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Introduction

The translational process of protein synthesis is considered 
to be an important clue for understanding oncogenesis (1). 
Alternatively, eukaryotic elongation factor 1 alpha (eEF1A) 
proteins may enhance tumorigenesis independent of the 
protein translation network. eEF1A proteins are known 
to associate with actin and tubulin, and ectopic eEF1A 
expression can decrease the length of actin filaments 

and tubulin microtubules (2,3). Perhaps, the ability of 
eEF1A to alter cell structure somehow contributes to a 
neoplastic phenotype. While it is unclear how eEF1A2 
might control cell growth, the process of protein synthesis 
in eukaryotic cells is controlled by various translation 
factors, such as eukaryotic initiation factor (eIF), eukaryotic 
elongation factor (eEF), and eukaryotic release factor 
(eRF) that, respectively, regulate initiation, elongation, and 
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termination, eEF1A2 is a protein coding gene. eEF1A2 
is associated with conditions such as mental retardation, 
autosomal dominant, and developmental and epileptic 
encephalopathy. The pathways associated with eEF1A2 
include protein metabolism and viral mRNA translation. 
Results of eEF1A2 cDNA hybridization in the cancer 
profiling array reveals significant overexpression of the 
transcript for eEF1A2 among several different cancer 
samples, including breast (50 pairs), uterus (42 pairs), colon 
(34 pairs), stomach (28 pairs) (4). Further investigation 
is necessary to determine the precise role for eEF1A2 in 
controlling the development of gastric cancer (GC). To 
date, 18 eEF1A2 genes have been identified in mammalian 
cells, which are numbered in the order of their discovery 
(eEF1A1, HBS1L, GSPT1, GSPT2, EEF2, TUFM, EIF5B, 
EFL1, GFM1, EIF2S3, MTIF2, GTPBP1, GFM2, EIF2S3B, 
GTPBP2, EFTUD2, EEFSEC, GUF1). In a comprehensive 
analysis, only GUF1, EFTUD2, and GSPT1 are shown 
to be associated with GC. Therefore, we undertook the 
investigation of the involvement of these genes in GC 
progression and prognosis. GUF1, EFTUD2, GSPT1 
regulate protein translation and play an important role in 
tumor (5-7). Minor sites of normal eEF1A2 expression have 
been found in several specialized human body parts (8), 
including breast acini (9), glucagon-producing islet cells in 
the pancreas, Purkinje cells of the cerebellum (10), and lung 
alveoli (11). Nevertheless, the roles of GUF1, EFTUD2 and 
GSPT1 have been less studied in GC.

GC is one of the most common malignancies, ranking 

fifth and fourth in incidence and mortality among all 
malignancies worldwide respectively (12). In most 
countries, early GC screening is not carried out effectively, 
often resulting in a diagnosis at an advanced stage (13,14). 
It is important to examine the molecular mechanism 
underlying GC development and explore specific and 
efficient diagnostic markers and therapeutic targets. GC 
is a multifactorial disease caused by genetic and epigenetic 
changes, including alteration in DNA methylation and 
aberrant expression of noncoding RNAs. The treatment of 
GC has advanced recently; however, its prognosis has not 
been significantly enhanced and the prognosis of different 
individuals varies greatly. In recent years, to better guide the 
clinical treatment of GC, researchers have been working 
hard to identify biological markers of GC that could enable 
effective screening of people for susceptibility to GC 
and predict the survival patient with GC. Such biological 
markers of tumors can be of immense benefit in early 
diagnosis, clinical staging, prognosis and treatment efficacy 
assessment of GC.

While there is research (15) established that the eEF1A2 
is genetically amplified and overexpressed in ovarian tumors 
and has oncogenic properties, it is yet to be shown whether 
eEF1A2 expression can directly cause other cancers such as 
GC in animals. Furthermore, we are yet to understand the 
mechanism by which eEF1A2 promotes tumorigenesis. In 
the absence of mechanistic insight, there are still important 
issues that need to be addressed with regard to eEF1A2 and 
GC. Firstly, is eEF1A2 copy number or eEF1A2 protein 
expression an GC prognostic factor? Secondly, is eEF1A2 
a suitable target for anticancer therapy? In this study, we 
examined the expression of GUF1, EFTUD2, GSPT1 and 
GSPT2 from eEF1A2 in normal tissues and GC tissues, 
and various cell lines. Meanwhile, we also evaluated the 
prognostic value of GUF1, EFTUD2 and GSPT1 in GC 
based on The Cancer Genome Atlas (TCGA) dataset. 
Subsequently, we analyzed the association between 
the GUF1, EFTUD2 and GSPT1 expression levels and 
individual pathologic stage, clinical T stage and individual 
primary therapy outcome, and diagnostic capabilities. The 
Gene Expression Omnibus (GEO) databases were used 
to verify the expressions of GUF1, EFTUD2 and GSPT1 
in GC. We also evaluated their role in the development 
of GC through bioinformatics analysis and experimental 
verification. Our study provides information to help in the 
early diagnosis of GC. We present this article in accordance 
with the MDAR reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-24-125/rc).

