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Abstract: The parasitic Varroa destructor is considered a major pathogenic threat to honey bees and to
beekeeping. Without regular treatment against this mite, honey bee colonies can collapse within a
2–3-year period in temperate climates. Beyond this dramatic scenario, Varroa induces reductions in
colony performance, which can have significant economic impacts for beekeepers. Unfortunately,
until now, it has not been possible to predict the summer Varroa population size from its initial load
in early spring. Here, we present models that use the Varroa load observed in the spring to predict the
Varroa load one or three months later by using easily and quickly measurable data: phoretic Varroa
load and capped brood cell numbers. Built on 1030 commercial colonies located in three regions in
the south of France and sampled over a three-year period, these predictive models are tools designed
to help professional beekeepers’ decision making regarding treatments against Varroa. Using these
models, beekeepers will either be able to evaluate the risks and benefits of treating against Varroa or
to anticipate the reduction in colony performance due to the mite during the beekeeping season.

Keywords: Apis mellifera; Varroa destructor; treatment; predictive model; beekeeping; decision-
making tool

1. Introduction

The parasite Varroa destructor is considered a major pathogenic threat to honey bees [1]
and to beekeeping. This mite is an ectoparasite affecting both adult bees and broods.
Female mites have two distinct stages: a phoretic stage on adult bees and a reproductive
stage, which takes place inside a capped brood during bee metamorphosis. The Varroa
threat is not new for the beekeeping community, but with colony importations and the
commerce of bees, this threat continues to increase. Indeed, these circumstances favor
the Varroa spread throughout territories and the world’s apiaries. This threat is all the
more important given that the parasite spread is rapid [2]. Thus, bees and beekeepers
cannot adapt and respond efficiently; on the contrary, Varroa, with continuous exposure
to miticide treatments, responds with mechanisms of resistance [3–5]. Consequently, the
current challenge is to develop new methods to limit Varroa numbers inside colonies.
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Without regular efficient treatment against this mite, honey bee colonies can collapse
within a 2–3-year period in temperate climates. Varroa feeding on pupal hemolymph can
induce a decrease in adult bee body weight and malformations as well as reducing their
life spans, thus weakening their immune systems [6–8]. Thus, it seems logical that infested
colonies are less productive and efficient than healthy colonies, which can have significant
economic impacts for beekeepers [9,10]. Beyond a threshold of 3 phoretic Varroa mites per
100 bees, the decrease in performance is correlated with the Varroa load [10]. According
to this study, a colony with more than 3 phoretic Varroa mites per 100 bees produces, on
average, 2.65 kg less honey than a colony below this threshold. Unfortunately, until now, it
has not been possible to predict, from the mite population size in the spring, the population
load in the summer, despite studies by Arechavaleta-Velasco and Guzman-Novoa (2001),
Harris et al. (2003), and Lodesani et al. (2002), confirmed significant correlations between
the amount of brood and/or the fertility of the mites [11–13] and population growth [1].

Models of Varroa dynamics have been previously established but mainly carried
theoretical descriptions and only allowed for the evaluation of the instantaneous Varroa
load. Wilkinson and Smith’s model [14] was built from virtual colonies, and DeGrandi-
Hoffman and Curry’s model [15] was based on the BEEPOP honey bee colony population
dynamics model [16]; a BEEHAVE Varroa unit was developed by Becher et al. [17]. These
models were based on parametric values available from previous studies [16,18–26]. As
these models primarily work with mathematical extrapolation, instead of being data-
derived, we assumed that the resulting parametric values could be revised. Additionally, in
the twenty years since these models were published, Varroa biology may have coevolved
with its host. The coevolution between Varroa and honey bees has been reported by
Kurze et al. [27] and includes host resistance behaviors, which involve a decrease in
the Varroa reproduction rate as well as perturbations in the biological cycle of the mite.
Moreover, previous studies serving as the basis for model construction were based on
honey bees with different European origins and on Africanized honey bees [19]. Honey
bee origins affect Varroa reproduction [28] and, consequently, Varroa population sizes. To
increase its predictability, here, we used a model based on empirical data.

