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Interleukin-17 (IL-17) is an essential proinflammatory cytokine, which is mainly secreted by
the CD4+ helper T cells (Th17 cells) and subsets of innate lymphoid cells. IL-17A is
associated with the pathogenesis of inflammatory diseases, including psoriasis, atopic
dermatitis, hidradenitis suppurativa, alopecia areata, pityriasis rubra pilaris, pemphigus,
and systemic sclerosis. Interleukin-23 (IL-23) plays a pivotal role in stimulating the
production of IL-17 by activating the Th17 cells. The IL-23/IL-17 axis is an important
pathway for targeted therapy for inflammatory diseases. Emerging evidence from clinical
trials has shown that monoclonal antibodies against IL-23, IL-17, and tumor necrosis
factor are effective in the treatment of patients with psoriasis, atopic dermatitis,
hidradenitis suppurativa, pityriasis rubra pilaris, pemphigus, and systemic sclerosis.
Here, we summarize the latest knowledge about the biology, signaling, and
pathophysiological functions of the IL-23/IL-17 axis in inflammatory skin diseases. The
currently available biologics targeting the axis is also discussed.
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INTRODUCTION

Interleukin-17A (IL-17A) is cloned from a T cell hybridoma activated in rodents (1) and is related to
several immune-mediated disorders, such as autoimmune (2), oncogenic (3), and infectious (4)
diseases. The T helper 17 (Th17) cells constitute a unique subset of CD4+ T cells and are the major
source of IL-17 (5). IL-17A triggers cellular reactions not only in the keratinocytes, but also in some
other cells, including neutrophils, endothelial cells, fibroblasts, and osteoclasts (6–10). In
keratinocytes, the binding of IL-17A to IL-17 receptor (IL-17R) A, IL-17C, or IL-17RD
stimulates keratinocyte proliferation. Subsequently, the release of inflammatory mediators and
chemokines leads to inflammatory reaction (11, 12).

The cytokines, interleukin-23 (IL-23) and IL-17, have been confirmed to markedly affect chronic
inflammation (10, 13–16). In addition, the discovery of the IL-23/IL-17 pathway has contributed to
a clearer understanding of the underlying mechanism of inflammatory diseases. At present,
therapies for inflammatory diseases have advanced from general immunosuppression to biologics
against the IL-23/IL-17 signaling pathway, such as IL-17, IL-12/23 and IL-23 inhibitors. In this
review, we highlight the potential implications of dysregulation of the IL-23/IL-17 axis in chronic
org November 2020 | Volume 11 | Article 5947351
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inflammatory skin diseases, including psoriasis, hidradenitis
suppurativa (HS), atopic dermatitis (AD), alopecia areata
(AA), pityriasis rubra pilaris (PRP), pemphigus, and systemic
sclerosis (SSc).
SEARCH STRATEGY AND SELECTION
CRITERIA

In this review, we are not intended to comprehensively review all
pathways identified through human and murine laboratory
studies or all clinical trials and case series in various
inflammatory skin diseases. Nevertheless, we intent to focus on
those targets of IL-23/IL-17 pathway demonstrated to be effective
or potentially effective for treating human inflammatory skin
diseases. We searched the published literature from PubMed and
ClinicalTrial.gov with the search terms including ‘IL-17,’
‘psoriasis,’ ‘atopic dermatitis,’ ‘hidradenitis suppurativa,’
‘alopecia areata,’ ‘pityriasis rubra pilaris,’ ‘pemphigus,’
‘systemic sclerosis,’ ‘secukinumab,’ ‘ixekizumab,’ ‘brodalumab,’
‘bimekizumab,’ ‘ustekinumab,’ ‘tildrakizumab,’ ‘guselkumab,’
and ‘risankizumab’. We mainly focused on publications written
in English between September 1, 2010, and September 15, 2020.
We chose the references depending on the basis of their
originality and relevance to the topic.
IL-17 SIGNALING IN INFLAMMATORY
AND AUTOIMMUNE DISEASES

Th17 cells are known to play an important role in inflammatory
and autoimmune diseases (17–19). In general, IL-23 is involved
in the activation of Th17 cells to induce the production of IL-
17A, IL-17F, tumor necrosis factor (TNF), and IL-6 (20). Binding
to its receptors, IL-23 contributes to the phosphorylation of
receptor-associated JAKs and specific Tyr residues, and this is
followed by activating the transcription of IL-17 and other genes.
The participation of IL-23 is crucial in the differentiation of IL-
17-expressing phenotypes, via activating the transcription factor
retinoid-related orphan receptor-gt (ROR-gt) and signal
transducer and activator of transcription 3 (STAT3) (21–23).