Highlight box

Key findings
•	 Genes (GUF1, EFTUD2 and GSPT1) was selected to dissect the 

proliferation and migration in gastric cancer (GC) cell lines.

What is known and what is new? 
•	 GUF1, EFTUD2, and GSPT1 regulate protein translation and play 

an important role in tumor
•	 This study identified that high levels of GUF1, EFTUD2 and 

GSPT1 expression are predictive biomarkers for a poor prognosis 
in GC.

What is the implication, and what should change now? 
•	 GUF1, EFTUD2 and GSPT1 have diverse functions and complex 

regulatory mechanisms in cancer. The mechanism in tumors has 
not been studied to a great degree yet. However, there is no doubt 
that GUF1, EFTUD2 and GSPT1 play an important role in GC 
tumorigenesis and development and may be potential targets for 
clinical diagnosis and treatment of GC.
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Methods

Databases

We investigated the expression level of GUF1, EFTUD2 
and GSPT1 in various types of normal tissues and tumor 
in the integrated datasets combining TCGA (https://
portal.gdc.cancer.gov) with the GTEx (Genotype-Tissue 
Expression) database (https://www.gtexportal.org/ home/-
index.html). TCGA are open-ended and public and do 
not need the approval of a local ethics committee. We 
obtained the profiles of RNA expression (RNA-Seq2 level 
3 data; format: TPM; platform: Illumina HiSeq 2000) 
and clinical samples of GUF1, EFTUD2 and GSPT1 
patients from the TCGA database. TCGA included 375 
GC samples and 32 normal gastric tissue samples, which 
contain general information, clinicopathological details, and 
prognostic information. The GEO databases were filtered 
to remove missing and duplicated results by stringr and 
dplyr, the difference analysis by package limma, and whole 
data transformed by log2 (TPM +1) using R package of 
“ggstatsplot” in an R environment (R version: 3.6.1).

For analysis, we chose the following detailed databases: 
Gene Cards, Oncomine (https://www.oncomine. org/
resource/ login. html, an online cancer microarray database), 
TCGA (https://portal.gdc.cancer.gov) with the GTEx 
database (https://www.gtexportal.org/home/-index.html). 
Gene Expression Profiling Interactive Analysis (GEPIA; 
http://gepia2.cancer-pku.cn/#index), and Kaplan-Meier 
Plotter (www.kmplot.com). The Human Protein Atlas 
(https://www.proteinatlas.org/humanproteome/pathology), 
and the GEO databases (GSE66229, GSE62254). The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Expression differential analysis

Oncomine gene expression array dataset was used to analyze 
the transcription levels of eEF1A2 in different cancers. The 
mRNA level of eEF1A2 in clinical cancer specimens were 
compared with those in controls, using Student’s t-test to 
generate a P value. The cutoffs of P value and fold change 
were 0.01 and 0.5.

Kaplan-Meier plot analysis

The prognostic value of the signal transducer and the 
activator of transcription (STAT) mRNA expression was 
evaluated using an online database, Kaplan-Meier Plotter 

contained gene expression data and survival information 
of GC patients (http://www.kmplot.com/analysis/index.
php?p=service & cancer=gastric). To analyze the overall 
survival (OS), progression-free survival (FP), and post-
progression survival (PPS) of patients with GC, the samples 
were split into two groups by median expression (high versus 
low expression) and assessed by a Kaplan-Meier survival 
plot, with a hazard ratio (HR) of 95% confidence intervals 
(CIs) and log rank P value. Only the JetSet best probe set of 
eEF1A2s was chosen to obtain Kaplan-Meier plots, where 
the number-at-risk is indicated below the main plot.

Protein immunohistochemical staining analysis

The data related to each protein are arranged in the 
database (The Human Protein Atlas:https://www.
proteinatlas.org/humanproteome/pathology). The starting 
page is a summary interface, where the basic information 
of the protein is displayed. The different modules can be 
visited thereafter to collect the sets of data. The modules 
included in this database are: tissue expression profile, 
cellular localization profile, pathological expression profile 
and RNA expression profile.

GEPIA dataset

GEPIA (http://gepia2.cancer-pku.cn/) is a newly developed 
interactive web server for analyzing the RNA sequencing 
expression data of 9,736 tumors and 8,587 normal samples 
from TCGA and the Genotype Tissue Expression (GTEx) 
projects, using a standard processing pipeline. GEPIA can 
profile the tissue-wise expression of one gene in different 
cancer types, using a dot plot.