The most important information for a beekeeper is not the Varroa load at the time of
honey flow because most treatment compounds, even some labeled “natural” (e.g., formic
acid or thymol), are banned or not recommended during honey flow [29]. The aim of this
study was therefore to predict the Varroa load one or three months later, from its baseline
level in early spring, to anticipate colony performance for honey flow, knowing that the
reduced performance threshold is 3 phoretic Varroa mites per 100 bees. Aimed as a useful
tool for beekeepers, the model Handy Varload is based on inexpensive, accessible, and
quickly measurable data in the field.

2. Results
2.1. Variable Selection (for Variable Definitions, See Materials and Methods, Statistical Analysis)

The variable “phoretic Varroa” measured at t = 0 was continuous with 25% of zeros,
27% of the data in [0, 1], and 48% of the data in [1,30]. The zero-inflated beta distribution is
similar to the beta distribution but allows zeros as response values in which the ν parameter
models the probability of obtaining zero. The distribution features of the variable “phoretic
Varroa” (Vpt) require dividing by 100 in order to fit the data to the interval [0, 1]. We then
modeled this new response variable by a zero-inflated beta distribution, with parameter
variation depending on covariates. A first model selection was performed to choose the
best variables to model µ (see AICc comparisons in Table 1; more details are provided in
Supplementary Materials Table S1). At the end of this preliminary selection, two models
including the apiary random factor were retained, one for the 1-month adjustment and the
other for the 3-month adjustment, noted (*) and (**) in Table 1, respectively.
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Table 1. Comparisons of the tested models investigating the influence of phoretic Varroa numbers
(per 100 bees) at t = 0, capped brood cell numbers, varbrood, and date of predicted phoretic Varroa
numbers as a function of the estimation length, using the AICc criterion. N = 867 for data adjustment
at one month (x = 1) and N = 93 for data adjustment at three months (x = 3).

Adjustment
for x = 1

Adjustment
for x = 3

Model AICc AICc

phoretic Varroa −2477.5 −268.3
capped brood cells −2320.6 −261.8

varbrood (**) −2540.1 −296.9
date −2413.0 −260.9

phoretic Varroa + capped brood cells −2488.0 −271.1
phoretic Varroa + date −2561.7 −266.3

phoretic Varroa + varbrood −2538.2 −295.7
capped brood cells + date −2412.1 −261.4

capped brood cells + varbrood −2580.1 −297.7
date + varbrood −2618.2 −294.7

phoretic Varroa + capped brood cells + date −2564.9 −269.1
phoretic Varroa + capped brood cells + varbrood −2582.4 −296.0

phoretic Varroa + date + varbrood −2616.2 −293.8
capped brood cells + date + varbrood (*) −2645.5 −295.5

phoretic Varroa + capped brood cells + varbrood + date −2647.8 −293.9

(*) and (**) + apiary random effect −2651.1 −316.9

The final models (A and B, see below) were obtained after a second variable selection
based on AICc comparisons, using the modeled σ and ν added to the (*) and (**) preliminary
models. The number of phoretic Varroa present at t was modeled by the following zero-
inflated beta models (BEZI in “gamlss”):

Vpt ~ BEZI (µ, σ) with (1 − ν) probability
Vpt = 0 with ν probability

For data adjustment at one month: (A)

µ = logit−1 (α0 + α1Vbt−x + α2Cpt−x + α3Dt + Ap)
σ = exp (β0 + β1Vbt−x + β2Dt + Ap)
ν = logit−1 (γ0 + γ1Vbt−x + γ2Cpt−x + γ3Dt + Ap)

For data adjustment at three months: (B)

µ = logit−1 (α0 + α1Vbt−x + Ap)
σ = exp (β0 + Ap)
ν = logit−1 (γ0 + γ1Vbt−x + γ2Vpt−x)

where the α, β, and γ parameters are coefficients used to model µ, σ, and ν, respectively. As
a consequence of this second variable selection, the final AICc was −3179.2 (A) and −343.5
(B) (see details in Tables S2 and S3). Varbrood, which was retained by model selection in all
cases except for σ of model B, appeared as the most important explanatory variable.

2.2. Goodness of Fit and Prediction Evaluation
2.2.1. Parameter Uncertainty

For models A and B, the α, β, and γ parameters associated with µ, σ, and ν were
estimated and their CI95%s were computed (see Table 2). Based on the intercept, we can
note that varbrood had the largest influence on the data adjustment for each parameter of
model A. Moreover, the order of influence of model covariates was the same regardless of
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the parameter: varbrood > date > capped brood cells. For ν of model B, phoretic Varroa
had a larger influence than varbrood. The CI95 range as positively correlated with covariate
weights, i.e., the greater the weight, the larger the uncertainty.