IL-17 induces expression of downstream genes by
stimulating activation of pathways, including canonical
nuclear factor-kB (NF-kB), CCAAT/enhancer-binding
protein (C/EBP) family, and mitogen-activated protein kinase
(MAPK) (Figure 1). The key complex, which is consisted of IL-
17A/A, IL-17A/F, or IL-17F/F cytokine and IL-17RA or IL-
17RC, is the start hallmark of IL-17 signaling transduction (24,
25). Moreover, IL-17RD is also found to be a functional
receptor for IL-17A groups. Together with IL-17RC, IL-17RD
acts on the downstream of proinflammatory gene expression of
IL-17 signaling (12). IL-17R is characterized by a unique
structure in its cytoplasmic tail, termed SEF/IL-17R (SEFIR)
domain (26). IL-17 signaling recruits Act1 to IL-17R through
interaction platform of SEFIR domain (27). Then Act1 (also
known as an E3 ligase) promotes activation of distinct
Frontiers in Immunology | www.frontiersin.org 2
downstream signaling cascades by tumor-necrosis factor
receptor–associated factor (TRAF) 6 (28). TRAF6 then
recruits and stimulates the transforming growth factor b-
activated kinase 1 and the inhibitor of kappa B kinase
complex, resulting in activation of NF-kB, C/EBPb, C/EBPd,
and MAPK pathway (29–31). IL-17R-Act1 complex binds with
MEKK3 and MEK5, leading to keratinocyte proliferation (32).
Act1 binds with TRAF2-TRAF5 to maintain the mRNA
stability targeting IL-17 gene (33). In contrast, TRAF3
triggers a negative reaction in activation of NF-kB and
MAPK pathway, resulting in suppressing the formation of IL-
17R-Act1-TRAF6 (34). TRAF6, in combination with A20 (an
anti-inflammatory protein) when presented, blocks the
activation of NF-kB and MAPK to negatively regulate IL-17
signaling (35).
PSORIASIS

Role of IL-17 Family Members in Psoriasis
In patients with psoriasis, the IL-17 concentrations increase not
only in the skin lesions and peripheral blood, but also in the
nonlesional and uninvolved skin (36–40). There is evidence
indicating that the main sources of IL-17A in patients with
psoriasis are the neutrophils (41), Th17 cells (42), mast cells (43,
44), CD8+ T cells (45), ab T (46), gd T cells (47), and innate
lymphoid cells (48, 49) in the skin lesions.

Psoriasis autoantigens, such as LL37 (50), NFKBIZ (51),
ADAMTSL5 (52), and CARMA2 (53), play a crucial role in the
production of IL-17A and are involved in the pathogenesis of
psoriasis. In psoriasis, the combination of LL37 with the patient’s
own DNA leads to the activation of the Toll-like receptor 9 (54).
The self-DNA-LL37 complex acts on Toll-like receptor 7 in the
plasmacytoid dendritic cells (DCs) and triggers the activation of the
classical myeloid DCs (55) (Figure 2). Subsequently, the myeloid
DCs produce IL-12 and IL-23. IL-23 induces the differentiation of
the CD4+ T cells into the Th1 cells and Th17 cells by stimulating the
transcription factor ROR-gt and STAT3 (56, 57). Thereafter, the
activated Th17 cells secrete Th17 cytokines (IL-17A, IL-22, and
TNF-a), leading to the development of a positive feedback loop. IL-
17 plays a key role in stimulating the NF-kB and MAPK signaling
pathways (53, 58), contributing to a high expression of
proinflammatory factors (CC-chemokine ligand 20 and CC-
chemokine receptor 6) (14, 38). These proinflammatory cytokines
and chemokines recruit the inflammatory cells and stimulate
keratinocyte proliferation (59).

IL-17A plays an essential role in inflammation, metabolism,
and bone/joint damage (8, 10, 15, 60–62). The IL-17 levels and
Th17 cell frequencies are high in the skin, synovial fluid, and
synovium tissue of the patients with psoriatic arthritis (PsA) (18,
63–65). In the synovium of patients with PsA, the mast cells and
CD8+ T cells are the main sources of IL-17A (66). The aberrant
expression of IL-17A directly affects the osteoclast precursors,
leading to bone destruction in PsA (67). In addition, IL-17A
interacts with the mediators of the Wnt signaling pathway in the
osteoblasts and osteocytes, thus, preventing bone formation (10).
November 2020 | Volume 11 | Article 594735
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FIGURE 1 | IL-23/IL-17 signaling transduction. IL-23 is important in differentiation of Th17 cells, by promoting the production of IL-17A, IL-17F, TNF, and IL-6. IL-23
is heterodimeric and composed of IL-12p40 and IL-23p19. Binding to its receptors, IL-23 involves in phosphorylation of JAKs and TYK, as well as phosphorylation
and dimerization of STAT3. Subsequently, STAT3 homodimers regulates the expression of ROR-gt to promote the gene expression. The combination of IL-17A/A,
IL-17A/F, or IL-17F/F cytokine with IL-17RA and IL-17RC is found to be a crucial complex of immune response. IL-17R acts on Act1 through interaction platform of
the SEFIR domain. Upon ligand binding, Act1 activates NF-kB, C/EBP family, and MAPK pathway by inducing various TRAF proteins. Act1 is essential for mediating
ubiquitination of TRAF6, then TRAF6 triggers a positive reaction in multiple different pathways. TRAF6 recruits and stimulates the TAK1 and IKK complex, leading to
activation of NF-kB pathway. IL-17R-Act1 complex together with TRAF4, MEKK3, and MEK5 to promote activation of ERK5. In addition, ACT1-TRAF2-TRAF5
complex is capable to maintain the mRNA stability targeting the IL-17 gene. The inhibitors A20 and TRAF3 are linked with IL-17RA, dependent on the CBAD.
C/EBP, CCAAT/enhancer-binding proteins; NF-kB, canonical nuclear factor-kB; MAPK, mitogen-activated protein kinase; TRAF, tumor necrosis factor receptor
associated factor; TAK1, transforming growth factor-b activated kinase 1; IKK, inhibitor of kappa B kinase; ERK5, extracellular signal-regulated kinase 5; RORgt,
retinoid-related orphan receptor-gt; STAT3, signal transducer and activator of transcription 3; JAK2, Janus activated kinase 2; TYK2, tyrosine kinase 2.
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FIGURE 2 | T-cell immune axis and associated cytokines in the pathogenesis of psoriasis, hidradenitis suppurativa, atopic dermatitis, and alopecia areata.
(A) Psoriasis develops through the aberrant activation of the dendritic cells producing IL-12 and IL-23. The dendritic cells induce the differentiation of the Th 17 cells
and Th1 cells. IL-23 promotes the Th17 cells to secrete IL-17, IL-22, and TNF-a. In keratinocytes, IL-17 also stimulates production of antimicrobial peptides
(S100A7/A8/A9 proteins and beta defensins). These cytokines promote keratinocyte proliferation and neutrophil recruitment, resulting in the formation of psoriatic
plaques. (B) In hidradenitis suppurativa, the T cells involved in the pathogenesis of hidradenitis suppurativa include the Th1 and Th17 cells. IL-23 induces the
differentiation of the Th17 cells and overexpression of IL-17. IL-17 induces the expression of the proinflammatory proteins (S100A8/A9) and NLRP3 in the
keratinocytes. More inflammatory cytokines are recruited to the follicular unit and perilesional skin. (C) In atopic dermatitis, with impairment of the skin barrier in
patients with atopic dermatitis, the damaged keratinocytes produce inflammatory cytokines (IL-17E). The cytokines stimulate the ILC2s to secrete type 2 cytokines
(IL-5 and IL-13). IL-17E also inhibits the synthesis of FLG. IL-4, IL-13, and IL-31 directly stimulate the sensory nerves to promote pruritus. (D) In alopecia areata, the
elevated IFN-g levels in the perifollicular area activate the differentiation of the CD4+ T cells into various types of T cells, as shown. Th17 cells act on the hair follicle by
producing proinflammatory mediators (IL-17, IL-21, IL-22, and IL-26), ultimately leading to the disruption of hair growth. TNF, tumor necrosis factor; NLRP3, NACHT,
LRR, and NACHT, LRR, and PYD domains-containing protein 3; FLG, filaggrin; ILC2s, type 2 innate lymphoid cells; DC, dendritic cell.
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Psoriatic inflammation is not restricted to the skin or joints.
Metabolic disorders, such as hyperglycemia (68) and
cardiovascular risks (69), are also associated with psoriasis.