Cell lines and plasmid

The human GC cell lines AGS (CL-0022) were kindly 
provided by Procell LifeScience & Technology Co., 
Ltd. (Wuhan, China), and the normal gastric cell line  
GES-1 were kindly gifted by the Ms. Juan An’s research 
group (Department of Basic Medicine Science, Qinghai 
University Medical College). Mycoplasma testing has 
been carried out for the cell lines used; and the cell lines 
used have been authenticated. AGS and GES cells were 
maintained with 5% CO2 at 37 ℃ in Dulbecco’s modified 
Eagle Medium (DMEM) (Biosharp, Beijing, China). The 
knockdown sense sequence of GUF1, EFTUD2 and 
GSPT1 are provided in Table 1. 

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
http://www.gtexportal.org/
https://www.oncomine
https://portal.gdc.cancer.gov
http://www.gtexportal.org/
http://gepia2.cancer-pku.cn/#index)
http://gepia2.cancer-pku.cn/#index)
http://www.kmplot.com
https://www.proteinatlas.org/humanproteome/pathology
http://www.kmplot.com/analysis/index.php?p=service
http://www.kmplot.com/analysis/index.php?p=service
https://www.proteinatlas.org/humanproteome/pathology). 
https://www.proteinatlas.org/humanproteome/pathology). 
http://gepia2.cancer-pku.cn/)
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Cell transfection
Specific small interfering RNAs (siRNAs) targeting GUF1, 
EFTUD2 and GSPT1 (si-GUF1, si-EFTUD2 and si-
GSPT1, respectively) and negative control siRNA (si-NC) 
were acquired from Beijing Xianghong Biotechnology 
Co., Ltd. (Beijing, China). For the siRNA experiments, 
100 pmol siRNA and sample control (NC) were mixed 
with 125 μL serum-free medium and 4 μL Lipo8000 
Transfection Reagent (Beyotime, Shanghai, China) and 
transfection was carried out. All transfected cells were 
cultured for 48 h before they were used for the various 
assays, unless indicated otherwise.

RNA extraction and quantitative real-time polymerase 
chain

Reaction
The total RNA from the cell lines was isolated using 
Total RNA Isolation Reagent (Biosharp), according 

to the manufacturer’s instructions. The cDNA was 
reverse transcribed with 1 μg of total RNA, using the 
SPARKscriptⅡRT Plus Kit (with gDNA Eraser, AG0304). 
The quantitative real-time polymerase chain reaction (qRT-
PCR) was performed using the 2X SYBR Green qPCR 
Mix (with ROX, AH0104) with Roche LightCycler 96 
instrument. Glyceraldehyde-3-phosphate dehydrogenase 
was used for normalization of the mRNA expression. 
All results were calculated using the 2−ΔΔCq method. 
Each experiment was performed three times. The primer 
sequences are listed in Table 2.

Cell proliferation assay

Cell proliferation was examined through 5-ethynyl-2'-
deoxyuridine assay. EdU staining was performed using 
BeyoClickTM EdU Cell Proliferation Kit with Alexa Fluor 
555, in accordance with the manufacturer’s instruction 
(C0075S, Beyotime).

Cell migration assays

To the chamber, 100 μL serum-free medium and 200 μL  
cell suspension (2.5×105/mL in serum-free medium) were 
added. Add 700 μL of culture medium (with serum) and 
it was incubated at 37 ℃ for 12–16 h. Subsequently, the 
medium was removed from the chamber and the chamber 
was washed twice in phosphate buffered saline (PBS). 
Following that, cells were fixed for 10 min with 4% 
paraformaldehyde at room temperature (15–20 ℃). Crystal 
Violet staining solution was used to stain cells for 10 min 
at room temperature, formaldehyde was removed, and the 
cells were washed with PBS twice. Finally, migrated cells 
were counted under a light microscope, and the number of 
migrated cells was calculated for each group.

Statistical analysis

Statistical analyses were performed using SPSS 26.0 (IBM, 
Armonk, NY, USA). A fold change >2 and P value <0.05 
were used as the screening criteria to filter the differentially 
expressed genes. Two-tailed unpaired Student’s t-test was 
used to compare the differences between the two groups. 
The Kaplan-Meier method and log-rank test were used for 
the survival rate analysis. For all analyses, a P value <0.05 
was considered statistically significant. All measurement 
data were expressed as the mean ± standard deviation (SD) 
obtained from three independent experiments.