Table 2. Estimated coefficient and 95% confidence interval (CI95%) of models A and B investigating
the influence of varbrood, capped brood cells, phoretic Varroa, and date on the number of phoretic
Varroa mites for mu, sigma, and nu parameters.

Model Parameter Covariate Estimated
Coefficient Lower 95% CI Upper 95% CI

A

Mu Intercept −5.830 −6.021 −5.640
varbrood 0.025 0.021 0.028
capped

brood cells 0.002 0.001 0.003

date 0.014 0.012 0.015

Sigma Intercept 6.579 6.233 6.925
varbrood −0.023 −0.030 −0.016

date −0.018 −0.021 −0.015

Nu Intercept 2.073 1.475 2.672
varbrood −0.063 −0.087 −0.039
capped

brood cells −0.003 −0.006 −0.001

date −0.032 −0.039 −0.025

B

Mu Intercept −3.982 −4.175 −3.790
varbrood 0.023 0.019 0.027

Sigma Intercept 4.460 4.140 4.779

Nu Intercept −0.701 −1.468 0.065
varbrood −0.077 −0.167 0.012
phoretic
Varroa −3.786 −10.747 3.176

Moreover, the apiary effect depended on the horizon of prediction. Thus, the mean
apiary effect was zero with varying estimated standard deviations depending on the data
adjustment; at one month, the estimated standard deviation was 0.285, with a standard
deviation of this estimate of 0.798, and at three months, the estimated standard deviation
was 0.681, with a standard deviation of this estimate of 0.914 (see Supplementary Materials
Tables S2 and S3).

2.2.2. Prediction Quality

The prediction quality can be evaluated using confidence intervals and error rates
of models. Table 3 shows that for cross-validation, 97.6% (N = 4999) of sampled phoretic
Varroa mites were in their CI95% with model A and 97.3% (N = 2328) with model B. These
coverage rates are heterogeneous with respect to Vpt: they overestimate the targeted values
(95%, 70%, or 50%) when Vpt ≤ 3, they are consistent when 3 < Vpt ≤ 10, and they are
significantly lower than the targeted values when Vpt > 10, which roughly corresponds
to only 5–10% of the hives. These results hold approximately for all tackled cases (cross-
validation and training validation; models A and B).
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Table 3. Coverage rates of confidence intervals (CI95%, CI70%, and CI50%) of Vpt for both approaches, cross-validation and
training validation, for models A and B. The coverage rate provides the proportion of times that the CI contains the true
value of Vpt. For each method and each model, numbers of observed hives are reported for each class of Vpt.

Cross-Validation

Model A Model B Observed Vpt
Model A Model B

Observed Colony Numbers CI95% CI70% CI50% CI95% CI70% CI50%

4999 2328 all 97.6 83.6 67.7 97.3 83.1 67.8
4027 1700 ≤3 99.6 91.5 76.3 99.7 97.9 87.9
724 526 >3 and ≤10 92.7 53.7 34.5 99.8 51.1 16
248 102 >10 80.6 42.3 24.2 45.1 2 0

Training Validation

Model A Model B Observed Vpt
Model A Model B

Observed Colony Numbers CI95% CI70% CI50% CI95% CI70% CI50%

1438 749 all 92.6 75.3 61.8 57.8 39 26
1140 546 ≤3 95.9 82.6 69 61.2 44.1 29.9
229 137 >3 and ≤10 82.1 49.8 37.6 60.6 29.9 17.5
69 66 >10 72.5 39.1 21.7 24.2 15.2 12.1