Apart from IL-17A, the other IL-17 family members (IL-17C,
E, and F) may also be involved in the pathogenesis of psoriasis
(70–72). In contrast to that in the nonlesional psoriatic skin,
mRNA expression of IL-17A, IL-17C, IL-17E, and IL-17F is
increased in the lesional psoriatic skin (39, 70, 73). The IL-17C
and IL-17E levels are higher than the IL-17A levels in the skin
lesions in the psoriatic animal models (7, 73). Through the
STAT3 pathway, the binding of IL-17E to IL-17RB induces
keratinocyte proliferation to amplify skin inflammation in the
psoriatic animal models (70). However, the effects of IL17-C on
the mechanisms of psoriasis are not clear. Both IL-17F and IL-
17A share homomeric and heterodimeric proteins with 50%
sequence identity. The molecular structure and function of IL-
17F are highly similar to those of IL-17A (74). Bimekizumab (an
inhibitor of both IL-17A and IL-17F) is more effective than a
blockade of IL-17A or IL-17F alone, especially for suppressing
neutrophil chemotaxis and activating the synoviocytes or human
dermal fibroblasts in vitro (71).

Targeted Therapy in Psoriasis
The targeted biologics in the treatment of psoriasis are listed in
Supplementary Table. Biologics targeting IL-23 or IL-17A have
shown remarkable effects in the treatment of psoriasis. The anti-
IL-17 agents approved by the FDA include secukinumab (anti-
IL-17A), ixekizumab (anti-IL-17A), brodalumab (anti-IL-17RA),
and bimekizumab (anti-IL-17A and -17F). Biologics against IL-
23 include ustekinumab (anti-IL-12/23p40), tildrakizumab (anti-
IL-23p19), guselkumab (anti-IL-23p19), and risankizumab (anti-
IL-23p19).

Targeting IL-17
Secukinumab
Secukinumab, a human immunoglobulin G1 monoclonal
antibody against IL-17A, is an effective and safe biologic for
psoriasis, involving skin, nails (75), and PsA (76). The data from
the phase III randomized trials (ERASURE and FIXTURE)
showed that secukinumab at doses of 300 or 150 mg is effective
and safe for the treatment of moderate-to-severe psoriasis up to
week 52 (Supplementary Table) (77). Secukinumab maintains
significant powerful and long-lasting effects on the patients
receiving the 300 mg secukinumab treatment every 4 weeks. The
Psoriasis Area and Severity Index (PASI) 90/100 was 66.4%/41% at
156 weeks (78).

In the FUTURE 2 study, patients with PsA receiving
secukinumab therapy achieved excellent and sustained
improvement in the PASI90 and American College of
Rheumatology 50 (ACR50) response at week 24 (Supplementary
Table) (79). The results for patients who continued the study
showed that, at week 104, the ACR50 response rates were 50.6 and
36% with the 300 and 150 mg doses of secukinumab, respectively
(80). Secukinumab is important in suppressing synovitis and
structural bone changes in patients with PsA at week 24, and low
rates of radiographic progression are maintained at week 52 with
secukinumab (81, 82).
Frontiers in Immunology | www.frontiersin.org 5
Secukinumab has significant and long-term efficacy for the
treatment of nail psoriasis. Therefore, the improvement in the
Nail Psoriasis Severity Index (NAPSI) in the secukinumab 300
and secukinumab 150 groups was 73 and 63.6% at week 128,
respectively (75). In summary, secukinumab shows excellent and
sustained efficacy for the treatment of patients with moderate-to-
severe plaque psoriasis and patients with psoriasis with or
without arthritis and nail involvement.