Table 1 The primer sequences

Gene Direction Primer sequences

GUF1 PF ACATAAGCAACCAGTGGAGCCC

GUF1 PR TCCAGCCAGCACCCAGAGC

EFTUD2 PF CAGCATCGTTCAAGGTTTC

EFTUD2 PR CATCAGACGAGGAGTAGCC

GSPT1 PF CGTAGCCCCAGGTGAAAA

GSPT1 PR AAATGTGCGTCCAGAATGA

GSPT2 PF TTGGCTGTGCTGGTCATC

GSPT2 PR GTTTTACCCCTGCCGTTT

GAPDH PF GAAGGTGAAGGTCGGAGT

GAPDH PR CATGGGTGGAATCATATTGGAA

Table 2 The primer sequences

si-RNA Direction Primer sequences

hGUF1 PF CCUCCUAAAGUGCAUCGCAAATT

hGUF1 PR UUUGCGAUGCACUUUAGGAGGTT

hEFTUD2 PF GCCUCUCACAGAACCCAUUAUTT

hEFTUD2 PR AUAAUGGGUUCUGUGAGAGGCTT

hGSPT1 PF CCCGAUGAUGUAGAGACUGAUATT

hGSPT1 PR UAUCAGUCUCUACAUCAUCGGTT
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Results

Expression levels of GUF1, EFTUD2, GSPT1 and GSPT2 
in patients with cancers

We compared the expression levels of GUF1, EFTUD2, 
GSPT1 and GSPT2 in cancer samples against those in 
normal samples using data from Oncomine databases. The 
analysis revealed that the expression of GSPT1 was mainly 
higher in bladder cancer, breast cancer, colorectal cancer 
(CRC) and myeloma samples as compared to that in the 
corresponding normal tissues, whereas the expression of 
GSPT2 was higher in CRC and leukemia samples, but 
lower or not detected in other cancer samples. GUF1 and 
EFTUD2 were expressed higher in samples of CRC, lung 
cancer, GC, leukemia and lymphoma (Figure 1A-1D).

Relationship between the GUF1, EFTUD2, GSPT1 
and GSPT2 mRNA levels and the clinical parameters of 
patients with GC

We used the GEPIA and TCGA datasets for the analysis 
and using log2 (TPM + 1) we derived the log-scale. Using 
the matched normal data, TCGA normal and GTEx 
data were matched, we compared the mRNA expression 
of GUF1, EFTUD2, GSPT1 and GSPT2 between GC 
and gastric tissues (Figure 2). The analysis showed higher 
expression levels of GUF1, EFTUD2 and GSPT1 in GC 
tissues than in normal tissues (Figure 2A). Furthermore, 
data from immunohistochemistry analysis (The Human 
Protein Atlas dataset) showed that the expression of GUF1, 
EFTUD2 and GSPT1 proteins was higher in the GC tissues 
than in the normal tissues (Figure 2C,2D). Furthermore, 
we compared the mRNA expression of GUF1, EFTUD2, 
GSPT1 and GSPT2 factors between GC and gastric 
normal tissues. The results indicated that the expression 
levels of GUF1, EFTUD2 and GSPT1 were higher in GC 
tissues than in normal tissues, and the expression level of 
GSPT2 had no statistically significant difference between 
GC and normal tissues. At the same time, GC tissues with 
high expression of GUF1, EFTUD2 and GSPT1 were 
disordered and lost its normal morphology (Figure 2B).  
Therefore, based on GC data in TCGA, we analyzed 
the expression level of GUF1, EFTUD2 and GSPT1 in 
AGS cell lines and GES control cell. The results revealed 
that mRNA levels of GUF1, EFTUD2 and GSPT1 were 
significantly higher in AGS, (P<0.001, Figure 2D). The 
mRNA levels of GUF1, EFTUD2 and GSPT1 were 
determined to be highly expressed in the AGS cell line.

Relationship between expressions of GUF1, EFTUD2 and 
GSPT1 with clinical profile

The correlation between GUF1, EFTUD2 and GSPT1 
expression and clinical baseline data was analyzed. As 
the result of the analysis, statistically significant (P<0.05) 
differences were found between the GUF1 expression and 
the tumor T-stage and patient’s age and between GSPT1 
expression and tumor T-stage (Table 3).

