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FoxM1 repression during human aging leads to
mitotic decline and aneuploidy-driven full
senescence
Joana Catarina Macedo1,2, Sara Vaz1,2, Bjorn Bakker3, Rui Ribeiro 1,2, Petra Lammigje Bakker3,

Jose Miguel Escandell4, Miguel Godinho Ferreira 4,5, René Medema6, Floris Foijer 3 & Elsa Logarinho 1,2,7

Aneuploidy, an abnormal chromosome number, has been linked to aging and age-associated

diseases, but the underlying molecular mechanisms remain unknown. Here we show, through

direct live-cell imaging of young, middle-aged, and old-aged primary human dermal fibro-

blasts, that aneuploidy increases with aging due to general dysfunction of the mitotic

machinery. Increased chromosome mis-segregation in elderly mitotic cells correlates with an

early senescence-associated secretory phenotype (SASP) and repression of Forkhead box M1

(FoxM1), the transcription factor that drives G2/M gene expression. FoxM1 induction in

elderly and Hutchison–Gilford progeria syndrome fibroblasts prevents aneuploidy and,

importantly, ameliorates cellular aging phenotypes. Moreover, we show that senescent

fibroblasts isolated from elderly donors’ cultures are often aneuploid, and that aneuploidy is a

key trigger into full senescence phenotypes. Based on this feedback loop between cellular

aging and aneuploidy, we propose modulation of mitotic efficiency through FoxM1 as a

potential strategy against aging and progeria syndromes.
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Numerous studies over the past decades have supported a
link between aging and aneuploidy1. This association has
been well documented for oocytes and is considered to be

the main cause of miscarriage and birth defects in humans2.
However, aneuploidy can also arise in somatic cells, and a
number of studies have reported age-dependent increases in
aneuploidy3–7. These studies have shown that aging is positively
correlated with the incidence of chromosome mis-segregation,
raising the question whether there is a general dysfunction of the
mitotic apparatus in aged cells8. Transcriptome analyses of a
panel of fibroblast and lymphocyte cultures from young and old
individuals revealed changes in the expression of genes control-
ling the mitotic machinery9,10. However, the use of mixed cell
populations in different stages of the cell cycle and the lower
mitotic indexes (MIs) of elderly cell cultures has limited these
studies from clearly demonstrating whether mitotic genes are
repressed intrinsically in old dividing cells. Moreover, analysis of
the mitotic process in aging models and diseases has been scarce
and a comprehensive analysis of cell division efficiency in natu-
rally aged cells is largely missing.

More recently, aneuploidy has been also linked to aging.
Mutant mice with low levels of the spindle assembly checkpoint
(SAC) protein BubR1 were found to develop progressive aneu-
ploidy along with a variety of progeroid features, including short
lifespan, growth retardation, sarcopenia, cataracts, loss of sub-
cutaneous fat, and impaired wound healing11–14. In addition,
systematic analyses of disomic yeast, trisomic mouse, and human
cells, all cells with an extra chromosome, have elucidated the
impact of aneuploidy in cellular fitness15. The cumulative effect of
copy number changes of many genes induces the so called pan-
aneuploidy phenotypes, namely proliferation defects16,17, gene
signature of environmental stress response18,19, multiple forms of
genomic instability20–22, and proteotoxicity23–25, which, inter-
estingly, are hallmarks of cellular aging26.

Together, these observations suggest that there is a positive
correlation between aging and aneuploidy, but evidence for
mitotic decline in elderly dividing cells and for aneuploidy-driven
permanent loss of proliferation capacity (full senescence) is lim-
ited. Here, we used live-cell time-lapse imaging to investigate the
mitotic behavior of human dermal fibroblasts (HDFs) collected
from healthy Caucasian males with ages ranging from neonatal to
octogenarian and cultured under low passage number. We show
that mitotic duration increases with advancing age, concurrent
with a higher rate of mitotic defects. We demonstrate this mitotic
decline to arise from a transcriptional repression of mitotic genes
in pre-senescent dividing cells exhibiting senescence-associated
secretory phenotype (SASP). We show short-term induction of
Forkhead box M1 (FoxM1) transcriptional activity to improve
mitotic fitness and ameliorate senescence phenotypes in elderly
and progeroid cells. Finally, we show aneuploidy to induce full
senescence in naturally aged cells, which suggests that mitotic
fitness enhancement may be a potential anti-aging strategy.

Results
Aneuploidy increases during natural aging. In our study, we
used HDFs collected from healthy Caucasian males with ages
ranging from neonatal to octogenarian (Supplementary Table 1),
to test whether aneuploidy increases during natural aging and if
this is a consequence of a general dysfunction of the mitotic
machinery in aged cells. As inter-individual differences exist in
the rate at which a person ages (biological age), we included two
donors of each age in a total of five chronological ages to increase
the robustness of any correlation found with aging. In addition,
we used dermal fibroblasts from an 8-year-old child with the
Hutchison–Gilford progeria syndrome (HGPS) as a model of

premature cellular aging27. Considering that during a normal
post-natal lifespan, cells in vivo will hardly reach the exhaustion
number of replications observed in culture28, and to limit any
artifacts and clonal selection of in vitro culturing, only early cell
culture passages (≤5) way below replicative lifespan exhaustion
were used (population doubling level (PDL) < 24; Supplementary
Table 1 and Methods). Chronic accumulation of macromolecular
damage during natural aging induces a cellular stress response
known as senescence29, and accumulation of senescent cells has
been widely reported for chronological aging and age-related
disorders30,31. Accordingly, we found higher levels of senescence-
associated (SA) biomarkers32, measured under strict quantitative
parameters by microscopy analysis, in the proliferating fibroblast
cultures from older individuals and the HGPS patient (Supple-
mentary Fig.1 a–e), thus validating their suitability as models of
advanced and premature aging, respectively.

To determine whether aneuploidy increases with aging, we
performed fluorescence in situ hybridization (FISH) for three
chromosome pairs in asynchronous cell populations from
different age donors and scored all samples blindly. We found
significantly higher (two-tailed χ2 test) aneusomy indices (ratio of
aneusomic cells for chromosomes 7, 12, and 18 to the total cell
count for a sample) in the middle-aged, old-aged, and progeria
samples (Fig. 1a). Interestingly, in these samples, not all single-
chromosome aneusomy indices were significantly higher, sug-
gesting that a combination of multi-chromosome aneusomy
indices is a stronger predictor of mild aneuploidy levels if there
are chromosomes with unequal probability of contributing to
aneuploid progeny or if different aneuploidies are distinctly
selected in the cell population (Supplementary Table 2). More-
over, as aneuploid cells are most likely outcompeted in culture by
diploid cells16, thereby diluting the aneuploidy index, we
additionally measured the rate of chromosome mis-segregation
(number of events in which two sister chromatids co-segregate to
the same daughter cell) by combining a cytokinesis-block assay
with FISH staining. In this approach, we scored all binucleated
(BN) cells generated during a 24 h treatment with cytochalasin D
(cytokinesis inhibitor; see Methods). We found the percentage of
BN cells with chromosome mis-segregation over the total BN cell
count for a sample to be significantly higher (two-tailed χ2test) in
the middle-aged, old-aged, and progeria cultures (Fig. 1b). Taken
together, these FISH experiments show that increased mis-
segregation rates are associated with mild aneuploidy levels in
elder cultures, supporting the idea of an age-associated loss of
mitotic fidelity.

Elder cells divide slower with increased rate of mitotic defects.
To gain insight into how old cells divide, we followed individual
mitotic cells by long-term phase-contrast time-lapse imaging.
Interestingly, we found the interval between nuclear envelope
breakdown (NEB) and anaphase onset to increase steadily with
advancing age (Fig. 1c, d). To exclude any effects due to genetic
heterogeneity between the Caucasian donors and/or biobank
discrepancies in culture set up, we used mouse adult fibroblasts
recurrently sampled from female mice over a period of 2 years. In
this model, culture conditions were highly homogenous, thereby
providing a solid “ex vivo” model of chronological aging. Again,
both mitotic duration (Supplementary Fig. 2a–c) and SA bio-
markers (Supplementary Fig. 2d, e) progressively increased with
aging.

We then asked what could be leading to the age-associated
mitotic delay. Bypass of short telomere-triggered senescence by
disruption of tumor-suppressive pathways, shown to elicit
telomere fusion-driven prolonged mitosis33, was ruled out as
potential cause, as we found no evidence for chromosome fusions
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Fig. 1 Aneuploidy and mitotic duration increase during normative aging. a Aneusomy index of three chromosome pairs (7, 12, and 18) in interphase cells
from different age donors. b Percentage of cytochalasin D-induced binucleated cells with chromosome 7, 12, and 18 mis-segregation. Representative
images of euploid/2N and aneuploid/2N ± l cells are shown in a, b, with chromosome-specific centromeric probes as indicated. Scale bars, 5 µm. c Frame
series of time-lapse phase-contrast movies of mitotic neonatal and elderly cells ±Mps1 inhibitor. Time, min:s. Scale bar, 20 µm. d Mitotic duration of
individual fibroblasts from different donors, measured from nuclear envelope breakdown (NEB) to anaphase onset (ANA). e Mitotic duration under
standard conditions as in d (white bars) and following treatment with Mps1 inhibitor (gray bars). Values are mean ± SD from at least three independent
experiments, using two biological samples of similar age (except for progeria). Sample size (n) is indicated in each graph. NS, p > 0.05, *p≤ 0.05, **p≤
0.01, ***p≤ 0.001, and ****p≤ 0.0001 in comparison with neonatal (N/N) by two-tailed χ2 (a, b) and Mann–Whitney (d, e) statistical tests
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in metaphase spreads of the primary dermal fibroblasts used in
our study (Supplementary Fig. 3a). Activation of the SAC by
defective kinetochore–microtubule attachments and/or reduced
efficiency of the ubiquitin-proteasome system induced by
proteotoxic stress could alternatively explain the delay between
NEB and anaphase onset in older cells. We found the mitotic
delay to depend on SAC activity as treatment with a small
molecule inhibitor of the Mps1 kinase rescued mitotic duration to
similar levels in all cell cultures (Fig. 1c, e). Enhancement of
proteasome activity with a small molecule inhibitor of the Usp14
deubiquitinase did not change mitotic duration considerably
(Supplementary Fig. 3b). As a correlation between cell size,
mitotic duration, and SAC strength was recently described34, we
further tested whether aging-associated mitotic delay was due to
increased cell size. We found no correlation between mitotic
duration and cell size in fibroblast cultures (Supplementary Fig. 3
c-f). In addition, when treated with taxol and the kinesin-5
inhibitor (S-Trityl-l-cysteine, STLC) to induce chronic activation
of the SAC, elderly cells arrested in mitosis as long as young cells
before they slipped out, suggesting that SAC strength is similar
(Supplementary Fig. 3g, h).

