patient, Munson’s sign in four

patients, and Fleischer’s ring in seven patients.

FIGURE 2
Pedigrees of the Chinese family with keratoconus.
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Candidate rare variants identified in
Keratoconus families

The variants were filtered to screen the candidate rare

variants in KC families according to the analysis workflow in

Figure 1. Firstly, the variants focusing on frequency, location,

and effects of the variants were filtered. Consequently, a total

of 3,242 rare variants were identified. The screening of the

variants that occurred in both the affected relatives with a

minor allele frequency less than 0.01 in NovoDb_WES

database identified 806 rare variants. Then the variants

located in genes presented in two or more families and

differentially expressed in KC were selected as candidate

rare variants. Finally, 32 variants in 13 genes were

identified, including 28 missense variants, one

nonframeshift deletion variants, one stop gained variant,

and two splicing variants (Table 2). Among the identified

genes, the dynein axonemal heavy chain 6 (DNAH6),

epithelial cell adhesion molecule (EPCAM), and titin

(TTN) were reported to be upregulated in KC (Kabza

et al., 2017). The ATPase H+ transporting V0 subunit e2

(ATP6V0E2), dynein axonemal heavy chain 5 (DNAH5),

phosphodiesterase 11A (PDE11A), spectrin repeat

containing nuclear envelope protein 1 (SYNE1), TEK

receptor tyrosine kinase (TEK), TRIO and F-actin binding

protein (TRIOP), and tyrosinase related protein 1 (TYRP1)

genes were reported to be downregulated (Kabza et al., 2017;

You et al., 2018; Shinde et al., 2020). However, the expressions

of protocadherin beta 7 (PCDHB7), shroom family member 3

(SHROOM3), and WD Repeat Domain 81 (WDR81) genes

exhibited inconsistent results in different studies (Kabza et al.,

2017; You et al., 2018; Sharif et al., 2019; Shinde et al., 2020;

Sun et al., 2022). In addition, the candidate variants in TTN

were identified in three families (60%), while variants in other

genes were identified in two families (40%).

Molecular analysis of the identified
genes

Prediction of protein-protein interactions of the

thirteen genes (ATP6V0E2, DNAH5, DNAH6, EPCAM,

PCDHB7, PDE11A, SHROOM3, SYNE1, TEK, TRIOBP,

TTN, TYRP1, and WDR81) was conducted using the

online STRING software. The protein-protein

interactions of the thirteen genes with previously

reported 88 genes in KC were listed in Figure 3. The

results showed that the genes directly interact with

previously reported genes such as SOD1, CAST. Besides,

the protein-protein interactions of identified genes with

five KC-associated pathways (extracellular matrix

organization, WNT signaling, Hippo signaling, focal

adhesion and TGF-β pathways) were also analyzed.T
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According to the interaction network shown in Figure 4,

EPCAM directly interacted with CTNNB1 of the Hippo

signaling and focal adhesion pathways, and directly

interacted with CTNNB1, CDH1 of the WNT signaling

pathway. SHROOM3 directly interacted with ROCK2,

ROCK1 of the focal adhesion pathway. SYNE1 directly

interacted with MUSK of the extracellular matrix

organization pathway. TEK directly interacted with

VEGFA, SHC1, PIK3R1, GRB2 of the focal adhesion

pathway. TTN directly interacted with CAPN3 of the

extracellular matrix organization pathway. However, other

eight genes did not show any interaction with the investigated

pathways (Figure 5). Our results highlighted that EPCAM,

SHROOM3, SYNE1, TEK, and TTN were potential high-risk

candidate pathogenic genes of KC that exert their effects by

the disruption of the extracellular matrix organization, WNT

signaling, Hippo signaling, focal adhesion and TGF-β
pathways.

Discussion

KC is a complex disease, with numerous genetic and

environmental factors potentially involved in its

pathogenesis (Lucas and Burdon, 2020). Although multiple

studies on the etiology of KC have been performed, no

consensus has been reached to date. In the present study, a

family-based exome sequencing in five Chinese KC families

was performed, with the aim to identify potential candidate

genes contributing to KC susceptibility. By applying several

TABLE 2 Candidate rare variants identified by exome sequencing in the five keratoconus families.