Ixekizumab
Ixekizumab, a humanized immunoglobulin G4 monoclonal
antibody, selectively blocks IL-17A. A multicenter trial
(UNCOVER-3) reported that ixekizumab shows long-term
efficacy for treating moderate-to-severe plaque psoriasis and
that the treatment effects are strongly sustained for up to 156
weeks (Supplementary Table) (83, 84). Similarly, ixekizumab
maintains promising clinical improvements in the scalp, nails,
and palm (83).

According to the data from phase III studies (SPIRIT-P1 and
SPIRIT-P2), ixekizumab is associated with improvements in
disease prognosis and physical function in patients with active
PsA, particularly, in those who are refractory to therapies or
have an inadequate response to the anti-TNF therapies
(Supplementary Table) (85, 86). To date, blockade of IL-17A is
being advocated as first-line for treatment of PsA by the European
League Against Rheumatism in 2019 (87). In general, the
aforementioned studies suggest that ixekizumab is effective in
controlling psoriasis and PsA, particularly in patients with lesions
in hard-to-treat areas or in those who are refractory to treatments.

Brodalumab
Brodalumab, a fully human immunoglobulin G2 IL-17RA
antagonist, leads to a rapid improvement in the molecular,
histological, and clinical features of psoriasis at week 12 (88). The
AMAAGINE-1 study showed that brodalumab shows sustained
efficacy (120 weeks) in the treatment of moderate-to-severe plaque
psoriasis (Supplementary Table) (89, 90). Brodalumab inhibits a
broader range of targets, namely, IL-17AA, IL-17AF, IL-17FF, IL-
17C, and IL-17E via IL-17RA, compared with secukinumab and
ixekizumab. An open-label study involving 39 patients with
moderate-to-severe psoriasis revealed that brodalumab treatment
may be effective for the patients who did not respond to
secukinumab, ixekizumab, or ustekinumab (91, 92).

Moreover, the data from an open-label study have indicated
significant beneficial effect of brodalumab on psoriatic
erythroderma (n = 18) and generalized pustular psoriasis (n =
12; Supplementary Table) (93). However, the sample size of this
study was small; hence, multicenter trials with large sample sizes
of patients with psoriatic erythroderma or generalized pustular
psoriasis should be conducted.

Bimekizumab
Bimekizumab, a humanized monoclonal IgG1 antagonist
neutralizing both IL-17A and IL-17F, is effective for PsA and
moderate-to-severe plaque psoriasis (71, 94). Two phase II trials
(BE ABLE 1 and BE ABLE 2) reported the safety and efficacy of
bimekizumab for the treatment of moderate-to-severe plaque
November 2020 | Volume 11 | Article 594735
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psoriasis (Supplementary Table) (94, 95). Patients with active
PsA, who were administered bimekizumab, showed marked
improvements in their condition at week 48 (Supplementary
Table) (96).

Adverse Events of Targeting IL-17 Therapy
The most commonly noted treatment-emergent adverse events
(TEAEs) are infections, nasopharyngitis, headache, and diarrhea
in patients treated with IL-17 inhibitors compared with
those treated with a placebo (76, 97–99). A systematic review
speculated that it was safe to use IL-17 antagonists
(secukinumab, ixekizumab, and brodalumab) for patients with
psoriasis with latent tuberculosis infection (100). However,
eczematous eruptions were reported in some patients after
treatment with biologics against IL-17A (secukinumab or
ixekizumab) for 3–4 months (101). To date, the mechanism
underlying the onset of eczematous adverse events after anti-IL-
17A treatment is not clear. Both the Th1 and Th2 responses are
involved in the pathogenesis of eczema. This may be due to the
anti-IL-17 biologics mainly inhibit the Th17 cytokines and
mediate an imbalance in the Th2/Th17 immune response, thus
leading to eczematous eruptions (102–104). The deficiency of
Th17 cells, IL-17RA, and IL-17F are essential for host defense
against fungal pathogens in mucocutaneous and oral epithelial
cells (105–109). The risk of chronic mucocutaneous candidiasis
increases in patients received IL-17 blockades (secukinumab,
ixekizumab, brodalumab, or bimekizumab) (94, 96, 110).

Targeting IL-23
Ustekinumab, a humanized IgG1monoclonal antibody against the
p40 subunit of IL-12 and IL-23, is approved for treating adult and
pediatric patients with moderate-to-severe plaque psoriasis (111).
Two phase III trials (PHOENIX 1 and PHOENIX 2) reported
rapid and sustained efficacy of ustekinumab when administered at
doses of 45 mg or 90 mg every 12 weeks for patients with
moderate-to-severe plaque psoriasis (Supplementary Table)
(112, 113).