To investigate chromosome and/or spindle defects contributing
to increased mitotic duration in older cells, we performed high-
resolution spinning-disk confocal microscopy in cells expressing
H2B–GFP and α-Tubulin–mCherry (Supplementary Movies 1–
4). We found several mitotic defects to be increased in middle-
aged and old-aged samples (Fig. 2a–f), namely chromosome
congression delay (Fig. 2b, e, f; Supplementary Movie 2),
anaphase lagging chromosomes (Fig. 2c, e, f; Supplementary
Movie 3), and spindle mispositioning in relation to the growth
surface (Fig. 2d–f; Supplementary Movie 4). In agreement with
proper SAC functioning (Supplementary Fig. 3g, h), aged cells
entering anaphase with unaligned chromosomes were never
observed. Moreover, we found middle-aged, old-aged, and HGPS
cells to more often exhibit micronuclei (an outcome of anaphase
lagging chromosomes35; Fig. 2g) and fail cytokinesis (Fig. 2h),
based on complementary quantitative cell-based assays (fixed-cell
analysis and phase-contrast live-cell imaging, respectively;
Methods). Overall, the data indicated that aging triggers
abnormalities at several mitotic stages, in agreement with the
increased levels of aneuploidy found.

Mitotic gene transcriptional shutdown and SASP in elderly
mitotic cells. To identify the molecular mechanisms behind this
complex aging-associated mitotic phenotype, we performed
RNA-sequencing (RNA-seq) gene expression profiling of cells
captured in mitosis, accordingly to the experimental layout shown
in Fig. 3a. Fibroblast cultures from neonatal and octogenarian
donors were treated with STLC to enrich for MI, and mitotic cells
collected by mechanical detachment. As cell synchronization
(mitotic enrichment) was limited in elderly vs. neonatal cultures,
we used a higher number of cell culture flasks with octogenarian
fibroblasts treated with STLC to collect equivalent numbers of
mitotic elderly and neonatal cells for RNA-seq. The procedure
yielded purified cell populations with mitotic indices >95% in
both neonatal and 87 y donor cultures (Fig. 3b, c), and impor-
tantly, it uncoupled any changes found in mitotic gene expression
from the samples’ differences in MI (Supplementary Fig. 4a) and
overall proliferation capacity (Supplementary Table 1). Moreover,
apoptosis was excluded as potential cause of reduced proliferation
in elderly cell samples as similar levels of apoptotic cells were
found in neonatal and octogenarian samples by flow cytometry
analysis for annexin V staining (Supplementary Fig. 4b, c).

RNA-seq revealed that the abundance of 3309 gene transcripts
was altered in octogenarian mitotic fibroblasts compared to

neonatal mitotic fibroblasts (Fig. 3d; Supplementary Data 1).
Principal component analysis showed that two independent
experiments from the same donor were consistent for the main
component (Fig. 3e). In agreement with the elderly cell defects in
mitosis, the top 10 most altered Gene Ontology (GO) terms
included six cell cycle-related and mitosis-related gene ontologies
(Fig. 3f). Seventy-one “mitosis” GO genes were altered in
octogenarian mitotic fibroblasts (p-value < 0.05; likelihood ratio
test; Supplementary Data 2), representing a 1.97-fold enrichment
of alterations in this gene set (p-value= 9.73E−9, Fisher
exact test) (Fig. 3g). Moreover, a comprehensive list of 51 SA
genes, including CDKN1A, CDKN2A, GLB1, LMNB1, and SASP
genes (i.e., chemokines, cytokines, metalloproteinases, and others)
36,37, was interrogated in the RNA-seq data set (Supplementary
Data 3). We found altered expression of 26 genes in the elderly vs.
neonatal mitotic cells, with 19 genes behaving as previously
reported36,37 (Fig. 3h; Supplementary Data 4). As the transcrip-
tome of senescent cells is highly heterogeneous and depends on
the cell type and senescence stimulus, we additionally extended
our analysis into 55 genes recently identified as comprising a
“senescence core signature37.” Indeed, we found 19 genes of this
signature to be differentially regulated in the RNA-seq data set of
mitotic octogenarian dermal fibroblasts, with 16 genes behaving
as reported37 (Fig. 3i; Supplementary Data 5). Alterations in the
expression levels of CDKN1A, MMP1, CXCL8, TSPAN13, and
FAM214B, were further confirmed by real-time PCR analysis
(Fig. 3j). Thus, an unforeseen SASP phenotype evolves in elderly
dividing cells, alongside a global transcriptional shutdown of
mitotic genes, likely accounting for aging-associated mild
aneuploidy levels.

FoxM1 repression dictates mitotic decline during natural
aging. RNA-seq analysis also disclosed FOXM1, the transcription
factor that primarily drives the expression of G2/M cell cycle
genes38,39 (Fig. 4a), to be downregulated in elderly mitotic cells
(2logFC: −0.85; false discovery rate (FDR) < 5%; likelihood ratio
test; Supplementary Data 1). Indeed, 36 out of the 71 mitotic
genes altered in octogenarian mitotic cells have been reported as
targets of the Myb-MuvB (MMB)-FOXM1 transcription complex
containing the cell cycle genes homology region (CHR) motif in
their promoters38–40 (Fig. 3b; Supplementary Data 6). In addi-
tion, loss of FOXM1 has previously been shown to cause pleio-
tropic cell cycle defects leading to embryonic lethality41. We
therefore asked whether loss of mitotic proficiency during nor-
mative aging was due to FOXM1 downregulation. Indeed,
increasing age correlated with decreased FoxM1 transcript and
protein levels in our human (Fig. 4c–e) and mouse (Supple-
mentary Fig. 2f–h) mitotic cell samples. Importantly, unlike
previous studies linking FoxM1 repression and aging42,43, by
analyzing mitotic cell samples, we uncoupled FoxM1 down-
regulation from decreased cell proliferative capacity, demon-
strating that elderly cells divide with intrinsically low levels of
FoxM1. To get evidence that FoxM1 repression actually accounts
for an elderly cell mitosis with low mitotic protein levels, we
measured the protein levels of FoxM1 and some of its known
mitotic targets (Cyclin B1, Plk1, Ndc80, and Cdc20)44 by western
blotting analysis of mitotic cell extracts (Fig. 4f, g), as well as by
immunofluorescence analysis of single mitotic cells (Fig. 4h–j;
Supplementary Fig. 5). These quantitative analyses demonstrated
that in elderly mitotic cells, important protein players acting from
mitotic entry (e.g., Cyclin B1) to anaphase onset (e.g., Cdc20) are
in fact expressed at low levels. We thus conclude that an aging-
associated FoxM1 repression likely accounts for an extensive
transcriptional downregulation of mitotic genes and the pheno-
types observed in early senescent dividing cells.
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To test the correlation between FoxM1 repression and age-
associated phenotypes further, we RNA interference (RNAi)-
depleted FoxM1 in fibroblasts from the 10-year-old donor
(Supplementary Fig. 6a). Again, to uncouple gene expression
analysis from the reduction in MI following FoxM1 RNAi
(Supplementary Fig. 6b), we performed RNA-seq profiling of cells
captured in mitosis accordingly to the experimental layout in
Fig. 3a (Supplementary Fig. 6c). RNA-seq revealed that FoxM1
repression altered the abundance of 5841 gene transcripts
(Supplementary Fig. 8a,b; Supplementary Data 7), which were

enriched for mitosis genes (143 genes, GO analysis; FDR < 5%,
likelihood ratio test) (Fig. 5a; Supplementary Data 8). This
constituted a 2.41-fold enrichment of alterations in this gene set
(p-value= 7.43E−32, Fisher exact test). The top ten most altered
GO terms included six related to mitosis (Supplementary Fig. 8d),
and 224 out of 249 G2/M cell cycle genes previously reported as
targets of the DREAM (DP, RB-like, E2F4, and MuvB) and
MMB-FOXM1 transcriptional complexes39, were downregulated
following FoxM1 depletion (Supplementary Fig. 8d). Moreover,
we found 1937 out of the 3309 genes altered in old-aged
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fibroblasts, to be also altered in FoxM1-depleted cells (Fig. 5b;
Supplementary Data 9). Thus, 58.5% of the age-dependent
transcriptional changes are FoxM1-dependent and enriched for
cell cycle/mitosis GO terms (Fig. 5b). In agreement, FoxM1-
depleted young fibroblasts displayed decreased protein levels of
FoxM1 targets (Supplementary Fig. 6d, e), a mitotic delay (Fig. 5c),
mitotic defects (Supplementary Fig. 6f–h), and increased aneuploidy
(Fig. 5d, e), similar to old-aged fibroblasts. Interestingly, the
percentage of cells with SA biomarkers also increased following
FoxM1 repression (Fig. 5f, g), further supported by changes in the
expression levels of SASP genes and genes of the senescence core
signature (Fig. 5h, i; Supplementary Fig. 6i; Supplementary Data 10;
Supplementary Data 11). Altogether, these results show that young
cells with low levels of FoxM1, equivalent to those in octogenarian
cells (Supplementary Fig. 7j,k), recapitulate the aging-associated
mitotic defects, aneuploidy, and senescence phenotypes.