Association of GUF1, EFTUD2 and GSPT1 mRNA Levels 
with the prognosis of patients with GC

The Kaplan-Meier method was used to assess the difference 
between “high” and “low” risk groups based on the best 
separation of GUF1, EFTUD2 and GSPT1 expression, 
and the correlation between the GUF1, EFTUD2 and 
GSPT1 mRNA levels and the survival of patients with 
GC was analyzed, the publicly available Kaplan-Meier 
dataset was used. The Kaplan-Meier curve and log rank 
test analysis revealed that the increased GUF1 mRNA level 
was significantly associated with patients’ OS, FP and PPS 
(P<0.05) (Figure 3). The increased EFTUD2 mRNA level 
was significantly associated with OS (P<0.05) (Figure 3); 
however, it did not show the same association with FP and 
PPS (P>0.05) of all the patients with GC. The increased 
GSPT1 mRNA level showed significant association with 
OS and FP (P<0.05) (Figure 3). The GC patients with 
high mRNA levels of GUF1, EFTUD2 and GSPT1 were 
predicted to have high OS, FP and PPS.

Relationship between the mRNA expression level of GUF1, 
EFTUD2 and GSPT1 clinicopathological parameters in 
GC patients

We analyzed the relationship between the mRNA expression 
of GUF1, EFTUD2, GSPT1 and clinicopathological 
parameters of GC patients (individual pathologic stage, 
clinical T stage and individual primary therapy outcome) 
through TCGA. The mRNA expression levels of GUF1, 
EFTUD2 and GSPT1 were correlated with individual 
cancer stage: patients with a more advanced cancer stage 
tended to express higher mRNA levels of GUF1, EFTUD2 
and GSPT1 (Figure 4A-4I). Similarly, the expression levels 
of GUF1, EFTUD2 and GSPT1 were significantly related 
to primary therapy outcome. The mRNA levels of GUF1, 
EFTUD2 and GSPT1 tended to be related with individual 
pathologic stage, clinical T stage and individual primary 
therapy outcome.
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Figure 1 The expression levels of GUF1, EFTUD2, GSPT1 and GSPT2 in different types of cancers (from Oncomine and xiantao.love/
products). ns, not statistically significant; *, P<0.05, **, P<0.01, ***, P<0.001 compared with normal samples. TPM, transcripts per million.
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Figure 2 The expression of GUF1, EFTUD2, GSPT1 and GSPT2 in gastric cancer (GEPIA, TCGA). (A) Scatter diagram. (B) Box plot 
(red: cancer samples; green: normal samples). (C) Immunohistochemistry. The links to the individual normal and tumor tissues of each 
protein are provided for GUF1 (https://www.proteinatlas.org/ENSG00000151806-GUF1/tissue/stomach#img;https://www.proteinatlas.
org/ENSG00000151806-GUF1/pathology/stomach+cancer#img), EFTUD2 (https://www.proteinatlas.org/ENSG00000108883-EFTUD2/
tissue/stomach#img;https://www.proteinatlas.org/ENSG00000108883-EFTUD2/pathology/stomach+cancer#img), GSPT1 (https://
www.proteinatlas.org/ENSG00000103342-GSPT1/tissue/stomach#img; https://www.proteinatlas.org/ENSG00000103342-GSPT1/
pathology/stomach+cancer#img) and GSPT2 (https://www.proteinatlas.org/ENSG00000189369-GSPT2/tissue/stomach#img; https://www.
proteinatlas.org/ENSG00000189369-GSPT2/pathology/stomach+cancer#img), respectively. Scale bar, 50 μm. (D) The expression level in 
gastric cancer (TCGA). *, P<0.05, ***, P<0.001 compared with normal tissue. TPM, transcripts per million; TCGA, The Cancer Genome 
Atlas; STAD, stomach adenocarcinoma.

Table 3 Relationship between GUF1, EFTUD2 and GSPT1 
expression and GC clinical baseline profile characteristics

Parameter
Low  

expression
High 

expression 
P

GUF1, n 187 188

T stage 50.6% 49.3% 0.02*

N stage 49.8% 50.2% 0.87

M stage 48.7% 52.3% 0.59

Gender 49.9% 50.1% 0.72

Age, years, median [IQR] 64 [57, 71] 69 [61, 75] <0.001*

EFTUD2, n 187 188

T stage 50.1% 49.9% 0.10

N stage 49.6% 50.4% >0.99

M stage 50.2% 49.8% 0.09

Gender 49.9% 50.1% 0.47

Age, years, median [IQR] 66 [57, 72] 68 [59, 74] 0.09

Table 3 (continued)

Table 3 (continued)

Parameter
Low  

expression
High 

expression 
P

GSPT1, n 187 188

T stage 50.1% 49.9% 0.004*

N stage 49.6% 50.4% 0.43

M stage 50.4% 49.6% 0.38

Gender 49.8% 50.2% 0.35

Age, years, median [IQR] 67 [58, 73] 68 [58, 73] 0.49

*, P<0.05 was considered statistically significant. GC, gastric 
cancer; IQR, interquartile range.