Family ID Gene Transcript cDNA change AA change Function

Family A ATP6V0E2 NM_001100592 c.C263T p.T88I Missense SNV

TTN NM_003319 c.G48646A p.A16216T Missense SNV

TRIOBP NM_001039141 c.1612_1614del p.538_538del Nonframeshift deletion

TYRP1 NM_000550 c.A212G p.D71G Missense SNV

WDR81 NM_001163809 c.A2866C p.K956Q Missense SNV

Family B DNAH5 NM_001369 c.G12883A p.V4295M Missense SNV

DNAH5 NM_001369 c.975 + 6C > T — Splicing

PDE11A NM_001077196 c.T208C p.C70R Missense SNV

SHROOM3 NM_020859 c.A4726G p.K1576E Missense SNV

SYNE1 NM_033071 c.A13556G p.N4519S Missense SNV

TEK NM_001290078 c.A949C p.N317H Missense SNV

Family C DNAH6 NM_001370 c.G4358A p.R1453H Missense SNV

EPCAM NM_002354 c.G458C p.R153T Missense SNV

PDE11A NM_001077196 c.T935A p.L312Q Missense SNV

SHROOM3 NM_020859 c.G1397A p.S466N Missense SNV

SHROOM3 NM_020859 c.C3731T p.P1244L Missense SNV

SYNE1 NM_033071 c.C4744T p.L1582F Missense SNV

TRIOBP NM_001039141 c.C4726T p.R1576C Missense SNV

Family D ATP6V0E2 NM_001100592 c.A388C p.S130R Missense SNV

DNAH5 NM_001369 c.A11735G p.H3912R Missense SNV

EPCAM NM_002354 c.G131A p.R44H Missense SNV

PCDHB7 NM_018940 c.G1894T p.E632X Stopgain

TEK NM_001290078 c.G1787T p.G596V Missense SNV

TTN NM_003319 c.T72341C p.V24114A Missense SNV

WDR81 NM_001163809 c.G3211A p.V1071I Missense SNV

Family E DNAH6 NM_001370 c.C6655T p.R2219C Missense SNV

PCDHB7 NM_018940 c.G1280T p.G427V Missense SNV

TTN NM_001256850 c.32791 + 2T > C — Splicing

TTN NM_001256850 c.T23805G p.D7935E Missense SNV

TTN NM_133379 c.C16631T p.T5544M Missense SNV

TTN NM_001256850 c.A1640G p.Q547R Missense SNV

TYRP1 NM_000550 c.C785T p.T262M Missense SNV
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filtering strategies, we identified 32 variants located in

ATP6V0E2, DNAH5, DNAH6, EPCAM, PCDHB7, PDE11A,

SHROOM3, SYNE1, TEK, TRIOBP, TTN, TYRP1, andWDR81

genes as candidate rare variants. Bioinformatics analysis

revealed that the EPCAM, SHROOM3, SYNE1, TEK, and

TTN genes were potential high-risk candidate pathogenic

genes of KC because of their relationships with known KC-

associated pathways.

Genetic factors are implicated in the pathogenesis of KC,

and multiple studies have identified numerous loci that might

contribute to KC by high-throughput sequencing (Hosoda

et al., 2020; Xu et al., 2020; Hardcastle et al., 2021). Although

some genetic studies on KC families have been performed, and

identified several candidate genes for KC (Froukh et al., 2020;

Shinde et al., 2021), the family-based exome sequencing in

Chinese KC families is limited. Our present study performed a

family-based exome sequencing in five Chinese KC families. A

total of 32 candidate rare variants located in 13 genes were

finally identified by a series of filtering steps. Protein-protein

interactions of the thirteen genes with previously reported

genes in KC showed direct or indirect interaction with

previously reported genes, indicating potential associations

with KC. In addition, the EPCAM, SHROOM3, SYNE1, TEK,

and TTN genes were considered as potential high-risk

candidate pathogenic genes in KC after analyzing the

protein-protein interactions of the thirteen genes with

known KC-associated pathways.