FoxM1 induction rescues aging phenotypes in elderly and
HGPS cells. As FoxM1 depletion reduced mitotic fidelity and
induced senescence in young cells, we hypothesized that FoxM1
overexpression in elderly cells should counteract aging pheno-
types. Expression of a constitutively active truncated form of
FoxM1 (FoxM1-dNdK) in old-aged fibroblasts45,46 (Supplemen-
tary Fig. 7a) increased MI (Supplementary Fig. 7b) and resulted in
altered expression of 2966 gene transcripts as determined by
RNA-seq profiling of cells captured in mitosis accordingly to
experimental layout in Fig. 3a (Supplementary Fig. 7c; Supple-
mentary Data 12; Supplementary Fig. 8a, c). Altered gene tran-
scripts were enriched for “mitosis” GO genes (79 genes; Fig. 6b;
Supplementary Data 13). To gain insight into the mitosis genes
found altered in elderly cells that are dependent on FoxM1
transcriptional activity, we performed comparative analysis with
mitosis genes altered in 87 y FoxM1-dNdK and 10 y
siFoxM1 samples (Fig. 6c; Supplementary Data 14). Fifty genes
out of the 71 mitosis genes altered in 87 y cells were also altered in
FoxM1-dNdK and siFoxM1 experimental conditions, suggesting
that FoxM1 primarily accounts for age-related mitotic pheno-
types. Concordantly, mitotic protein levels (Supplementary
Fig. 7d, e) and age-associated mitotic defects were ameliorated in
elderly fibroblasts expressing FoxM1-dNdK (Fig. 6a, d; Supple-
mentary Movies 5, 6; Supplementary Fig. 7f–h), resulting in
decreased aneuploidy levels (Fig. 6e, f). Furthermore, the per-
centage of cells with SA biomarkers was decreased (Fig. 6g, h),
consistently to amelioration of SASP and senescence core tran-
scriptional signatures (Fig. 6i, j; Supplementary Fig. 7i; Supple-
mentary Data 15; Supplementary Data 16). Interestingly, the
aging phenotypes were rescued by restoring FoxM1 levels in
elderly cells to the levels as present in young cells, indicating that

only mild overexpression of FoxM1-dKdK is sufficient to over-
come the aging phenotypes (Supplementary Fig. 7j, k). To gain
insight into the SA genes found altered in elderly cells that rely on
FoxM1 expression levels, we compared the senescence response
between 87 y FoxM1-dNdK and 10 y siFoxM1 samples (Supple-
mentary Fig. 8e, f). We found that both SASP and senescence core
signature genes are largely regulated by FoxM1 levels, with 19
SASP genes and 14 senescence core signature genes consistently
altered in all experimental conditions. Further validating our
experimental conditions of FoxM1 expression modulation, we
found extensive overlap between genes altered in 10 y siFoxM1
and 87 y FoxM1-dNdK (1915 genes; Supplementary Fig. 8d;
Supplementary Data 17), with 158 out of the 249 DREAM/MMB-
FOXM1 gene targets included in this overlap. Importantly,
FoxM1-dNdK expression also partly rescued the mitotic defects
(Supplementary Fig. 9a–d; Supplementary Movies 7, 8), aneu-
ploidy levels (Supplementary Fig. 9e, f), and percentage of
senescent cells (Supplementary Fig. 9g, h) in HGPS fibroblasts.
Overall, these data demonstrate that modulation of mitotic effi-
ciency through FoxM1 induction in elderly and HGPS cells
prevents aneuploidy and delays cellular senescence.

Increased aneuploidy in elderly senescent cells. Experimental
modulation of FoxM1 levels in the young (FoxM1 RNAi) and
elderly fibroblasts (FoxM1-dNdK) demonstrated an inherent link
between aneuploidy and senescence. Previous studies have found
cellular/mouse models of constitutional aneuploidy or chromo-
somal instability (CIN) to prematurely senesce/age11,47–51.
Although informative, these studies either represent conditions
where aneuploidy is present from early development onward and/
or conditions where CIN-inducing single gene editing/drug
treatment leads to higher aneuploidy levels than those accumu-
lated during normal aging. Whether the mild aneuploidy levels
caused by global transcriptional shutdown of mitotic genes
account for cellular senescence in natural aging remains
unknown. To address this question, we fluorescence-activated
cell (FACS)-sorted senescent cells from neonatal and elderly
fibroblast cultures using SA-β-galactosidase (SA-β-gal) as a
senescence marker and measured the aneusomy index of three
chromosome pairs (Fig. 6a–f). As expected, the percentage of SA-
β-gal-positive cells was considerably higher in elderly vs. neonatal
early passage cell cultures (Fig. 7a, b, e), and consistent with our
quantitative analysis using fluorescence microscopy (Supple-
mentary Fig. 1a). Strikingly, even though the aneusomy indices of
SA-β-gal-positive cells were significantly higher (two-tailed χ2

test) than those of unsorted controls in both neonatal and elderly
samples, we found a cumulative 9.1% aneusomy index for three
assessed chromosome pairs in elderly senescent cells in

Fig. 3 Mitotic gene downregulation and senescence gene signature in elderly mitotic fibroblasts. a Experimental layout. Fibroblast cultures from different
age donors were treated with kinesin-5 inhibitor (STLC) to enrich for mitotic index (MI). Mitotic (detached) cells were collected and inspected for MI.
Protein extracts and total RNA were prepared for gene expression analyses. b Representative images of neonatal (HDF N) and elderly (HDF 87 y) mitotic
cell shake-offs. Insets are ×2 magnifications. Scale bar, 50 µm. cMI quantification of neonatal and octogenarian mitotic cell shake-offs. d Number of altered
genes in HDF 87 y RNA-seq comparing to HDF N (Supplementary Data 1). e RNA-seq multidimensional scaling (MDS) plot. Axes in MDS plot represent
leading log-fold changes (logFCs) calculated by the root-mean-square of the largest absolute logFCs between each pair of libraries. f Top ten altered GO
terms organized by p-values using the DAVID Functional Annotation tool. g Heatmap of genes within the “mitosis” GO term differentially expressed
between HDF N and HDF 87 y (Supplementary Data 2). h Heatmap of SASP and senescence-associated (CDKN1A, LMNB1) genes differentially expressed
between HDF N and HDF 87 y (Supplementary Data 4); 2logFCs in red indicate genes behaving differently from expected36, 37. i Heatmap of senescence
core signature genes differentially expressed between HDF N and HDF 87 y (Supplementary Data 5); 2logFCs in red indicate genes behaving differently
from expected37. In all heatmaps, 2logFC cutoff value <−0.5 and >0.5, p-value < 0.05; genes represented in columns and technical replicates represented
in rows; Z-score column color intensities representing higher (red) to lower (blue) expression. j Transcript levels of senescence genes in total RNA from
mitotic elderly samples normalized to TBP transcript levels and compared with neonatal. NS, p > 0.05, *p≤ 0.05, and **p≤ 0.01 by two-tailed
Mann–Whitney statistical test (c, j)
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comparison with 3.2% in neonatal senescent cells (Fig. 7f). Thus,
aneuploidy appears as an overt feature in elderly senescent cells,
especially if we consider that only 3 out of 23 chromosome pairs
were measured. To investigate whether FoxM1 repression is
responsible for this difference, we next FACS-sorted SA-β-gal-
positive cells from siFoxM1-depleted neonatal cell cultures and
from octogenarian cell cultures expressing FoxM1-dNdK
(Fig. 7c–e). We observed FoxM1 repression to induce an
increase in the percentage of SA-β-gal-positive cells and their
aneusomy index, and FoxM1-dNdK expression to decrease the
percentage of SA-β-gal-positive cells and their aneusomy index.
These results demonstrate that FoxM1 levels modulate the
accumulation of aneuploid senescent cells.

Aneuploidy triggers full senescence following old cell division.
To directly demonstrate that aneuploidy acts as ultimate trigger
to elderly cell permanent cycle arrest, and thus the establishment
of a full senescent state, we performed the experimental layout
shown in Fig. 7g. Octogenarian fibroblasts expressing H2B–GFP
were followed under long-term time-lapse microscopy. Daughter

cell fate of mitotic cells with chromosome segregation defects
(anaphase lagging chromosome and/or micronucleus generation),
as well as of mitotic cells without apparent chromosome mis-
segregation, was tracked individually during 2–3 days for cell
death, cell cycling or senescence (SA-β-gal assay at the end of the
movie and immunostaining for 53BP1/p21) (Methods). Using
this live-cell fixed-cell correlative microscopy analysis, we found
that daughter cells from apparently normal mitoses most often
kept on cycling (71.7 ± 0.4%; Fig. 7h, i; Supplementary Movie 9)
and cell death was never observed. Among the 28.3 ± 0.4%
daughter cells from apparently normal mitoses that stopped
cycling, < 25% exhibited SA biomarkers (β-gal+ or 53BP1
+ /p21+ ) (Fig. 7h, i; Supplementary Movie 10). In contrast,
daughter cells from mitoses with mis-segregation events con-
sistently stopped proliferating (100%; Fig. 7h, i). Moreover, when
stained for SA-β-gal and 53BP1/p21 SA biomarkers, aneuploid
daughter cells were significantly positive (46.4 ± 3.6%, p < 0.05
and 85.7 ± 7.1%, p < 0.0001, respectively; two-tailed χ2 test) in
comparison with non-cycling daughter cells produced by appar-
ently normal mitoses (Fig. 7h, i; Supplementary Movie 11).
Furthermore, other senescence markers (epigenetic histone
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modifications, H3K9me3 and H4K20me352, and lamin B1
levels53) were additionally found altered in elderly cells with
segregation defects (presence of micronucleus) vs. elderly cells
without segregation defects (Supplementary Fig. 10). Altogether,
our data support a model in which proliferating naturally aged
cells with SA gene expression signature (early senescence) lose
mitotic fidelity, and generate aneuploid progeny that significantly
accounts for the accumulation of full senescent phenotypes
(permanent cell cycle arrest) (Fig. 8). Reinstating FoxM1 tran-
scriptional activity in elderly cells ameliorates cell autonomous
and non-autonomous feedback effects between mitotic fidelity
and senescence, suggesting that this mechanism evolved as a
positive feedback loop between cellular aging and aneuploidy.