Diagnostic capability of GUF1, EFTUD2 and GSPT1  
for GC

We analyzed the disease diagnostic capabilities of GUF1, 
EFTUD2 and GSPT1 expression in GC. Receiver operating 
characteristic (ROC) curves for each gene are shown in 
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Figure 3 The prognostic value of expression level of GUF1, EFTUD2 and GSPT1 in gastric cancer patients (Kaplan-Meier plotter). OS, 
overall survival; FP, progression-free survival; PPS, post-progression survival; HR, hazard ratio; CI, confidence interval.
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Figure 4 Relationship between the mRNA expression of GUF1, EFTUD2 and GSPT1 genes and individual cancer stage of gastric cancer 
patients. (A-C) The mRNA expression of the EFTUD2, GSPT1 and GUF1 genes were correlated with the patients’ individual pathologic 
stage. (D-F) The mRNA expression of the EFTUD2, GSPT1 and GUF1 genes was correlated with the patients’ clinical T stage. (G-I) The 
mRNA expression of the EFTUD2, GSPT1 and GUF1 genes were correlated with the patients’ individual primary therapy outcome. ns, not 
statistically significant; *, P<0.05, **, P<0.01, ***, P<0.001 compared with normal tissue. TCGA, The Cancer Genome Atlas; STAD, stomach 
adenocarcinoma; TPM, transcripts per million; PD, progressive disease; SD, stable disease; PR, partial response; CR, complete response.
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Figure 5 Diagnostic capability of GUF1, EFTUD2 and GSPT1 
for GC. (A-C) Estimated ROC curves of the GUF1, EFTUD2, 
and GSPT1. All techniques can operate at levels where both 
sensitivity and specificity are >95%. Higher diagnostic accuracy 
is afforded by curves closer to the upper right corner. GC, gastric 
cancer; TCGA, The Cancer Genome Atlas; STAD, stomach 
adenocarcinoma; TPR, true positive rate; FPR, false positive rate; 
ROC, receiver operating characteristic; AUC, area under the ROC 
curve; CI, confidence interval.

Figure 5. Please note that the sensitivity range had been 
limited to show only values ≥90% and (1 − specificity) 
limited to show only values ≤20% to focus on high 
sensitivity and specificity operational conditions that would 
be suitable for the ROC triage application. The result 
showed that the expression of GUF1, EFTUD2 and GSPT1 
genes could be called as early diagnostic markers for GC.

Predicted functions of GUF1, EFTUD2 and GSPT1 in 
GC cells

GUF1, EFTUD2 and GSPT1 expression level in cell 
lines and cell transfection
Figure 6A shows that GUF1, EFTUD2 and GSPT1 were 
highly expressed in AGS than in GES cell line, and the 
difference was statistically significant (P<0.05). For the 
RNAi experiments, according to the instructions of 
siRNA manufacturer, we tested the 100, 50, 30, 20, and 
10 nM siRNA concentrations. As shown in Figure 6A, we 
performed siRNA-mediated silencing of GUF1, EFTUD2 
and GSPT1. Compared to control si-NC (nonsense 
siRNA), si-GUF1, si-EFTUD2 and si-GSPT1 (transfected 
with specific siRNA) reduced the mRNA levels of GUF1, 
EFTUD2 and GSPT1 ,  respectively over 60% gene 
silencing efficiency: indicative of efficient silence of the 
corresponding genes in AGS cells (Figure 6B-6D).

GUF1, EFTUD2 and GSPT1 knock-down suppressed 
cellular proliferation of cancer cell
We evaluated the changes of DNA synthesis in AGS cells 
with EdU immunofluorescence assay after GUF1, GSPT1 
and EFTUD2 silencing, and cell proliferation was evaluated 
by CCK-8 assay. The results showed that the proportion of 
the cells in the S phase in the si-GUF1, si-EFTUD2, and si-
GSPT1 groups was distinctly lower than that in the si-NC 
group (Figure 7A-7C). At the same time, cell proliferation 
was inhibited (Figure 7D-7F). These results revealed that 
GUF1, EFTUD2 and GSPT1 had proliferation-promoting 
properties in GC cells.

Silencing of GUF1, EFTUD2 and GSPT1 inhibited 
AGS cell migration and invasion ability in vitro
Metastasis in GC is characterized by increased cell motility, 
angiogenesis, and epithelial-mesenchymal transition. We 
investigated the roles of GUF1, EFTUD2, and GSPT1 
in advanced GC. The tumor cell migration and invasion 
abilities were examined with Transwell assay. GUF1, 
EFTUD2 and GSPT1 knockdown by si-RNA dramatically 
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reduced the invasion capacity of AGS cells compared to 
that of the si-NC group, suggesting that the knockdowns of 
GUF1, EFTUD2 and GSPT1 could inhibit the migration 
(Figure 8A-8F) and invasion (Figure 8G-8L) ability of GC 
cells.