According to the phase IV trial (VIP-U), ustekinumab may
reduce aortic vascular inflammation transiently (at week 12) and
downregulate the expression of the inflammatory cytokines
(TNF-a, IL-1b, IL-17A, IL-18, and IL-6) sustainably (at week
52) (114). In 25 patients with psoriasis, inflammation in the liver,
spleen, and artery decreased after treatment with ustekinumab,
as indicated by the radiography findings (115). A summary
analysis indicated that ustekinumab has long-term (5 years)
safety with respect to patients with moderate-to-severe
psoriasis (116).

Risankizumab, a humanized IgG1 monoclonal antibody
inhibits the p19 subunit of IL-23 (117). In the landmark
UltIMMa-1 and UltIMMa-2 studies, 150 mg risankizumab
proved beneficial in the treatment of moderate-to-severe
psoriasis compared with a placebo and ustekinumab
(Supplementary Table) (118).

Tildrakizumab is a humanized IgG1 monoclonal antagonist,
targeting IL-23p19. The data from reSURFACE 1 and
reSURFACE 2 have indicated significant safety and efficacy of
tildrakizumab for the treatment of chronic plaque psoriasis;
Frontiers in Immunology | www.frontiersin.org 6
moreover, tildrakizumab was well-tolerated by the patients
(Supplementary Table) (119). A pooled analysis of three trials
showed that tildrakizumab maintains beneficial impact and low
rates of serious TEAEs. The PASI75 scores of patients
continuously treated with 100 mg and 200 mg tildrakizumab at
64 weeks were 86 and 83%, respectively (120).

Guselkumab, a human monoclonal anti-IL-23p19 antagonist,
is used for the treatment of PsA (121). Two phase III trials
(DISCOVER-1 and DISCOVER-2) showed that patients with
PsA treated with guselkumab showed excellent and rapid,
improvements in their condition; moreover, guselkumab
treatment was safe for these patients. The results of the trials
revealed that, at week 24, the ACR20 response rates were 52 and
64% for guselkumab administered every 4 weeks and 8 weeks,
respectively (Supplementary Table) (122, 123).

In summary, the aforementioned clinical trials reported that
anti-IL-23 antibodies can successfully control psoriasis and PsA.
However, the long-term follow-up data on anti-IL-23p19
biologics are limited. Multicenter studies with large sample
sizes should be conducted in the future to evaluate the long-
term efficacy and safety of these antagonists.
HIDRADENITIS SUPPURATIVA

Role of IL-17 in Hidradenitis Suppurativa
HS is a Th1/Th17-driven inflammatory skin disease (Figure 2)
(124). The histopathological analysis of skin biopsy samples has
revealed that the frequencies of the Th17 cells and regulatory T
(Treg) cells are elevated in the lesional HS skin (19). The levels of
inflammatory cytokines (IL-17, IL-23, IL-1b, TNF-a, and IL-12)
are high in the lesional, perilesional, and uninvolved skin of
patients with HS (125, 126). The serum levels of IL-17 and
S100A8/A9 are higher in the patients with HS than in healthy
individuals (127, 128).

The neutrophils and Th17 cells are the major sources of IL-17 in
HS; in contrast, the keratinocytes are a key source of
proinflammatory molecules, including S100A8/A9, NACHT, LRR,
and PYD domains-containing protein 3, and caspase-1 (19, 129).
Notably, HS showed histopathological changes characteristic of
epidermal psoriasiform hyperplasia, follicular plugging, and
infiltration of low-grade leucocytes in the uninvolved skin of
perilesional HS (130). In such microenvironments, the IL-17-
stimulated keratocytes show upregulation of the expression of the
proinflammatory proteins (S100A8/A9) and promotion of the
release of IL-1b by activation of the NACHT, LRR, and PYD
domains-containing protein 3. Consequently, large amounts of
proinflammatory molecules are recruited to promote the influx of
the neutrophils, which, in turn, upregulate the release of IL-17 and
S100A8/A9; thus, a positive-feedback loop of the inflammatory
response is maintained (Figure 2) (129, 131).

Targeted Therapy in Hidradenitis
Suppurativa
An open-label and single-site exploratory trial has reported the
efficacy of targeting IL-17A with secukinumab in the treatment of
November 2020 | Volume 11 | Article 594735
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HS. The nine patients administrated of 300 mg secukinumab once a
week from baseline for 5 weeks and then every 4 weeks. At 24 weeks,
67% patients with HS achieved Hidradenitis Suppurativa Clinical
Response (HiSCR) score (132). Very recently, an open-label pilot
cohort study on 10 patients assessed the well tolerability and clinical
response of brodalumab in the treatment of moderate to severe HS.
It demonstrated that patients received 210 mg brodalumab
achieving HiSCR at week 12, and HiSCR improvement occurred
as early as week 2 (133). An open-label study indicates that, at week
40, a moderate-to-marked improvement of the modified Sartorius
score was achieved in 82% (14/17) of patients with HS receiving IL-
12/23 biologic ustekinumab therapy (134). The data on the efficacy
and safety of biologics for treating HS are limited, and further
studies with adequate sample sizes are required to establish the
effective and long-term impact of treatment.
ATOPIC DERMATITIS

Traditionally, AD was considered a Th2 immune response with
elevated levels of IgE. Studies have revealed that the Th1, Th2,
Th22, and Th17 cells are involved in the pathogenesis of AD
(Figure 2) (135, 136). It has been demonstrated that Th22 and
Th17 immune responses contribute to chronic skin lesions of AD,
especially in pediatric, intrinsic, and Asian patients (137–140).