Discussion
Aging is the largest risk factor for most diseases54. In recent years,
seminal studies have shown that the accumulation of senescent
cells in tissues over time shortens healthy lifespan and that

selective clearance of senescent cells can greatly postpone
aging31,55. Our results bring insight into how senescent cells arise
and provide a molecular basis to delay senescence and thus, a
potential strategy against aging and age-associated diseases.

Previous studies have suggested G2 and 4N G1 (mitosis skip)
as the phase at which senescent cells exit the cell cycle56,57.
However, these studies made use of the acute senescence stimuli,
gamma irradiation, and oncogenic Ras overexpression, respec-
tively. In contrast to acute senescence, chronic senescence results
from long-term, gradual macromolecular damage caused by
stresses during lifespan (e.g., loss of proteostasis, DNA damage,
epigenetic changes). We demonstrate that in a natural aging
cellular model, consisting of dermal fibroblasts retrieved from
elderly donors and cultured under limited passage number to
prevent replicative in vitro aging, senescent cells are often aneu-
ploid as the result of defective chromosome segregation. None-
theless, as shown for oncogene-induced senescence and
replicative senescence57,58, one round of cell division is likely
required for a transition from early to fully senescent state.
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g

A
ne

us
om

y 
in

de
x 

of
 C

hr
 7

+
12

+
18

 (
%

)

0

1

2

3

4

n
=

51
17

n
=

35
94

**

d

h

0

10

20

30

n
=

81
7

53
B

P
1+

/p
21

+
 c

el
ls

 (
%

) 

****

n
=

10
10

0

10

20

30

40

50
N

E
B

-a
na

ph
as

e 
on

se
t (

m
in

)

10y 10y +
siFoxM1

10y 10y +
siFoxM1

10y 10y +
siFoxM1

10y 10y +
siFoxM1

10y 10y +
siFoxM1

n
=

13
4

n
=

18
8

c
****

f

n
=

32
7

n
=

22
4

**

0

10

15

25

20

S
A

-β
-g

al
 p

os
iti

ve
 c

el
ls

 (
%

) 

e

0

1

2

3

4

B
N

 c
el

ls
 w

ith
 m

is
-s

eg
re

ga
tio

n 
(%

)

**

n
=

48
1

n
=

46
4

Z
W

IN
T

Z
W

IL
C

H
Z

W
10

Z
N

F
83

0
Z

C
3H

C
1

W
E

E
1

U
S

P
16

U
B

E
2C

T
X

N
L4

B
T

U
B

B
T

P
X

2
T

IP
IN

T
IM

E
LE

S
S

T
A

R
D

B
P

S
P

D
L1

S
P

C
25

S
P

C
24

S
P

A
G

5
S

M
C

4
S

M
C

2
S

M
C

1A
S

K
A

3
S

K
A

2
S

K
A

1
S

IR
T

2
S

G
O

1
S

E
H

1L
S

A
C

3D
1

R
R

S
1

R
N

F
8

R
G

S
14

R
C

C
2

R
C

C
1

R
A

N
R

A
D

21
P

T
T

G
1

P
M

F
1

P
LK

1
P

K
M

Y
T

1
P

E
S

1
P

D
S

5B
P

D
S

5A
P

B
R

M
1

P
B

K
P

A
P

D
7

O
IP

5
N

U
S

A
P

1
N

U
P

43
N

U
P

37
N

U
F

2
N

U
D

C
N

IP
B

L
N

E
K

6
N

E
K

2
N

E
D

D
9

N
E

D
D

1
N

D
E

1
N

D
C

80
N

C
A

P
H

N
C

A
P

G
2

N
C

A
P

G
N

C
A

P
D

3
N

C
A

P
D

2
M

IS
18

B
P

1
M

IS
18

A
M

A
U

2
M

A
P

R
E

3
M

A
P

R
E

2
M

A
P

R
E

1
M

A
P

9
M

A
D

2L
2

M
A

D
2L

1
LZ

T
S

2
LR

R
C

C
1

LM
LN

K
N

T
C

1
K

M
T

5A
K

IF
2C

K
IF

23
K

IF
22

K
IF

20
B

K
IF

18
A

K
IF

15
K

IF
11

K
A

T
N

A
1

IN
C

E
N

P
H

M
G

A
2

H
G

F
H

E
LL

S
H

A
U

S
8

H
A

U
S

7
H

A
U

S
6

F
S

D
1

F
B

X
O

5
F

A
M

83
D

E
S

P
L1

E
R

C
C

6L
E

M
L4

D
S

C
C

1
D

LG
A

P
5

D
D

X
11

C
K

A
P

5
C

IT
C

E
T

N
3

C
E

P
55

C
E

P
16

4
C

E
N

P
V

C
E

N
P

F
C

E
N

P
E

C
D

K
2

C
D

K
1

C
D

C
A

8
C

D
C

A
5

C
D

C
A

3
C

D
C

A
2

C
D

C
6

C
D

C
27

C
D

C
25

C
C

D
C

25
B

C
D

C
25

A
C

D
C

23
C

D
C

20
C

C
N

K
C

C
N

G
2

C
C

N
G

1
C

C
N

F
C

C
N

B
2

C
C

N
B

1
C

C
N

A
2

B
U

B
3

B
U

B
1B

B
U

B
1

B
O

R
A

B
IR

C
5

A
U

R
K

B
A

U
R

K
A

A
S

P
M

A
N

LN
A

N
A

P
C

7
A

N
A

P
C

13
A

N
A

P
C

10
A

N
A

P
C

1
A

K
A

P
8

–2
.0

75
1

–1
.7

67
1

–0
.9

73
5

1.
34

45
–0

.8
32

5
–0

.8
17

6
–0

.5
96

9
–1

.5
74

8
–0

.5
33

8
–0

.8
96

5
–2

.5
71

0
–0

.9
76

0
–1

.3
06

5
–0

.9
81

5
–2

.5
05

6
–2

.2
99

6
–2

.3
41

8
–2

.2
58

0
–1

.8
91

5
–1

.5
10

3
–0

.6
39

2
–2

.3
97

3
–1

.3
95

9
–2

.2
28

5
0.

58
84

–3
.1

39
3

–0
.6

91
7

–0
.5

24
6

–0
.9

08
1

–0
.9

84
9

1.
23

31
–1

.0
27

5
–1

.3
25

9
–1

.0
12

2
–1

.7
73

9
–2

.6
20

7
–0

.5
88

9
–2

.8
51

3
–1

.7
72

2
–0

.5
29

4
–0

.9
39

4
–0

.5
66

0
–0

.7
92

7
–2

.6
49

0
–1

.2
00

3
–2

.6
25

1
–1

.4
70

8
–0

.7
95

2
–1

.3
12

5
–2

.9
78

6
–0

.5
39

3
–0

.5
80

7
0.

57
50

–3
.5

65
2

0.
84

48
–0

.9
60

4
–2

.2
65

2
–2

.2
98

2
–1

.7
03

9
–1

.9
42

2
–2

.2
08

1
–1

.2
41

3
–1

.6
04

6
–1

.6
29

4
–1

.9
05

8
–0

.7
37

1
0.

80
19

0.
57

84
–0

.7
35

5
0.

80
48

–1
.4

01
1

–2
.3

29
3

0.
71

66
–0

.9
37

4
0.

87
22

–1
.9

44
8

–0
.8

73
5

–2
.6

64
3

–2
.6

32
4

–2
.0

43
3

–2
.6

60
9

–2
.4

89
8

–2
.2

10
6

–2
.5

19
2

–0
.7

06
5

–1
.5

46
3

0.
66

49
2.

21
44

–1
.1

54
0

–1
.7

25
1

0.
62

93
–1

.6
44

9
–0

.8
51

3
–1

.5
07

2
–2

.4
41

9
–2

.2
57

5
–2

.0
97

0
–1

.6
56

9
–0

.7
32

4
–2

.8
48

–0
.7

63
4

–1
.3

57
1

–1
.7

59
8

–0
.6

41
5

–3
.1

04
1

–1
.1

09
0

–1
.4

14
2

–2
.5

60
4

–2
.4

59
1

–1
.4

38
0

–2
.4

44
1

–2
.6

09
1

–2
.1

30
1

–2
.2

41
6

–2
.5

05
4

–0
.9

24
0

–1
.0

49
5

–1
.9

70
3

–1
.0

12
3

–1
.8

93
3

–0
.6

23
8

–2
.9

20
8

–1
.0

26
1

0.
83

06
–0

.7
47

6
–2

.6
08

4
–3

.1
09

4
–3

.6
62

7
–3

.5
13

7
–0

.9
07

2
–2

.5
06

6
–2

.3
00

4
–3

.3
13

2
–2

.8
99

1
–1

.9
85

2
–2

.6
91

4
–3

.3
35

3
–2

.2
31

6
–1

.0
77

0
0.