Predicted quantiles were used as an indicator of the accuracy of the prediction aimed
by the model, i.e., the proportion of hives to be treated against Varroa. Predicting values
by simulation may be seen as minimizing the risk of an incorrect prediction (the risk of
unnecessarily increasing the number of hives to be treated) or may be necessary to more
accurately target the correctly predicted value (the risk of ignoring a proportion of hives
which should be treated and which will not be). For model B, outputs are based on the
average Varroa load in April of 0.7 phoretic Varroa mites per 100 bees [30] (quoted Vpt−x)
and the threshold of 3 phoretic Varroa mites per 100 bees at the beginning of summer [10]
(quoted Vpt). The model indicates for each colony whether or not to treat (prediction that
the threshold will exceed three Varroa mites). Figure 1 describes two extreme situations
that correspond to two treatment strategies. The first two strategies, represented by Q97.5
and Q85, are no-risk situations because the model indicated that all colonies are to be
treated, and thus no risks are taken of having a colony that exceeds the threshold of three.
In these cases, the input costs are great, and 73% of colonies are unnecessarily treated. The
second strategy (Q50) is an attempt to justify no treatment, and it estimates the respective
risk; it provides reasons not to treat 71% of colonies at the risk of not treating the 24%
of colonies that need treatment. This could be seen as the price to pay for engaging in
a process of decreasing inputs. Intermediate quantiles allow beekeepers to find correct
indicators based on calculated trade-offs. For example, considering indicators for Q72 (or
Q71.5), 27% of colonies observed exceed the threshold of three; the model predicted to treat
11% when necessary (10% for Q71.5) and 17% when not necessary (16% for Q71.5). In these
cases, there were as many colonies that were treated when not necessary (17%—in orange)
as colonies untreated when necessary (16%—in red) for Q72, and the inverse occurred for
Q71.5 (Figure 1).

The first and third cases are the hives that are necessary to treat. The percentages of
these four categories are provided for each level of risk.

This figure is based partly on Table S4 of Supplementary Materials; Tables S4 and S5
show all results for models A and B of the two model evaluations (cross-validation and
training validation). For both models, the smaller the quantile, the lower the global error
rate. For larger quantiles (Q97.5 and Q85), models predicted better Vpt when the phoretic
Varroa number exceeded the threshold of three Varroa mites at t. Model predictions of Vpt
were relatively good when the earlier phoretic Varroa number was at three, the maximum.
However, models failed to produce correct predictions when the mite number at t-x was
higher than three for model A and higher than 0.7 for model B.



Pathogens 2021, 10, 678 6 of 12Pathogens 2021, 10, 678 6 of 12 
 

 

 
Figure 1. In this figure, 5 scenarios are presented with increasing risk (from left to right) taken by the beekeeper to not treat 
when the model predicts it was necessary or to treat when it was unnecessary. The risk is inversely proportional to the measure 
of quantile Q. For each level of risk, four cases are represented: (1) Hives with vp_t_x (i.e., Vp at t = 0) < = 0.7 and vp_t (i.e., Vp 
three months later) >3; (2) Hives with vp_t_x (i.e., Vp at t = 0) < = 0.7 and vp_t (i.e., Vp three months later) < = 3; (3) Hives with 
vp_t_x (i.e., Vp at t = 0)> 0.7 and vp_t (i.e., Vp three months later) < = 3; (4) Hives with vp_t_x (i.e., Vp at t = 0)> 0.7 and vp_t (i.e., 
Vp three months later) < = 3. 

The first and third cases are the hives that are necessary to treat. The percentages of 
these four categories are provided for each level of risk. 

This figure is based partly on Table S4 of Supplementary Materials; Tables S4 and S5 
show all results for models A and B of the two model evaluations (cross-validation and 
training validation). For both models, the smaller the quantile, the lower the global error 
rate. For larger quantiles (Q97.5 and Q85), models predicted better Vpt when the phoretic 
Varroa number exceeded the threshold of three Varroa mites at t. Model predictions of 
Vpt were relatively good when the earlier phoretic Varroa number was at three, the maxi-
mum. However, models failed to produce correct predictions when the mite number at t-
x was higher than three for model A and higher than 0.7 for model B. 

3. Discussion 
3.1. Selected Variables 

The Handy VarLoad (HVL) model allowed for the prediction of the Varroa load at a 
given moment t, as a function of the previously observed Varroa load and of the available 
area for their reproduction, i.e., the number of honey bee brood cells. 