IL-17E (also called IL-25) level increases in the epidermis in
patients with AD (141). In keratinocytes, the null mutation of
filaggrin gene (FLG) is associated with the skin barrier
dysfunction, increasing the risk of AD (142, 143). FLG
synthesis is suppressed by IL-17E in the keratinocytes (144).
Moreover, the data from mouse models indicated that IL-17E
induces the type 2 innate lymphoid cells to produce type 2
cytokines (IL-5 and IL-13) (145).

To investigate the efficacy of anti-IL-17A biologics in AD, a
randomized phase II trial was conducted involving 41 patients
who were administered secukinumab. However, the trial results
showed that at week 16, both clinical assessments (the Scoring
Atopic Dermatitis index and Eczema Area and Severity Index)
and lesional skin immunohistochemical analysis of patients
receiving secukinumab revealed no significant improvement
compared with those receiving a placebo (146). This trial
demonstrated that IL17 is not a pivotal contributor to the
pathogenesis of AD, even in the subsets of patients with higher
Th17 activation.

Although ustekinumab showed promising efficacy in a review
which included published case reports and case series (147), no
efficacy was observed in randomized controlled trials of targeting
IL-12/23 for treating patients with AD (148, 149). Additional
studies with large sample sizes and may show the efficacy of
ustekinumab in treating AD.
ALOPECIA AREATA

AA is a common inflammatory skin disorder, which is
characterized by nonscarring hair loss via infiltration of the
Frontiers in Immunology | www.frontiersin.org 7
CD8+ T cells and increase in the levels of cytokines (IFN-g,
TNF-a, IL-17 and IL-4; Figure 2) (150). IL-2, IFN-g, IL-10, IL-
13, and IL-17A are expressed at high levels in the serum of
patients with AA, while the level of transforming growth factor
-b1 is decreased (151, 152). The Th17 cell frequencies and IL-17
levels significantly increased both in the peripheral blood and
scalp lesions in patients with AA; however, the frequency of Treg
cells decreased (153, 154). Studies have reported that patients
with AA do not show any response to the administration of anti-
IL-23/IL-12 ustekinumab (n = 4) or anti-IL-17A secukinumab
(n = 7) (155, 156). Therefore, it cannot be concluded the
contribution of Th17/IL-17 in the pathogenesis of AA. Further
clinical trials with large sample size may reveal the value of IL-17
as a target of AA.
PITYRIASIS RUBRA PILARIS

PRP is a rare acquired inflammatory skin disease. The levels of
Th17 and Th1 cytokines increase in the lesional skin of the
patients with PRP, including IL-17A, IL-17F, IL-22, TNF, IL-6,
IL-12, IL-23, and IL-1b (157). The IL-23/Th17 axis seems to be
important in the pathogenesis of PRP due to the clinical and
histopathologic improvement in the targeting IL-12/23 and IL-
17A (ustekinumab, secukinumab, and ixekizumab) treatment of
patients with PRP (157–160). In a single-armed trial, analyzing
changes in the clinical signs and symptoms (using PASI scores)
showed that PASI50, PASI75 and PASI90 response rates were 58,
42, and 17% respectively during ixekizumab treatment of PRP at
week 24 (160). For those 5 patients who failed to conventional
therapies, all of them have achieved clinical improvement from
ustekinumab, particularly, changes in decreased erythema,
follicular hyperkeratosis, and scaling during a 15-month
follow-up period (161).
PEMPHIGUS

In the serum and lesional skin of patients with pemphigus vulgaris,
the levels of IL-23 and IL-17 increase, both are significantly
correlated with diseases severity (162, 163). The frequency of
CD4+IL-17+cells and the level of IL-23R mRNA show increases in
the serum of patients with pemphigus foliaceus (164), in contrast to
showing decreases in newly diagnosed patients with pemphigus
vulgaris (165). This may be a result of the Th17 cells have plasticity
and converting to Th1-like Th17 cells (165–167). There are some
reports that the frequency of Th17 cells and level of IL-17 show
decreases in other autoimmune and inflammatory diseases, such as
lipopolysaccharides responsive beige-like anchor protein deficiency
(165, 167).
SYSTEMIC SCLEROSIS

The imbalance and dysfunction of Th17/Treg cells are crucial to
the generation of SSc (168). Quantitative analysis of Th17
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cytokines in lesional skin of SSc showed that the expression of IL-
17A, IL-13, IL-22, and IL-26 mRNA are higher compared with
healthy control (169, 170). The levels of circulating Th17 cells
and IL-17 elevated in serum of patients with SSc. They are in
correlation with disease severity and collagen overproduction
(171, 172). The elevated levels of IL-17A act on dermal vascular
smooth muscle cells to promote vascular fibrosis in the patients
with SSc, via activating extracellular signal-regulated kinase 1/2
signaling pathway (173).
CONCLUSION

In summary, the Th17/IL-17 axis has been identified as a key
factor in skin inflammatory diseases, such as psoriasis, HS, AD,
PRP, pemphigus, and SSc. Neutralizing IL-17 or IL-23 in
psoriasis, HS and PRP has shown promising clinical
improvements. Additional studies are required to identify
whether IL-17 is involved in the pathogenesis of AA, PRP,
pemphigus, and SSc, which may lead to the development of
targeted strategies for efficiently ameliorating or specifically
eliminating these debilitating diseases.
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10. Uluçkan Ö, Jimenez M, Karbach S, Jeschke A, Graña O, Keller J, et al.
Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition
of Wnt signaling in osteoblasts. Sci Transl Med (2016) 8(330):330ra37.
doi: 10.1126/scitranslmed.aad8996