EPCAM is a cell surface molecule involved in cell-to-cell

adhesion, and plays significant roles in the modulation of

proliferation, differentiation, and migration of epithelial cells

(Huang et al., 2018). The molecular analysis of EPCAM

indicated its interactions with CTNNB1 and CDH1 which

are involved in WNT signaling, Hippo signaling, and focal

adhesion pathways, suggesting a potential role of EPCAM in

the pathogenesis of KC. SHROOM3 directly interacted with

proteins involved in the focal adhesion pathway, and is a

central regulator of morphogenetic cell shape changes in

certain tissues (Tariq et al., 2011). As far as we know, KC

is a bilateral and usually asymmetrical disease in which the

ectatic cornea becomes conical in shape. Therefore, we

speculated that the SHROOM3 gene might play roles in the

pathogenesis of KC because of its interaction with proteins of

FIGURE 3
Protein-to-protein interactions of identified thirteen candidate genes with previously reported genes in keratoconus.
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the focal adhesion pathway and its potential functions in

regulating cell shape. The SYNE1 gene encodes nesprin-1, a

scaffold protein associated with anchoring the plasma

membrane to the actin cytoskeleton and involved in the

binding between the cytoskeleton, nuclear envelope and

other subcellular compartments (Swan et al., 2018).

Moreover, SYNE1 interacted with MUSK which is a gene

involved in the extracellular matrix organization pathway,

indicating a relationship between SYNE1 and KC. The TEK

gene encodes a tyrosine kinase receptor and plays a central

role in vascular stability (Gal et al., 2020). The gene directly

interacted with VEGFA, SHC1, PIK3R1, GRB2 of the focal

adhesion pathway, as revealed by the molecular analysis,

which was associated with the pathogenesis of KC.

Mutations in TEK might result in pathogenic effects by

disrupting the focal adhesion pathway, leading to KC. Titin

(TTN) is the largest protein in the human body, which is

encoded by 364 exons of the TTN gene. It is reported that the

TTN protein plays important roles in the regulation of the

cytoskeleton organization in cardiomyocyte (Loescher et al.,

2021). Among its interaction proteins, CAPN3 is involved in

the extracellular matrix organization which is identified as a

related pathway with KC. Thus, we speculated that TTNmight

be considered as a candidate gene for KC due to its indirect

interaction with the extracellular matrix organization. In

addition, TTN is considered as a major determinant of

cardiomyocyte stiffness, and mutations in TTN might result

in dilated cardiomyopathy in which myocardial stiffness has

an important role in its pathogenesis (Begay et al., 2015). KC is

a corneal disorder with its corneal stiffness changed.

Mutations in TTN were both existed and predicted to be

causative in dilated cardiomyopathy and KC, indicating

that there might some similar molecular mechanism

between them. Although no studies reported mutations in

the identified six genes in KC, the genes might be involved in

the pathogenesis of KC through their indirect interactions

with the known KC-associated pathways.

Additionally, variants in ATP6V0E2, DNAH5, DNAH6,

PCDHB7, PDE11A, TRIOBP, TYRP1, and WDR81 genes were

detected in the present study. However, these eight genes showed

no correlations with the investigated pathways related to KC in our

study. And there were no studies reported their associations with KC.

Our study has several limitations that should be taken into

consideration. Firstly, we only analyzed five KC families in the

study due to the limited KC families recruited in our hospital.

Secondly, the molecular mechanism of the candidate genes was

FIGURE 4
Protein-to-protein interactions of candidate genes with
known keratoconus associated pathways. ((A): EPCAM directly
interacts with CTNNB1 of the Hippo signaling and Focal adhesion
pathways, and directly interacts with CTNNB1, CDH1 of the
WNT signaling pathway; (B): SHROOM3 directly interacts with
ROCK2, ROCK1 of the Focal adhesion pathway; (C): SYNE1 directly

(Continued )

FIGURE 4
interacts with MUSK of the extracellular matrix organization
pathway; (D): TEK directly interacts with VEGFA, SHC1, PIK3R1,
GRB2 of the Focal adhesion pathway; (E): TTN directly interacts
with CAPN3 of the extracellularmatrix organization pathway).
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FIGURE 5
Protein-to-protein interactions of (A) ATP6V0E2, (B) DNAH5, (C) DNAH6, (D) PCDHB7, (E) PDE11A, (F) TRIOBP, (G) TYRP1, and (H) WDR81
genes.
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not explored, and further studies should be performed to explore

the mechanism of KC caused by those genes. Thirdly, the

putative predisposition variants in noncoding or uncaptured

regions of the genome (promoter or intronic variants) were

not detectable by exome sequencing.

In conclusion, our family-based exome sequencing studies

combined with bioinformatics analysis identified the EPCAM,

SHROOM3, SYNE1, TEK, and TTN genes as potential high-

risk candidate pathogenic genes of familial KC. The results

obtained significantly improved our understanding of the

genetic etiology of the disease, providing novel insights on

KC pathogenesis.
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