Seasons influence the Varroa load, but only in the short term. This could be explained 
by the fact that, in one month, a beekeeper management intervention or a particular cli-
matic event can have an effect on one or two Varroa generations, as the generation interval 
of capped brood is 12 days. The mite population growth rate is exponential during short 
periods (three months) and when mite populations are low; in contrast, Varroa population 
growth follows a logistic dynamic over longer periods (covering the entire production 
period) when density-dependent factors influence population growth [12]. Consequently, 
an event which increases or decreases Varroa reproduction may change the short-term 
Varroa load but have an insignificant influence on the long-term Varroa load. For exam-
ple, disruption of honey bee colony broods could be offset by the Varroa population 
growth itself. Conversely, if colony brood disruption speeds up Varroa reproduction, the 

Q 97.5 Q 75 Q 72 Q 71.5 Q 60 Q 50

0
1
0

2
0

3
0

3
7

vp_t_x <= >
0.7

<= >
0.7

 <= >
0.7

<= >
0.7

<= >
0.7

<= >
0.7

vp_t

>3

<=3

>3

<=3

>3

<=3

>3

<=3

>3

<=3

>3

<=3

>3

<=3

>3

<=3

>3

<=3

>3

<=3

>3

<=3

>3

<=3

73%

27%

49%

13%

24%

14%

56%

16%

17%

11%

57%

17%

16%

10%

67%

21%

6%

6%

71%

24%

2%

3%

%
 h

iv
es

untreated

treated

untreated when
  it was necessary

treated when it    
wasn't necessary

Figure 1. In this figure, 5 scenarios are presented with increasing risk (from left to right) taken by the beekeeper to not treat
when the model predicts it was necessary or to treat when it was unnecessary. The risk is inversely proportional to the
measure of quantile Q. For each level of risk, four cases are represented: (1) Hives with vp_t_x (i.e., Vp at t = 0) < = 0.7 and
vp_t (i.e., Vp three months later) > 3; (2) Hives with vp_t_x (i.e., Vp at t = 0) < = 0.7 and vp_t (i.e., Vp three months later)
< = 3; (3) Hives with vp_t_x (i.e., Vp at t = 0) > 0.7 and vp_t (i.e., Vp three months later) < = 3; (4) Hives with vp_t_x (i.e., Vp
at t = 0) > 0.7 and vp_t (i.e., Vp three months later) < = 3.

3. Discussion
3.1. Selected Variables

The Handy VarLoad (HVL) model allowed for the prediction of the Varroa load at a
given moment t, as a function of the previously observed Varroa load and of the available
area for their reproduction, i.e., the number of honey bee brood cells.

Seasons influence the Varroa load, but only in the short term. This could be explained
by the fact that, in one month, a beekeeper management intervention or a particular climatic
event can have an effect on one or two Varroa generations, as the generation interval of
capped brood is 12 days. The mite population growth rate is exponential during short
periods (three months) and when mite populations are low; in contrast, Varroa population
growth follows a logistic dynamic over longer periods (covering the entire production
period) when density-dependent factors influence population growth [12]. Consequently,
an event which increases or decreases Varroa reproduction may change the short-term
Varroa load but have an insignificant influence on the long-term Varroa load. For example,
disruption of honey bee colony broods could be offset by the Varroa population growth
itself. Conversely, if colony brood disruption speeds up Varroa reproduction, the mite
population size eventually stabilizes due to density dependence [25,31]. Moreover, during a
three-month period, colonies undergo a series of favorable and unfavorable disruptions for
Varroa development, particularly climatic, which will balance each other out. Finally, the
apiary effect acts regardless of the delay between two phoretic Varroa measurements. Thus,
the biological variability between colonies, the differences in management strategy between
beekeepers, year, and region (climate) influence the Varroa load of the colony [32–35].

Contrary to previous mathematical models on Varroa load, the HVL model allows one
to obtain a prediction with a measure of uncertainty, as well as the associated uncertainty
for each parameter. The model uncertainty includes variability at the inter-apiary scale,
in beekeeping management strategies, and in year and region effects. The apiary effect
included in the model induces a large amount of prediction uncertainty, but, at the same
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time, it assimilates the sampling diversity related to apiary characteristics (management,
year, and region).

3.2. Beekeepers’ Interest

The model presented here allows one to have a representation of the risk beekeepers
take by not treating the apiary, according to the percentage of colonies that exceed the
threshold of three Varroa mites. Different quantiles propose different decision-making indi-
cators for beekeepers taking into account trade-offs between cost, time, and environmental
effects of treatments, on the one hand, and the risk of losing infested colonies, on the other.