11. Moos S, Mohebiany AN, Waisman A, Kurschus FC. Imiquimod-Induced
Psoriasis in Mice Depends on the IL-17 Signaling of Keratinocytes. J Invest
Dermatol (2019) 139(5):1110–7. doi: 10.1016/j.jid.2019.01.006

12. Su Y, Huang J, Zhao X, Lu H, Wang W, Yang XO, et al. Interleukin-17
receptor D constitutes an alternative receptor for interleukin-17A important
in psoriasis-like skin inflammation. Sci Immunol (2019) 4(36). doi: 10.1126/
sciimmunol.aau9657

13. Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, et al. Increased
expression of interleukin 17 in inflammatory bowel disease. Gut (2003) 52
(1):65–70. doi: 10.1136/gut.52.1.65

14. Wu NL, Huang DY, Tsou HN, Lin YC, Lin WW. Syk mediates IL-17-
induced CCL20 expression by targeting Act1-dependent K63-linked
ubiquitination of TRAF6. J Invest Dermatol (2015) 135(2):490–8.
doi: 10.1038/jid.2014.383

15. Nesmond S, Muller C, Le Naour R, Viguier M, Bernard P, Antonicelli F, et al.
Characteristic Pattern of IL-17RA, IL-17RB, and IL-17RC in Monocytes/
Macrophages and Mast Cells From Patients With Bullous Pemphigoid.
Front Immunol (2019) 10:2107. doi: 10.3389/fimmu.2019.02107

16. Koenders MI, Kolls JK, Oppers-Walgreen B, van den Bersselaar L, Joosten
LA, Schurr JR, et al. Interleukin-17 receptor deficiency results in impaired
synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and
13 and prevents cartilage destruction during chronic reactivated
streptococcal cell wall-induced arthritis. Arthritis Rheum (2005) 52
(10):3239–47. doi: 10.1002/art.21342

17. Xiao X, Shi X, Fan Y, Wu C, Zhang X, Minze L, et al. The Costimulatory
Receptor OX40 Inhibits Interleukin-17 Expression through Activation of
Repressive Chromatin Remodeling Pathways. Immunity (2016) 44(6):1271–
83. doi: 10.1016/j.immuni.2016.05.013

18. Jandus C, Bioley G, Rivals JP, Dudler J, Speiser D, Romero P. Increased
numbers of circulating polyfunctional Th17 memory cells in patients with
seronegative spondylarthritides. Arthritis Rheum (2008) 58(8):2307–17.
doi: 10.1002/art.23655

19. Moran B, Sweeney CM, Hughes R, Malara A, Kirthi S, Tobin AM, et al.
Hidradenitis Suppurativa Is Characterized by Dysregulation of the Th17:
Treg Cell Axis, Which Is Corrected by Anti-TNF Therapy. J Invest Dermatol
(2017) 137(11):2389–95. doi: 10.1016/j.jid.2017.05.033
November 2020 | Volume 11 | Article 594735

https://www.frontiersin.org/articles/10.3389/fimmu.2020.594735/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2020.594735/full#supplementary-material
https://doi.org/10.1096/fj.201701242RR
https://doi.org/10.1096/fj.201701242RR
https://doi.org/10.4049/jimmunol.1601540
https://doi.org/10.1016/j.jid.2018.02.042
https://doi.org/10.1038/ni1261
https://doi.org/10.3389/fimmu.2018.01611
https://doi.org/10.4049/jimmunol.1201505
https://doi.org/10.4049/jimmunol.1201505
https://doi.org/10.1161/atvbaha.114.304108
https://doi.org/10.1016/j.jid.2019.01.021
https://doi.org/10.1126/scitranslmed.aad8996
https://doi.org/10.1016/j.jid.2019.01.006
https://doi.org/10.1126/sciimmunol.aau9657
https://doi.org/10.1126/sciimmunol.aau9657
https://doi.org/10.1136/gut.52.1.65
https://doi.org/10.1038/jid.2014.383
https://doi.org/10.3389/fimmu.2019.02107
https://doi.org/10.1002/art.21342
https://doi.org/10.1016/j.immuni.2016.05.013
https://doi.org/10.1002/art.23655
https://doi.org/10.1016/j.jid.2017.05.033
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. IL-17 and Inflammatory Skin Diseases
20. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick
JD, et al. IL-23 drives a pathogenic T cell population that induces
autoimmune inflammation. J Exp Med (2005) 201(2):233–40.
doi: 10.1084/jem.20041257

21. Venken K, Jacques P, Mortier C, Labadia ME, Decruy T, Coudenys J, et al.
RORgammat inhibition selectively targets IL-17 producing iNKT and
gammadelta-T cells enriched in Spondyloarthritis patients. Nat Commun
(2019) 10(1):9. doi: 10.1038/s41467-018-07911-6

22. Kurdi AT, Bassil R, Olah M, Wu C, Xiao S, Taga M, et al. Tiam1/Rac1
complex controls Il17a transcription and autoimmunity. Nat Commun
(2016) 7:13048. doi: 10.1038/ncomms13048

23. Cho JJ, Xu Z, Parthasarathy U, Drashansky TT, Helm EY, Zuniga AN, et al.
Hectd3 promotes pathogenic Th17 lineage through Stat3 activation and
Malt1 signaling in neuroinflammation. Nat Commun (2019) 10(1):701.
doi: 10.1038/s41467-019-08605-3