Discussion

GC is one of the most fatal cancers worldwide (16,17), 
which manifests as highly prevalent malignant tumors in 
China. GC ranks fifth in cancer incidence and fourth in 
mortality worldwide (18). The 5-year survival rate for GC 
patients increased from 15.3% between 1995 and 1999 to 
31.3% between 2005 and 2009, as screening became more 
common and treatment strategies improved (19). Despite 
the advancements in comprehensive treatment, including 

surgery, chemotherapy and radiation therapy, the prognosis 
of GC patients has not significantly improved. Currently, 
studies on the pathogenesis, occurrence and development 
of GC are facilitated by the modern molecular biology 
techniques.

The role of eEF1A2 in tumors remains debatable. 
Increased eEF1A2 expression may lead to an overall 
increase in protein translation. An increase in bulk protein 
synthesis may enhance cell replication because cell division 
requires sufficient protein production to fulfill the metabolic 
and size requirements of two new daughter cells (20). 
Increasing bulk protein abundance may decrease the time 
required to translate the overall mass of proteins necessary 
for cell division. If this is the case, then it would be expected 
that anything increasing protein translation rates would be 
predicted to be oncogenic. The reverse is certainly true, and 

Figure 6 Transfection efficiency assay. (A) The expression level of GUF1, EFTUD2, GSPT1 and GSPT2 in gastric cancer cell lines.  
(B) GUF1 knockdown inefficiency detection. (C) EFTUD2 knockdown inefficiency detection. (D) GSPT1 knockdown inefficiency 
detection, *, P<0.05 compared with normal cell line.
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Figure 7 Effect of GUF1, EFTUD2 and GSPT1 knock-down on proliferation of gastric cancer cells. (A-C) Representative images of 
EdU staining (red) on day 2 to evaluate cell proliferation; nuclei were counter stained with DAPI (blue). Scale bar, 100 μm, ×10. (D-F) 
Representative images of CCK-8 experiments at 24, 48, and 72 h. *, P<0.05 compared with si-NC group.
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inhibitors of protein translation are universally and highly 
toxic to cells and organisms. The molecular mechanism 
underlying its role in tumorigenesis and progression is not 
clearly understood.

Although GUF1 was identified several years ago, its 
physiological role is still unclear. GUF1 had once been 
reported as prognostic markers for thyroid cancer (21). 
Furthermore, by using the least absolute shrinkage and 
selection operator (LASSO) regression model, Li and 
colleagues identified GUF1 for its contribution to a high 
probability of liver metastasis of CRC (22). We investigated 
the expression level of GUF1 in GC tissues through online 
bioinformatics tools and explored its relationship with 

the pathological features of GC. Analysis of data from 
Oncomine and The Cancer Genome Atlas datasets revealed 
that the expression of GUF1 in human GC samples was 
higher than in normal tissue. Similar result was obtained 
through our study in which GUF1 was expressed more in 
GC cells than in control cells. Moreover, GUF1 expression 
also correlated with clinical characteristics of the patients 
with GC. Our analysis using the Kaplan-Meier Plotter 
showed that a high GUF1 expression was significantly 
associated with OS, FP and PPS in all the patients with GC. 
In our Transwell assay, knockdown of the GUF1, EFTUD2 
and GSPT1 could inhibit the migration ability of GC 
cells. Additionally, high GUF1 expression was significantly 

Figure 8 Silencing of GUF1, EFTUD2 and GSPT1 genes inhibit AGS cell migration and invasion ability in vitro. (A-F) Representative 
images of the cell migration ability detected by Transwell assay. (G-L) Representative images of the cell invasion ability detected by 
Transwell assay. Crystal violet staining, scale bar, 100 μm, ×40. **, P<0.01, ***, P<0.001 compared with si-NC group.
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associated with the age of patients. Therefore, GUF1 may 
be a new target for GC treatment.

EFTUD2 is a highly conserved spliceosomal GTPase 
that plays a crucial role in diverse biological functions, 
including spliceosome activation (23) and immune responses 
(24,25). Meanwhile, it has been reported that deletion of 
EFTUD2 inhibits the association of endogenous proteins, 
leading to increased apoptosis in breast cancer cells (26). 
Spliceosome is responsible for removing noncoding 
introns from mRNA precursors and generating mature 
mRNA, therefore, it plays an important role in almost all 
life processes (27). A study (28) identified that EFTUD2 
plays a key role in regulating microglial polarization and 
homeostasis possibly through the NF-κB signaling pathway. 
Previously, there was little known about the molecular 
function of EFTUD2 in GC development. In this study, we 
identified the exact role and related mechanism of EFTUD2 
in GC. We observed that EFTUD2 was upregulated in 
GC tissues compared to adjacent nontumor. In addition, 
we found that EFTUD2 was an independent prognostic 
factor for GC patients. A high level of EFTUD2 expression 
predicted a shorter overall and recurrence-free survival time 
in GC patients.