76
73

–0
.5

63
2

–1
.0

76
1

–0
.6

04
3

G
en

e
sy

m
bo

l
2l

og
F

C

–0.5

0

0.5

1

Column
Z score

10
y

si
C

tr
10

y
si

F
ox

M
1

2

2

1

1

–1

b

Senescence core signature genes

Z
N

H
IT

1
U

F
M

1
T

S
P

A
N

13

T
R

D
M

T
1

T
M

E
M

87
B

T
A

F
13

S
U

S
D

6

S
T

A
G

1
S

P
IN

4
S

P
A

T
A

6
S

M
O

S
LC

16
A

3
S

LC
10

A
3

R
H

N
O

1

R
A

I1
4

P
O

F
U

T
2

P
LX

N
A

3
P

LK
3

P
D

S
5B

P
D

LI
M

4

P
C

IF
1

P
4H

A
2

N
O

L3
M

T
-C

Y
B

M
E

IS
1

K
LC

1

K
C

T
D

3
IC

E
1

G
S

T
M

4

G
D

N
F

G
B

E
1

F
A

M
21

4B
D

Y
N

LT
3

D
G

K
A

D
D

A
1

C
R

E
B

B
P

C
N

T
LN

C
H

M
P

5
C

C
N

D
1

C
2C

D
5

B
4G

A
LT

7

A
R

ID
2

A
D

P
G

K
A

C
A

D
V

L

0.
65

59
0.

16
38

0.
43

51

–0
.3

84
8

0.
62

46
0.

23
44

0.
17

22

–0
.2

34
2

–1
.8

77
6

0.
70

14
2.

37
10

–0
.2

11
9

0.
33

86

–1
.4

13
3

0.
16

90
0.

12
10

0.
34

01
1.

75
77

–0
.9

39
4

–0
.2

25
7

0.
56

01

0.
59

61
1.

14
54

0.
16

41

0.
87

16

–0
.3

38
5

–0
.1

55
0

–0
.7

20
2

0.
39

88

–0
.5

24
6

0.
79

75
0.

91
01

0.
70

76
1.

35
13

0.
33

00

–0
.3

55
2

–0
.6

55
6

0.
49

13
1.

44
76

–0
.3

30
7

0.
45

64

–0
.5

15
1

–0
.6

39
4

0.
39

50

Down Up

G
en

e
sy

m
bo

l
2l

og
F

C

Column
Z score

1

0.5

0

–0.5

–1

SASP genes

IL
6

T
N

F
R

S
F

1B
T

N
F

R
S

F
11

B
T

N
F

R
S

F
10

D
T

N
F

R
S

F
10

C
T

IM
P

2
T

IM
P

1
N

T
F

3
M

S
T

1
M

M
P

3
M

M
P

12
M

M
P

10
M

M
P

1
LM

N
B

1
IL

6R

IL
1R

1
IL

1B
IL

11
IG

F
B

P
6

IG
F

B
P

4
IG

F
B

P
2

IC
A

M
3

IC
A

M
1

H
G

F
G

LB
1

F
G

F
7

F
G

F
2

C
X

C
L8

 (
IL

8)
C

X
C

L6
C

X
C

L3
C

X
C

L2
C

X
C

L1
C

D
K

N
2A

C
D

K
N

1A
C

C
L2

B
D

N
F

A
X

L

2.
25

82
1.

96
41

1.
22

23
1.

50
24

–0
.5

45
1

0.
78

94
0.

76
71

2.
02

32
2.

29
43

2.
09

67
3.

43
51

1.
89

38
–2

.7
03

3
2.

02
88

1.
19

32
0.

76
13

2.
97

55
–0

.8
57

1
0.

69
74

0.
65

82
2.

01
06

0.
63

08
0.

77
34

2.
21

44
0.

53
72

1.
22

29
0.

49
26

1.
95

65
0.

65
53

1.
30

46
2.

48
43

1.
31

84
–1

.3
08

7
2.

49
95

2.
37

13
1.

65
89

–0
.8

11
8

V
E

G
F

A
0.

42
09

10
y

si
C

tr
10

y
si

F
ox

M
1

10
y

si
C

tr
10

y
si

F
ox

M
1

2

1

2

1

G
en

e
sy

m
bo

l
2l

og
F

C

i

siFoxM1
altered genes

(5841)

87y 
altered genes 

(3309)

1937 39041372

Overlap 87y vs siFoxM1 GO terms
Cell cycle 
Cell cycle process
Cell cycle phase
Mitosis
Nuclear division
Organelle fission
M phase of mitotic cell cycle
M phase
Mitotic cell cycle
Cell division

p value
1.8E–18
2.8E–18
1.9E–15
2.0E–15
2.0E–15
4.2E–15
5.1E–15
1.8E–14
7.0E–14
1.2E–13

a

Column
Z score

1

0.5

0

–0.5

–1

2

1

2

1

Z
C

3H
4

–0
.1

93
1

Fig. 5 FoxM1 repression dictates cellular phenotypes associated with aging. a Heatmap of genes within the “mitotis” GO term differentially expressed
between control and FoxM1 siRNA-depleted 10-year-old fibroblasts (2logFC cutoff value <−0.5 and > 0.5, p-value < 0.05, FDR < 5%, Supplementary
Data 8). b Venn diagram illustrating the overlap between genes altered in 87 y and FoxM1 siRNA-depleted fibroblasts and the top ten altered GO terms
(Supplementary Data 9). cMitotic duration (NEB-anaphase onset) of control and FoxM1 siRNA-depleted fibroblasts. d Aneusomy index in interphase FISH.
e Chromosome mis-segregation rate in CytoD-FISH. f, g Percentage of cells staining positive for the senescence markers β-galactosidase (f) and 53BP1/
p21 (g). h Heatmap of SASP and senescence (CDKN1A, CDKN2A, GLB1, LMNB1) genes differentially expressed in HDF 10 y and 10 y siFoxM1 (Supplementary
Data 10)36, 37. i Heatmap of senescence core signature genes differentially expressed in HDF 10 y and 10 y siFoxM1 (Supplementary Data 11); 2logFCs in
red indicate genes behaving differently from expected37. In all heatmaps: p-value < 0.05; genes represented in columns and technical replicates
represented in rows; Z-score column color intensities representing higher (red) to lower (blue) expression. Values are mean ± SD of three independent
experiments. Sample size (n) is indicated in each graph. *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, and ****p≤ 0.0001 by two-tailed Mann–Whitney (c) and χ2

(d–g) statistical tests
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Consistent with this idea of senescence phenotype evolution, our
data disclosed the interesting finding that increased pro-
inflammatory response is a characteristic of aged cells that are
still proliferating, and that chromosome mis-segregation events in
these cells are sufficient to trigger transition into permanent cell
cycle arrest (full senescence). This is in line with recent findings

supporting that micronuclei generated during defective
mitoses are a key source of immunostimulatory cytosolic DNA
that triggers a cGAS-STING-mediated pro-inflammatory
response59–61. Whether the evolution of SASP during natural
aging is dependent of cytosolic DNA signaling is an interesting
question to address in the future.
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There is still little to no direct evidence demonstrating that
aneuploidy per se is a driver or facilitator of aging. In our study
we aimed to understand the exact causal network between age-
associated aneuploidy and senescence. Using innovative experi-
mental layouts, such as aneuploidy measurement in FACS-sorted
senescent cells with high SA-β-gal activity and long-have
demonstrated that aneuploidization in an aging cell context
ultimately triggers permanent cell cycle arrest and full senescence.

We showed that the frequency of mitotic abnormalities
increases in older cells, resulting in mild aneuploidy levels, and
identified the FoxM1 transcription factor as the molecular
determinant of this age-associated mitotic decline. FoxM1
repression is likely mediated by activation of stress pathways,
presumably triggered by primary causes of cellular damage, such
as genomic instability or loss of proteostasis. For instance, it has
been shown that genotoxic stress can activate the p53-p21-
DREAM pathway, which in turn prevents early cell cycle gene
expression required for FoxM1 transcriptional activity39,62.
Although transcriptional deregulation during aging has been
widely reported in asynchronous cell populations63,64, in this
study we have used synchronized mitotic populations and found
that many cell cycle genes were dysregulated in old cells as
compared with young cells. Intriguingly, old mitotic cells have
intrinsic low levels of mitotic transcripts. Although this supports
the observed mitotic abnormalities and increased chromosome
mis-segregation rate (e.g., low levels of major regulators of the
error-correction machinery for chromosome attachments), it is
still surprising how elderly mitotic cells can cope with such
reduced levels of transcripts, e.g., CCNB1. One possibility might
be the balanced/stoichiometric repression of most mitotic genes.
Furthermore, parallel mechanisms might buffer aging-mediated
repression of mitotic transcripts. For example, even though we
found SAC genes to be downregulated in elderly cells, SAC
functionality was similar in young and old cells, suggesting that
concurrent downregulation of genes contributing to proteasome
activity (e.g., Cdc20 and APC/C subunits) might buffer SAC gene
repression.

We demonstrated that re-establishment of FoxM1 expression
in elderly and HGPS fibroblasts can rescue mitotic decline and
delay senescence. Fibroblasts are the main constituents of con-
nective tissue and are important factors in extracellular matrix
production and tissue homeostasis. Therefore, delayed accumu-
lation of senescent fibroblasts might counteract a SASP-induced
inflammatory microenvironment in these tissues and help to
protect stem cell and parenchymal cell functions. Re-expression
of FoxM1 could thus protect against aging of adult stem cell and
post-mitotic tissues. Indeed, increased expression of one FoxM1
transcriptional target, BubR139, was previously shown to prevent
aneuploidization and delay aging13. However, other aneuploidy
mouse models have not been reported to exhibit premature aging.