24. Goepfert A, Lehmann S, Blank J, Kolbinger F, Rondeau J-M. Structural
Analysis Reveals that the Cytokine IL-17F Forms a Homodimeric Complex
with Receptor IL-17RC to Drive IL-17RA-Independent Signaling. Immunity
(2020) 52(3):499–512. doi: 10.1016/j.immuni.2020.02.004

25. Ho AW, Shen F, Conti HR, Patel N, Childs EE, Peterson AC, et al. IL-17RC
is required for immune signaling via an extended SEF/IL-17R signaling
domain in the cytoplasmic tail. J Immunol (2010) 185(2):1063–70.
doi: 10.4049/jimmunol.0903739

26. Onishi RM, Park SJ, Hanel W, Ho AW, Maitra A, Gaffen SL. SEF/IL-17R
(SEFIR) is not enough: an extended SEFIR domain is required for il-17RA-
mediated signal transduction. J Biol Chem (2010) 285(43):32751–9.
doi: 10.1074/jbc.M110.121418

27. Zhang B, Liu C, Qian W, Han Y, Li X, Deng J. Structure of the unique SEFIR
domain from human interleukin 17 receptor A reveals a composite ligand-
binding site containing a conserved alpha-helix for Act1 binding and IL-17
signaling. Acta Crystallogr D Biol Crystallogr (2014) 70(Pt 5):1476–83.
doi: 10.1107/S1399004714005227

28. Qian Y, Liu C, Hartupee J, Altuntas CZ, Gulen MF, Jane-Wit D, et al. The
adaptor Act1 is required for interleukin 17-dependent signaling associated
with autoimmune and inflammatory disease. Nat Immunol (2007) 8(3):247–
56. doi: 10.1038/ni1439

29. Patel DN, King CA, Bailey SR, Holt JW, Venkatachalam K, Agrawal A, et al.
Interleukin-17 stimulates C-reactive protein expression in hepatocytes and
smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-kappaB and
C/EBPbeta activation. J Biol Chem (2007) 282(37):27229–38. doi: 10.1074/
jbc.M703250200

30. Chang SH, Park H, Dong C. Act1 adaptor protein is an immediate and
essential signaling component of interleukin-17 receptor. J Biol Chem (2006)
281(47):35603–7. doi: 10.1074/jbc.C600256200

31. Bulek K, Liu C, Swaidani S, Wang L, Page RC, Gulen MF, et al. The inducible
kinase IKKi is required for IL-17-dependent signaling associated with
neutrophilia and pulmonary inflammation. Nat Immunol (2011) 12
(9):844–52. doi: 10.1038/ni.2080

32. Wu L, Chen X, Zhao J, Martin B, Zepp JA, Ko JS, et al. A novel IL-17
signaling pathway controlling keratinocyte proliferation and tumorigenesis
via the TRAF4-ERK5 axis. J Exp Med (2015) 212(10):1571–87. doi: 10.1084/
jem.20150204

33. Sun D, Novotny M, Bulek K, Liu C, Li X, Hamilton T. Treatment with IL-17
prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5
and the splicing-regulatory factor SF2 (ASF). Nat Immunol (2011) 12
(9):853–60. doi: 10.1038/ni.2081

34. Zhu S, Pan W, Shi P, Gao H, Zhao F, Song X, et al. Modulation of
experimental autoimmune encephalomyelitis through TRAF3-mediated
suppression of interleukin 17 receptor signaling. J Exp Med (2010) 207
(12):2647–62. doi: 10.1084/jem.20100703

35. Garg AV, Ahmed M, Vallejo AN, Ma A, Gaffen SL. The deubiquitinase A20
mediates feedback inhibition of interleukin-17 receptor signaling. Sci Signal
(2013) 6(278):ra44. doi: 10.1126/scisignal.2003699

36. Chiricozzi A, Suarez-Farinas M, Fuentes-Duculan J, Cueto I, Li K, Tian S,
et al. Increased expression of interleukin-17 pathway genes in nonlesional
skin of moderate-to-severe psoriasis vulgaris. Br J Dermatol (2016) 174
(1):136–45. doi: 10.1111/bjd.14034
Frontiers in Immunology | www.frontiersin.org 9
37. Takahashi H, Tsuji H, Hashimoto Y, Ishida-Yamamoto A, Iizuka H. Serum
cytokines and growth factor levels in Japanese patients with psoriasis. Clin
Exp Dermatol (2010) 35(6):645–9. doi: 10.1111/j.1365-2230.2009.03704.x

38. Harper EG, Guo C, Rizzo H, Lillis JV, Kurtz SE, Skorcheva I, et al. Th17
cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo:
implications for psoriasis pathogenesis. J Invest Dermatol (2009) 129
(9):2175–83. doi: 10.1038/jid.2009.65

39. Johansen C, Usher PA, Kjellerup RB, Lundsgaard D, Iversen L, Kragballe K.
Characterization of the interleukin-17 isoforms and receptors in lesional
psoriatic skin. Br J Dermatol (2009) 160(2):319–24. doi: 10.1111/j.1365-
2133.2008.08902.x

40. Kolbinger F, Loesche C, Valentin MA, Jiang X, Cheng Y, Jarvis P, et al. b-
Defensin 2 is a responsive biomarker of IL-17A-driven skin pathology in
patients with psoriasis. J Allergy Clin Immunol (2017) 139(3):923–32.e8.
doi: 10.1016/j.jaci.2016.06.038
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