Moreover, beside economic trade-offs, Varroa treatments are not without consequences
and, indeed, may induce acaricide resistance in Varroa [3–5], which is why beekeepers
should treat only when economic risks are real. It is worth noting that treatments during
the beekeeping season are not efficient over the long term [36]. These types of treatment
must be used only when the aim is to temporarily decrease the Varroa load to optimize
honey flow performance. Thus, this model takes into account integrated pest management.

The model can also be used to determine which apiaries should be given priority on
lavender and sunflower fields if the spot number is limited. However, despite the fact that
managing colonies at the apiary scale is more efficient, as honey bee colony performances
are highly dependent on the characteristics of any apiary (Kretzschmar et al., unpublished
data), beekeepers may want to manage Varroa at the colony scale and thus strictly follow
the model prediction.

3.3. Limits and Prospects of the Model

The choice to use only easy-to-measure variables in the field impairs the model’s
goodness of fit and, consequently, the estimation/prediction accuracy. Taking into account
other variables (Varroa foundress density, Varroa infestation rate in the capped brood,
natural death of Varroa mites measured on sticky boards, etc.) would have allowed
better predicting the Varroa load. Including these additional variables in the present
model could have easily improved its prediction power. Nevertheless, it would be far
too long and complex to collect that type of data in the actual schedule of a beekeeper.
If the sampling plan is unrealistic and impracticable at a large scale, the HVL model
will be worthless. However, such improved models could be developed for researchers
or technicians who work on a smaller scale and need to have better precision in their
experimental frameworks. Another limit of this study is the sampled colony number:
the more hives sampled, the better the estimation. In the present study, as the number
of repetitions for each factor (management, year, and region) is limited, our sampling
variation increased model uncertainty. Nevertheless, the Handy VarLoad model will be
improved by the accumulation of data issued from the numerous experiments in which the
two handy variables it uses (phoretic Varroa load and capped brood area) are commonly
collected. As the database on which the model is based increases, the effect of covariates
(apiary, region, season, beekeeping practices, etc.) can be better integrated.

4. Materials and Methods
4.1. Data Sampling

Data were collected from 310 colonies from 2014 to 2016 in three regions of France
(PACA, AURA, and Occitanie; “dataset1”) and from 720 colonies in 2018 in three regions of
France (PACA, Nouvelle Aquitaine, and Centre; “dataset2”). Most of the colonies were
kept on 10-frame Dadant hives and contained hybrid Apis mellifera L. queens. Colonies
belonged to commercial beekeepers and thus displayed different sizes, dynamics, and
management styles, which allowed us to take into account the variability which exists
between beekeepers and apiaries. No treatment against Varroa was applied during the
sampling periods.

At each sampling point, the amount of capped brood (noted Cb) was determined
according to the ColEval method [37], and the phoretic mite load was estimated by sam-
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pling around three hundred bees (or 45 g) from a frame containing an uncapped brood.
Sampled bees were washed with a detergent solution and the number of Varroa mites
retrieved (noted Vp) was counted [38]. Finally, to take into account seasonality, a “date”
variable (noted D) was also created in which days were reported on a perpetual calendar
with day 1 starting on 15 March of each year. This variable described the number of days
ran from an initial time, which corresponds to the beginning of the measurable increase in
the Varroa population after wintering. In our case, it corresponded approximately to the
middle of March.

Sampling points were repeated at 30-day intervals, except for apiaries R16 to R18
(“dataset1”), in which measurements were sometimes performed every 12 days to mimic
the generation interval of capped broods.