Possible explanations are the premature killing of mice before
they start developing aging phenotypes later in life and the cur-
sory analysis for overt age-related degeneration missing tissue-
specific phenotypes14. Alternatively, aneuploidy-associated genes
that are strongly linked with premature aging might require
induction of mild levels of aneuploidy or counteracting functions
in additional cellular stresses that engage senescence response
pathways. This appears to be the case of FoxM1. FoxM1
repression translates into mild aneuploidy levels and may also
further act by counteracting age-associated cellular damage
caused by genotoxic and oxidative stresses43,65. Interestingly,
increased FoxM1 expression was shown to improve liver-
regenerating capacity in older mice42 and lung regeneration fol-
lowing injury66. However, further evidence shows that FoxM1 is
elevated in human cancers, thus questioning its potential for anti-
aging therapy. Thus far, FoxM1 has only been shown to be
tumorigenic if tumor suppressor genes are lost or oncogenic
mutations (such as K-RAsG12D) are present67,68. As we found
that brief reactivation of FoxM1 activity back to the levels of
young cells in elderly cells rescues the observed aging phenotypes,
we propose that a cyclic FoxM1 induction scheme, starting in
adulthood, could work safely in vivo. FoxM1 induction acts
not only through modulation of mitotic fidelity and senescence
pro-inflammatory phenotype, but also by improving the pro-
liferative capacity of fitter (undamaged) cells in the elderly cell
population that dilute, rather than totally clearing, the full-blown
senescent cells, thereby coping with the detrimental but also
beneficial (wound healing, tumor suppression) effects of senes-
cence. Thus, our findings disclose a molecular mechanism with
potential clinical benefit to healthy lifespan extension and HGPS
treatment.

Methods
Cell culture. A total of 11 human fibroblast cultures, established from skin samples
of Caucasian males with ages ranging from neonatal to octogenarian (two biolo-
gical samples per age), were acquired from cell biobanks as summarized (Sup-
plementary Table 1). Several time points over the human lifespan were included to
reinforce the validity of any correlation found. All donors were reported as
“healthy”, except the 8-year-old donor diagnosed with the Hutchison–Gilford
progeria. HDFs were seeded at 1 × 104 cells per cm2 of growth area in minimal
essential medium Eagle–Earle (MEM) supplemented with 15% fetal bovine serum
(FBS), 2.5 mM L-glutamine, and 1× antibiotic–antimycotic (all from Gibco,
Thermo Fisher Scientific, CA, USA). Only early passage dividing fibroblasts (up to
passage 3–5) with cumulative population doubling level PDL < 24 were used in all
experiments. PDL= 3.32 (log UCY− log l)+ X, where UCY= the cell yield at that
point, l= the cell number used to begin that subculture, and X= the doubling level
of the cells used to initiate the subculture. PD= T*[ln2/ln(Xe/Xi)], where T= time
interval (hours) between two consecutive cell passages, Xe= number of cells col-
lected at culture passaging, and Xi= number of cells seeded to initiate subculture.
Murine adult fibroblasts (MAFs) were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with nutrient mixture F12, 10% FBS, L-glutamine,
and antibiotic–antimycotic (all from Gibco). All cells were grown at 37 °C and
humidified atmosphere with 5% CO2.

Fig. 6 Constitutively active FoxM1 ameliorates mitotic fitness and aging markers in elderly cells. a Movie frames of elderly dividing cells expressing
H2B–GFP/α-Tubulin–mCherry (upper panel) and H2B–GFP/α-Tubulin–mCherry+ FoxM1-dNdK (lower panel) (Supplementary Movies 5, 6). Time, min:s.
Scale bar, 5 µm. b Heatmap of genes within the “mitosis” GO term differentially expressed in mitotic elderly cells transduced with lentiviral empty vector or
vector expressing FoxM1-dNdK (2logFC cutoff value <−0.5 and > 0.5, p-value < 0.05, FDR < 5%, Supplementary Data 13). c Venn diagram illustrating the
overlap between mitosis genes altered in 87 y, 10 y FoxM1 siRNA-depleted, and 87 y FoxM1-dNdK-expressing fibroblasts (Supplementary Data 14).
dMitotic duration (NEB to anaphase onset) in elderly fibroblasts infected with control and FoxM1-dNdK lentiviruses. e Aneusomy index in interphase FISH.
f Chromosome mis-segregation rate in CytoD-FISH. g, h Percentage of cells staining positive for the senescence markers β-galactosidase g and 53BPl/p2l
h. i Heatmap of SASP and senescence (CDKN1A, CDKN2A, LMNB1) genes differentially expressed in HDF 87 y and 87 y FoxM1-dNdK (Supplementary
Data 15); 2logFCs in red indicate genes behaving differently from expected36, 37. j Heatmap of senescence core signature genes’ expression in 87 y and 87
y FoxM1-dNdK (Supplementary Data 16); 2logFCs in red indicate genes behaving differently from expected37. In all heatmaps, p-value < 0.05; genes
represented in columns and technical replicates represented in rows; Z-score column color intensities representing higher (red) to lower (blue) expression.
Values are mean ± SD of three independent experiments. Sample size (n) is indicated in each graph. *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, and ****p≤ 0.0001
by two-tailed Mann–Whitney (d) and χ2 (e–h) statistical tests
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Isolation of mouse fibroblasts. Sv/129 mice were housed and handled accord-
ingly to European Union and MAFs were collected from ears of n > 3 sv/129
females of the same litter at their age of 8 weeks, 6 months, 1 year, 1.5 years, and 2
years. Ears were washed with phosphate-buffered saline (PBS), cut into small
pieces, and incubated with 1 mg/ml collagenase D and 1mg/ml collagenase/dispase
(both from Roche Applied Science, Germany) in DMEM:F12 without FBS, for 45
min at 37 °C and 5% CO2. Cells were then grown on a six-well dish containing
DMEM:F12, supplemented with 10% FBS and antibiotic–antimycotic.

Drug treatments. Fibroblasts were incubated for 24 h in medium containing 2 µg/
ml cytochalasin D (C8273, Sigma-Aldrich, MO, USA) to block cytokinesis. To
inhibit the SAC, cells were treated with 5 µM Mps1 inhibitor (AZ3146, TOCRIS,
USA). To induce chronic activation of the SAC, cells were treated with 100 nM
Taxol (Sigma-Aldrich, MO, USA) and 5 µM and STLC (2799-07-7, Tocris). For
proteasome activity enhancement, 10 µM of Usp14 inhibitor were used (I-300,
BostonBiochem, Cambridge, MA). To inhibit kinesin-5, STLC (Tocris) was used at
5 µM during 16 h, to enrich the MI for mitotic cell shake-off.
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Fluorescence in situ hybridization. FISH analysis was used to measure aneusomy
index (Interphase FISH; Figs. 1a, 5d, 6e, 7f and Supplementary Fig. 9e) and
chromosome mis-segregation rate (CytoD FISH; Figs. 1b, 5e, 6f and Supplementary
Fig. 9f). “Interphase FISH” measures the prevalence of somatic aneuploidy by the
ratio of aneusomic cells for chromosomes 7, 12, and 18 to the total cell count for a
sample ( > 2500 nuclei) (aneusomy index). “CytoD FISH” measures the rate of
chromosome mis-segregation (number of events in which two sister chromatids
co-segregate to the same daughter cell) by combining a cytokinesis-block assay
(cytochalasin D 24 h treatment) with FISH staining. “CytoD FISH” measures the
percentage of BN telophases exhibiting chromosome 7, 12, and 18 mis-segregation
over the total BN cell count for a sample ( > 200 BN cells). For both Interphase and
CytoD FISH, fibroblasts were grown on Superfrost™ Plus microscope slides
(Menzel, Thermo Scientific, CA, USA) placed in a quadriperm dish (Sarsted,
Nümbrecht, Germany). Cells were given a hypotonic shock during 30 min (0.03 M
sodium citrate, Sigma-Aldrich, MO, USA), followed by fixation in ice-cold Carnoy
fixative added drop-wise and incubated for 5 min. This step was repeated two more
times. FISH was performed with the Vysis centromeric probes CEP7 Spectrum
Aqua, CEP12 Spectrum Green, and CEP18 Spectrum Orange (Abbott Laboratories,
Chicago, IL, USA) according to manufacturer’s instructions. Slides were mounted
with mounting medium containing DAPI (Vectashield, Vector Laboratories, CA,
USA) and scored blindly.

Apoptosis assay. Programmed cell death (apoptosis) was evaluated by flow
cytometry using fluorescein isothiocyanate (FITC)-conjugated Annexin V/Apop-
tosis detection kit (BioLegend, Inc. San Diego, CA). Briefly, cells were washed twice
in cold cell staining buffer and resuspended in 100 µL of Annexin V-binding buffer.
Subsequently, 5 µL of FITC-Annexin V were added to cell suspension. Cells were
incubated for 15 min in the dark, washed with Annexin V-binding buffer, and
analyzed immediately by flow cytometry.

SA-β-gal assay. In fixed-cell analysis, cells were incubated for 90 min in medium
with 100 nM Bafilomycin A1 (B1793, Sigma-Aldrich, MO, USA) to induce lyso-
somal alkalinization. Fluorogenic substrate (33 μM) for β-galactosidase, fluorescein
di-β-D-galactopyranoside (F2756, Sigma-Aldrich, MO, USA) were then added to
the medium, and incubation carried out for 90 min. Cells were fixed in 4% par-
aformaldehyde for 15 min, rinsed with PBS, and permeabilized with 0.1% Triton-
X100 in PBS for 15 min. Finally, cells were counterstained with 1 µg/ml DAPI
(Sigma-Aldrich, MO, USA). For FACS, cells were incubated in Bafilomycin A1 as
described above and then exposed to 10 μM of fluorogenic substrate for β-galac-
tosidase, DDAOG (9H-(1,3-dichloro-9,9-dimethylacridin-2-one-7-yl) β-D-Galac-
topyranoside), for 90 min (Setareh Biotech LLC, USA).