4.2. Statistical Methods
4.2.1. Distribution Adjustment on “dataset1”

All statistics were performed using the statistical software R version 3.3.0 [39]. Estima-
tion of model parameters was carried out using the “gamlss” function of the eponymous
package (Rigby and Stasinopoulos, 2005). The response variable (number of observed
Varroa mites per 100 bees) was modeled with a generalized additive model for location,
scale, and shape (GAMLSS). GAMLSS is an extension of the generalized linear model and
the generalized additive model. It is a distribution-based approach to semiparametric
regression models, in which all the parameters of the assumed distribution for the response
can be modeled as additive functions of the explanatory variables, such as the location (e.g.,
mean µ), the scale (e.g., variance σ2), the shape (skewness and kurtosis), and some inflation
(e.g., at zero, ν). Moreover, we chose to use GAMLSS because it offers numerous choices
for the distribution of the response variable and is suitable for time series data (Rigby and
Stasinopoulos, 2001). GAMLSS was fitted to data using maximum (penalized) likelihood
estimation implemented with the RS algorithm, which does not require accurate starting
values for µ, σ, and ν to ensure convergence in comparison with the CG algorithm [40,41].
The most parsimonious model with the lowest corrected Akaike’s information criterion
(AICc) [42], was selected; models with differences in AICc values lower than or equal to
two were considered to be equivalent. We chose this selection criterion because, it is the
most suitable criterion to model selection in predictive models for ecology and time series
applications including forecasting [43]. Thus, it allows for the selection of the model that
will best predict the response variable, i.e., the model with the best predictive accuracy.

Variables, which were described above, were transformed as follows to comply with
the scaling conditions during model fitting:

Cb =
Cb0
100

(1)

Vp =
Vp0 ∗ 100 ∗ 0.14

sw
(2)

Vb = log
(

Vp
Cb + 130

∗ 100 + 1
)
∗ 50 (3)

where Cb (Equation (1)) is a scaled value of the number of capped brood cells Cb0; Vp
(Equation (2)) is the normalized rational number of Varroa mites for 100 honey bees (called
“phoretic Varroa” in the present study), knowing that the weight per bee is 0.14 g, and sw in
Equation (2) is the sampling weight of bees; Vb is a variable called “varbrood”, built to take
into account the role of the amount of brood in the regulation of Varroa reproduction, and,
more specifically, to integrate the fact that the more spread out the capped brood, the harder
it is to capture phoretic Varroa mites hidden in the capped brood. The varbrood variable
was thus obtained by taking the Neperian logarithm of the number of phoretic Varroa
and dividing it by the number of capped brood cells. In Equation (3), 130 corresponds
to the Cb median, 100 and 50 multipliers are necessary for the scale, and +1 is used to
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avoid obtaining log(0). These three quantitative variables were mathematically reduced
to the same scale, in order to be able to compare their respective weights during model
adjustment. The date (measured as a number of days after the first measurement) was used
without transformation.

The rational number of phoretic Varroa mites present at t (Vpt) was modeled in the
GAMLSS framework by a zero-inflated beta distribution with mean µ, standard deviation
σ, and inflation at zero ν. Different specifications for µ, σ, and ν were used (see Results
section). Our models were designed to predict Vpt from explanatory variables typically
collected at time t−x. Two horizons of prediction x were considered: a short-term horizon
(x = 1 month, noted model A hereafter) and a long-term horizon (x = 3 months, noted model
B hereafter). For x = 1 (model A), all data were used to fit the models (867 observations),
whereas for x = 3 (model B), all the data providing this interval were used to avoid the
use of time-overlapping pairs of observations (93 observations). Phoretic Varroa numbers,
capped brood cell numbers, and varbrood present at t−x, as well as the date at t, were
exploited as fixed factors; they are denoted by Vpt−x, Cbt−x, Vbt−x, and Dt, respectively.
Moreover, an «apiary» factor (noted Ap) was used as a random factor and includes the
variability of the apiary, beekeeping management strategy, and year and region effects.

4.2.2. Goodness of Fit and Prediction Including “dataset2”

To assess the goodness of fit of the selected models, we explored the uncertainty of
parameters and the prediction quality by comparing the predicted and observed values of
Vpt. We evaluated the prediction quality using two methods: cross-validation and training
validation. In both methods, model performance was evaluated on data not included in
the sample used to estimate model parameters.

For increasing the domain where the uncertainty of the parameters and the prediction
quality of the models could be explored, a larger dataset (“dataset2”) was added to the first
dataset (“dataset1”) with which the model parameters were estimated.

In the cross-validation method, observations of the hives of a given apiary were
removed from the database, the model was fitted to the remaining data, and estimated
parameters were plugged in to predict Vpt for the hives of the apiary whose observations
were removed (this case corresponds to predicting Vpt for a new apiary based on observa-
tions collected from other apiaries). This procedure was repeated for each apiary of the
dataset (i.e., 54 times for model A and 40 times for model B) and allowed us to provide
averaged cross-validation assessments of the prediction performance.

The prediction performance was assessed with respect to the two following criteria:

• The actual coverage of 95%, 70%, and 50% confidence intervals of Vpt (denoted by
CI95%, CI70%, and CI50%), providing the proportion of times that the true value of Vpt
is contained within the CI;

• The use of different predicted quantiles of Vpt (namely, Q97,5%, Q85%, Q75%, and Q50%)
to evaluate the risk that the actual Vpt exceeds the problematic threshold of 3 Varroa
mites for 100 bees.

These criteria (CI and quantiles) were empirically calculated from 1000 simulations of
the zero-inflated beta distribution in which the estimated values of µ, σ, and ν were inserted
(random factors incorporated into µ, σ, and ν were randomly drawn at each simulation
from centered normal distributions with standard deviations equal to their estimated
values). Note that estimation uncertainty was neglected in this simulation procedure; this
choice may lead to un-calibrated confidence intervals and quantiles. The comparisons of
quantiles Q97.5%, Q85%, Q75%, and Q50% with the threshold of 3 Varroa mites for 100 bees
can be used as indicators to assess whether Vpt will exceed this problematic threshold. The
efficiency of these indicators was assessed with the error rate τerror(α) calculated as the
ratio between (i) the number of hives for which the predicted quantile Qα(Vpt) is less than
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or equal to 3 at time t, whereas the actual observation Vpt is greater than 3, and (ii) the
number of observations Vpt greater than 3:

τerror(α) =
∑K

R=1 ∑NR
r=1 1

(
Vpt,R,r > 3, Q−R

α ( Vpt,R,r) ≤ 3
)

∑K
R=1 ∑NR

r=1 1( Vpt,R,r > 3)
, (4)

where K is the number of apiaries (54 for model A and 40 for model B), NR is the number
of hives in the apiary R (which ranges between 7 and 51), Vpt,R,r is the observed value of
phoretic Varroa at time t for the hive r of the apiary R, and Q−R

α ( Vpt,R,r) is the predicted
quantile at α% of Vpt,R,r for the hives of the apiary R whose observations were removed
(−R). The indicator function E→1I takes the value of 1 if event E is true, or otherwise 0.

Equation (4) presents the case in which observations are greater than 3 and predictions
are less than or equal to 3, and τerror(α) was also calculated when observations are less than
or equal to 3 and predictions are greater than 3. The error rate τerror(α) can be computed in
other specific conditions, for example, conditions related to the number of phoretic Varroa
at t−x (Vpt–x,R,r).

In the training validation method, observations of the hives of all apiaries after a spe-
cific date, tA = 31 (15 April) for model A, and tB = 118 (11 July) for model B, were removed
from the database, the model was fitted to remaining data, and estimated parameters were
plugged in to predict Vpt for the hives of all apiaries after tA or tB (this case corresponds to
predicting Vpt for an apiary already installed, based on observations collected beforehand
from this apiary). This procedure was repeated for each year of the dataset (i.e., from
2014 to 2016 and 2018 for both models A and B) and allowed us to provide averaged
training validation assessments of the prediction performance already introduced in the
cross-validation approach.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pathogens10060678/s1, Table S1: Comparisons of the tested models investigating the influence
of phoretic Varroa mite (per 100 bees) numbers, capped brood cell numbers, varbrood, and date
on next phoretic Varroa numbers as a function of the estimation length, using the AICc criterion.
N = 867 for data adjustment at one month (x = 1) and N = 93 for data adjustment at three months
(x = 3), Table S2: R graphic output of model A summary, Table S3: R graphic output of model B
summary, Table S4: Performance comparisons between different quantiles (Q97.5, Q85, Q75, Q50)
for models A and B, depending on the observed phoretic Varroa numbers at t−x and the observed
phoretic Varroa numbers at t. Error rates represent the colony percentage for which the Varroa load
at the horizon of prediction was badly predicted with the cross-validation method. For each quantile,
the number of hives to treat depends on the error rate for which their percentages were reported,
Table S5: Performance comparisons between different quantiles (Q97.5, Q85, Q75, Q50) for models A
and B, depending on the observed phoretic Varroa numbers at t-x and the observed phoretic Varroa
numbers at t. Error rates represent the colony percentage for which the Varroa load at the horizon of
prediction was badly predicted with the training validation method. For each quantile, the number
of hives to treat depends on the error rate for which their percentages were reported.
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