Fluorescence-activated cell sorting. FACS sorting was used to isolate sub-
populations of senescent (SA-β-gal positive) live fibroblasts. FACS sorting was
performed in FACSAria™ I Cell Sorter (BD Biosciences, CA, USA), using the laser
line of 633 nm. All cells within a single experiment were detected using the same
voltage settings and sorted using an 85 μm nozzle. Cells were initially gated by
forward scatter area (FSC-A) vs. side scatter area, which excludes dead cells and
subcellular debris, with subsequent exclusion of cell doublets and clumps through
FSC-A vs. FSC-width plot. The signal was detected using the APC-A channel. The
relative β-galactosidase activity was inferred from the median fluorescence intensity
of the population. The sorting gates were designed accordingly to the respective
auto-fluorescent control. Cells were sorted directly into MEM with 15% FBS and
seeded in Superfrost™ Plus microscope slides for subsequent FISH analysis. Ana-
lysis of FACS data was done using FlowJo v10 software (TreeStar, Inc., Ashland,
OR).

Immunostaining. Fibroblasts were grown on sterilized glass coverslips coated with
50 µg/ml fibronectin (F1141, Sigma-Aldrich, MO, USA). Cells were fixed in freshly
prepared 4% paraformaldehyde in PBS for 20 min. Following fixation, cells were
rinsed in PBS and permeabilized in PBS+ 0.3% Triton-X100 for 7 min. Cells were
next blocked in 10% FBS in PBS-T (PBS+ 0.05% Tween-20) for 1 h and then
incubated overnight at 4 °C with primary antibodies diluted in PBS-T+ 5% FBS as
follows: rabbit anti-53BP1 (4937, Cell Signaling Technology, MA, USA), 1:100;
mouse anti-p21 (SC-6246, Santa Cruz Biotechnology, CA, USA), 1:1000; rabbit
anti-FoxM1 (13147, ProteinTech Group, Inc., IL, USA), 1:1500; mouse anti-Cdc20
(SC-5296, Santa Cruz Biotechnology), 1:100; mouse anti-Cyclin B (SC-245, Santa
Cruz Biotechnology), 1:1000 secondary antibodies AlexaFluor-488 and -568 (Life
Technologies, CA, USA) were diluted 1:1500 in PBS-T+ 5% FBS. DNA was
counterstained with 1 µg/ml DAPI (Sigma-Aldrich, MO, USA). Coverslips were
mounted in slides with mounting solution (90% glycerol, 0.5% N-propyl-gallate,
20 nM Tris, pH 8).

Telomere PNA FISH. Fibroblasts were incubated in 0.05 µg/ml colcemid
(15212012, Gibco, Thermo Fisher Scientific) for 4 h, to induce metaphase arrest.
Following trypsinization, fibroblasts were incubated in 0.03M sodium citrate for
30 min at 37 °C. Cells were then fixed in freshly made Carnoy fixative solution and
stored at 4 °C. Metaphase spreads were fixed with 4% formaldehyde in PBS for 2
min, followed by pepsin digestion (1 mg/ml) for 10 min at 37 °C. After a dehy-
dration step with ethanol, dried slides were hybridized with Telomere PNA probe
(Applied Biosystems, CA, USA) (0.5 µg/ml) in 10 mM Tris pH 7.5, 70% for-
mamide, 0.25% blocking reagent (Roche, Germany), 2 mM MgCl2, 700 µM citric
acid, 7 mM Na2HPO4, for 3 min in a hot plate at 80 °C and then for 2 h at 37 °C in
humidified chamber. Slides were washed in 70% formamide, 10 mM Tris, 0.1%
bovine serum albumin twice for 15 min, then washed three times in Tris-buffered
saline (TBS) for 5 min, and finally mounted with mounting media containing
DAPI (Vectashield, Vector Laboratories).

Phase-contrast live-cell imaging. Fibroblasts were grown in glass-bottom 35 mm
µ-dishes (Ibidi GmbH, Germany), coated with 50 µg/ml fibronectin (F1141, Sigma-
Aldrich, MO, USA). Images were acquired on a Zeiss Axiovert 200M inverted
microscope (Carl Zeiss, Oberkochen, Germany) equipped with a CoolSnap camera
(Photometrics, Tucson, USA), XY motorized stage and NanoPiezo Z stage, under
controlled temperature, atmosphere, and humidity. Neighbor fields (20–25) were
imaged every 2.5 min for 2–3 days, using a ×20/0.3 numerical aperture (NA) A-
Plan objective. Stitching of neighboring fields was done using the plugin “Stitch
Grid” (Stephan Preibisch) from ImageJ/Fiji software.

Live-cell and fixed-cell correlative microscopy. Eighty-seven-year-old fibroblasts
expressing H2B–GFP were grown in µ-Slide 2 Well ibiTreat (Ibidi GmbH) and
analyzed accordingly to the experimental layout shown in Fig. 7i. Images were
acquired on a Leica DMI6000b inverted microscope (Leica Microsystems, Ger-
many), equipped with an ORCA-Flash4.0 camera (Hamamatsu, Japan), using the
laser line 488 nm for the excitation of green fluorescent protein (GFP), and under
controlled temperature, atmosphere and humidity. Neighbor fields (60–70) were
imaged every 5 min for 3–4 days, using a ×20 LD/0.4 NA objective (Leica
Microsystems). Following the long-term live-cell imaging, cells were processed for
SA-β-gal assay and 53BP1/p21 double immunostaining as described elsewhere in
this section, and the same neighbor fields acquired using a ×40 LD/0.6 NA
objective. LAS X software (Leica Microsystems) was used for image acquisition and
analysis.

Spinning-disk confocal microscopy. Four-dimensional data sets were collected
with Andor Revolution XD spinning-disk confocal system (Andor Technology,
Belfast, UK), equipped with an electron-multiplying charge-coupled device

Fig. 7 FoxM1 governs aneuploidization-driven cellular senescence in elderly cells. a–d FACS sorting of senescent cells from neonatal a, elderly b, FoxM1
siRNA-depleted neonatal c, and 84 y/87 y with FoxM1-dNdK d cell populations with high β-galactosidase activity. The gates were defined accordingly to
the respective auto-fluorescent control. e Relative intensity levels of the fluorogenic substrate DDAOG in the sorted cell populations. f Aneuploidy index in
FACS-sorted β-gal-positive fibroblast subpopulations (β-gal+) vs. unsorted populations (∅) as determined by FISH analysis for three chromosome pairs.
g Experimental layout of live-cell/fixed-cell correlative microscopy analysis shown in h, i. Mitotic elderly fibroblasts expressing H2B–GFP and respective
daughter cells were imaged for 72 h. SA-β-Gal assay and immunostaining for 53BP1/p21 were performed at the end of imaging. h Movie frames of
representative phenotypes observed for elderly cells expressing H2B–GFP. Top panel, correct chromosome segregation, with cycling daughter cells
(Supplementary Movie 9). Middle panel, correct chromosome segregation with non-cycling daughter cells staining negative for SA-β-Gal and 53BP1/p21
(Supplementary Movie 10). Bottom panel, chromosome mis-segregation leading to micronuclei formation (arrowheads), with non-cycling daughter cells
staining positive for senescence markers (SA-β-Gal and 53BP1/p21) (Supplementary Movie 11). Dashed line indicates the tracked daughter cell. Time, hour:
minute. Scale bar, 30 µm (movie frames) and 15 µm (immunostaining). i Single-cell analysis of daughter cell fate (cell death, cell cycle arrest, and cell
senescence) from mitoses with apparent correct chromosome segregation or with mis-segregation (leading to micronuclei formation). Non-cycling
daughter cells were stained for senescence markers (β-gal and 53BP1/p21). Values are mean ± SD of two independent experiments. Sample size (n) is
indicated for f and i. NS, p > 0.05, *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, and ****p≤ 0.0001 by two-tailed χ2 statistical tests
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iXonEM Camera and a Yokogawa CSU 22 unit based on an Olympus IX81
inverted microscope (Olympus, Southend-on-Sea, UK). Two laser lines at 488 and
561 nm were used for the excitation of GFP and mCherry and the system was
driven by Andor IQ software. Z-stacks (0.8–1.0 μm) covering the entire volume of
the mitotic cells were collected every 1.5 min with a PlanApo ×60/1.4 NA objective.
All images represent maximum-intensity projections of all z-planes. ImageJ/Fiji
software was used to edit the movies.

Fluorescence microscopy. Analysis of the SA-β-gal fluorescence assay was carried
out on a Zeiss AxioImager Z1 (Carl Zeiss) equipped with an Axiocam MR and
using an EC-Plan-Neofluor ×40/1.3 NA objective. Cells displaying > 5 fluorescent
granules were considered positive for SA-β-gal activity. Image acquisition of
FoxM1, Cyclin B, and Cdc20 immunostaining was performed on a Zeiss AxioI-
mager using a Plan-Apochromat ×63/1.4 NA objective. Prometaphase cells were
acquired with 0.24 μM Z-stacks. Image acquisition of H4K20me3, H3K9me3, and
Lamin B1 immunostaining was performed on Leica 6000B using a ×40 LD/0.6 NA
objective. LAS X software (Leica Microsystems) was used for image acquisition and
cells were acquired with 0.44 μM Z-stacks. User-defined fluorescence intensity
thresholds were set and used consistently for samples within each experiment.
AutoQuant X2 (Media Cybernetics, Rockville, USA) was used for image
deconvolution.

Automated microscopy. Image fields of 53BP1/p21 double immunostaining and
FISH staining were acquired on IN Cell Analyzer 2000 (GE Healthcare, UK),

equipped with a Photometrics CoolSNAP K4 camera and using a Nikon ×20/0.45
NA Plan Fluor objective. User-defined fluorescence intensity thresholds were set
and used consistently for samples within each experiment.

Image analysis. Live-cell phenotypes (mitotic duration, spindle positioning, and
cytokinesis failure) and fixed-cell experiments (FISH, SA biomarkers, and micro-
nuclei) were blindly quantified using ImageJ/Fiji software.

Western blotting. Mitotic cell populations were collected by shaking-off cell
culture flasks enriched for MI by a 16 h treatment with STLC. MI > 95% was
determined by visual scoring of cells with condensed chromosomes after Carnoy
fixation, followed by with 1 µg/ml DAPI in PBS. Lysis buffer (150 nM NaCl, 10 nM
Tris-HCl pH 7.4, 1 nM EDTA, 1 nM EGTA, 0.5% IGEPAL) with protease inhi-
bitors was added to mitotic cell pellets, and lysates quantified for protein content by
the Lowry Method (DC™ Protein Assay, Bio-Rad, CA, USA). Twenty micrograms
of total extract were then loaded in SDS-polyacrylamide gel electrophoresis gels
and transferred onto nitrocellulose membranes for western blot analysis. Mem-
branes were blocked during 1 h with TBS containing 5% low-fat milk. Primary
antibodies were diluted in TBS containing 2% low-fat milk as follows: rabbit anti-
FoxM1 (13147, ProteinTech Group, Inc.), 1:1000; mouse anti-Cyclin B (SC-245,
Santa Cruz Biotechnology), 1:1000, mouse anti-Ndc80 (clone 9G3, Abcam, Cam-
bridge, UK), 1:1750; mouse anti-Plk1 (SC-17783, Santa Cruz Biotechnology), 1:100;
mouse anti α-tubulin (T5168, Sigma-Aldrich, CA, USA), 1:50,000; and mouse anti-
GAPDH (60004, ProteinTech Group, Inc.), 1:30,000. Goat anti-rabbit (SC-2004,
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Santa Cruz Biotechnology) and goat anti-mouse (SC-2005, Santa Cruz Bio-
technology) horseradish peroxidase-conjugated secondary antibodies were diluted
at 1:3000 in TBS containing 2% low-fat milk. Signal was detected using Clarity
Western ECL Substrate reagent (Bio-Rad Laboratories, CA, USA) according to
manufacturer’s instructions. A GS-800 calibrated densitometer with Quantity One
1-D Analysis Software 4.6 (Bio-Rad Laboratories) was used for quantitative analysis
of protein levels. Uncropped scans of all blots in the main manuscript and sup-
plementary figures are provided in Supplementary Fig. 11.

Lentiviral plasmids. H2B–GFP69 was amplified as a BglII–H2B–GFP–T2A-
BamHI–NotI fragment. This PCR fragment was digested with BglII+NotI and
ligated into pRetrox-Tight-Puro (Clontech, CA, USA) digested with BamHI+
NotI, thus destroying the 5′ BamHI/BglII site, while reintroducing a BamHI site 3′
of H2B–GFP–T2A. In parallel, α-Tubulin69 was amplified as a BglII–α-
Tubulin–BamHI–NotI fragment and ligated into pRetrox-Tight-Puro digested with
BamHI+NotI, again destroying the 5′ BamHI/BglII site, while reintroducing a
BamHI site 3′ of α-Tubulin. mCherry was amplified from pExchange-1-Cherry
(Agilent Technologies, CA, USA) as a BglII–mCherry–NotI fragment and was
ligated into pRetrox–α-Tubulin digested with BamHI–NotI, yielding pRetrox–α-
Tubulin–mCherry. Finally, α-Tubulin–mCherry was PCR-amplified as a BglII–α-
Tubulin–mCherry–NotI fragment and ligated into pRetrox–H2B–GFP–T2A
digested with BamHI+NotI, yielding pRetrox–H2B–GFP–T2A–α-
Tubulin–mCherry. To obtain pLVX–Tight-Puro–H2B–GFP–T2A–α-
tubulin–mCherry, a BglII–H2B–GFP–T2A–α-Tubulin–mCherry–NotI fragment
was amplified from pRetroX–H2B–T2A–GFP–α-Tubulin–mCherry and ligated
into pLVX–Tight-Puro (Clontech) digested with BamHI+NotI. To generate
pLVX–Tight-Puro–FoxM1-dNdK, a BglII–FOXM1–dNdK–NotI fragment was
amplified from pcDNA3–Flag-ΔN-ΔKEN–FoxM145 and ligated into pLVX–Tight-
Puro digested with BamHI+NotI. Primers used are described in Supplementary
Table 4.

Lentiviral production and infection. Lentiviruses were produced according to the
protocol described in Lenti-X Tet-ON Advanced Inducible Expression System
(Clontech). Lentiviruses carrying empty pLVX–Tight-Puro, pLVX––Tight-
Puro–H2B–GFP–α-Tubulin–mCherry or pLVX–Tight-Puro–FoxM1-dNdK, as
well as lentiviruses carrying pLVX–Tet-On Advanced (which expresses rtTA), were
generated in HEK293T helper cells transfected with packaging plasmids (pMd2.G
and psPAX2) using Lipofectamine 2000 (Life Technologies, Thermo Scientific, CA,
USA). Human fibroblasts were co-infected for 12–16 h with responsive and
transactivator lentiviruses at 2:1 ratio, in the presence of 8 µg/ml polybrene (AL-
118, Sigma-Aldrich, MO, USA). In the following day, 750 ng/ml doxycycline
(D9891, Sigma-Aldrich, MO, USA) was added to the medium to induce co-
transduction. Phenotypes were analyzed and quantified 48–72 h later, and trans-
fection efficiency monitored by scoring the number of fluorescent cells or by
western blotting.

FoxM1 RNA interference. Cells were transfected 1 h after plating, with 45 nM
FoxM1 small interfering RNA (SASI_Hs01_00243977 from Sigma-Aldrich, MO,
USA) using Lipofectamine RNAiMAX (Thermo Scientific) according to manu-
facturer’s instructions. Phenotypes were analyzed and quantified 72 h post trans-
fection, and depletion efficiency monitored by western blotting.

Real-time PCR. Total RNA was obtained from mitotic fibroblasts (collected as
depicted in Fig. 3a and in the Western blotting section) using the RNeasy® Mini kit
(Qiagen, Hilden, Germany). RNA purity and integrity was confirmed in the
Experion™ system (Bio-Rad Laboratories). cDNA was synthesized from total RNA
(1 μg) using iScript Advanced Select cDNA Synthesis kit (Bio-Rad Laboratories).
The 2−ΔΔCt method was used to quantify the transcript levels of FOXM1,
CDKN1A, MMP1, CXCL8, TSPAN13, and FAM214B against the transcript levels of
the housekeeping gene (TBP). Primers were designed to span at least one
exon–intron junction (Supplementary Table 3). Amplification was performed in a
C1000 Touch Thermal Cycler (CFX384 Real-Time System, Bio-Rad Laboratories)
and analyzed using CFX Manager Software (Bio-Rad Laboratories).

RNA-seq and bioinformatics. RNA was isolated from mitotic human fibroblasts
and validated as described above for Real-time PCR. RNA-sequencing libraries
were prepared using TruSeq Stranded Total RNA with Ribo-Zero Human/Mouse/
Rat (RS-122-2201; Illumina, CA, USA) according to manufacturer’s protocol.
Pooled libraries were sequenced on an Illumina HiSeq 2500 (single-end 50 bp).
Raw unaligned sequencing reads (fastq-format) were deposited in the European
Nucleotide Archive (ENA) under the accession number PRJEB27047. Reads were
aligned to the human genome (hg19) using a splicing-aware aligner (StarAligner).
Aligned reads were fragments per million (FPM) normalized, excluding low
abundance genes (mean FPM > 1). Differential gene expression analysis was per-
formed using a likelihood ratio test constructed under the R-package edgeR
(v3.14.0 available from Bioconductor at http://www.bioconductor.org/packages/
release/bioc/html/edgeR.html). Significant differential gene expression of aged
fibroblasts was defined as p-value < 0.05 and 2logFC cutoff value <−0.5 or > 0.5;
and in case of genetic manipulations as p-value < 0.05, 2logFC cutoff value <−0.5

or > 0.5, and FDR < 0.05. For generation of RNA-seq heatmaps, transcript counts
were normalized to the sample library size. These values were subsequently scaled
by gene using normalized scores or z-scores (i.e. a value of 0 corresponds to the
mean gene expression of that gene across all libraries, and ± 1, ± 2, etc. represent 1,
2, etc. SDs from the gene mean). Hierarchical clustering was performed using the R
library heatmap.2. RNA-seq data represent two independent experimental repli-
cates of each biological sample. GO term enrichment analysis of differentially
expressed genes was performed using Database for Annotation, Visualization and
Integrated Discovery Functional Annotation Tool v6.770 (www.david-d.ncifcrf.
gov). To calculate the significance of gene set enrichment, empirical p-values were
generated using DAVID tool.

Statistical analysis. Sample sizes and statistical tests for each experiment are
indicated in the fugure legends. p-values were obtained using GraphPad Prism
version 6 (GraphPad, San Diego, CA, USA). Data were tested for parametric vs.
non-parametric distribution using D’Agostino–Pearson omnibus normality test.
Spearman’s rank correlation, Mann–Whitney, two-tailed χ2, or one-way analysis of
variance for multiple comparisons tests were then applied accordingly. NS, p > 0.05,
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001. Values are shown as mean ±
SD or mean ± SEM.

Data availability. Raw unaligned sequencing reads (fastq-format) that support
the findings of this study have been deposited in the ENA and are available
under the accession number PRJEB27047. The authors declare that data sup-
porting the findings of this study are available in the main manuscript and
supplemental information, or otherwise available from the corresponding author
upon request.
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