Interestingly, we found that EFTUD2 likely plays a role 
in maintaining the survival of GC cell lines. Our results 
indicated that a transient knockdown of EFTUD2 with 
siRNA inhibited cell viability. Our data indicated that 
EFTUD2 knockdown decreased the cell proliferation and 
migration in vivo. Further study to investigate the molecular 
mechanism of possible link between cell proliferation and 
migration regulated by EFTUD2 in GC is warranted. 
A study of EFTUD2 revealed that it plays a pivotal role 
in hepatocellular carcinoma (HCC) cell proliferation 
and the cell cycle (29), meanwhile another reported (30) 
that EFTUD2 as a novel oncogene helps to maintain the 
survival of HCC cells and promotes HCC progression. 
The high level of expression of EFTUD2 in HCC tissues 
indicates shorter overall and recurrence-free survival in 
HCC patients. These findings have similarities to our 
observation that EFTUD2 had proliferation-promoting 
properties in GC cells, which suggests that EFTUD2 
maybe a new target for GC therapy in the future.

GSPT1 and GSPT2 are small GTPases which were 
initially found essential for the G1 to S phase transition of 
the cell cycle and later reported to function as a polypeptide 
chain release factor 3 (eRF3). The functions of eRF3 
include the regulation of cell cycle phase-shifting from G1 
to S phase (31), involvement in mRNA degradation, and 

ribosomal recycling (32,33), and it occurs in two isoforms, 
eRF3a and eRF3b, encoded by GSPT1 and GSPT2 genes, 
respectively. GSPT1/2 associates with eRF1 to mediate stop 
codon recognition and nascent protein release from the 
ribosome (34). Malta-Vacas et al. previously reported (35)  
that the expression level of eRF3a/GSPT1 was significantly 
high in intestinal gastric tumors. In addition, Tian (36) 
explored the potential effect of eRF3a/GSPT1 on gastric 
carcinogenesis and found that the expression level of 
eRF3a/GSPT1 was significantly increased in GC tissues, 
which is similar to the result of our observation. In 
addition, GSPT1 has been found to be overexpressed and 
oncogenic in a number of cancers (37), including gastric (35)  
and breast cancers (38). A study (39) has shown that 
GSPT1 plays a tumor-promoting role in the occurrence 
and development of colon cancer through specific signaling 
pathways. In the present study, high GSPT1 expression was 
significantly correlated with OS and FP in all patients with 
GC, establishing the oncogenic role of GSPT1 in GC.

Notably, it has been reported that GSPT1 promotes 
the proliferation, invasion, and migration of non-small cell 
lung cancer (NSCLC) cells, enhances tumorigenicity, and 
promotes the progression of lung cancer (40,41). In GC 
tissues, GSPT1 is highly expressed, miRNA-144 expression 
is down-regulated, and GSPT1 expression is significantly 
increased. By inhibiting miRNA-144, GSPT1 over-
expression can promote the proliferation, invasion, and 
migration of GC cells, thereby promoting GC progression, 
which is consistent with the role of GSPT1 in tumors (42). 
It has also been reported that the overexpression of GSPT1 
is related to the specific expression of GGCn alleles in 
various cancer cells, and that it is a potential oncogene (43). 
It could be argued that because all cells require protein 
synthesis, inhibitors of protein elongation would have 
substantial cytotoxic effects on normal tissues. However, 
rapidly growing tumor tissue may be more sensitive to 
decreases in protein synthesis than normal tissue because 
of the added burdens of an increased proliferation rate. 
Perhaps, when eEF1A2-inactivating agents are found, they 
might have efficacy in GC.

Tumor microenvironment (TME) refers to a complex 
and rich environment composed of multiple cells, which 
plays an important role in the growth and development of 
tumors. TME includes primary tumor cells, a variety of 
tissue cells (such as endothelial cells and fibroblasts), various 
immune cells, adipocytes, and extracellular fluid, which 
make TME a highly complex local environment. TME is an 
important component of tumor growth and development, 
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and has an important impact on the growth, metastasis, and 
drug resistance of tumor cells (44). In this study, GSPT1 
GUF1, EFTUD2, and GSPT1 were highly expressed in 
GC tissues, and the knockdown of GUF1, EFTUD2, and 
GSPT1 could inhibit the proliferation, migration and 
invasion of GC cells. We hypothesize that the GSPT1 gene 
plays a promoting role in the growth of GC tumor cells. 
The goal of future drug development can be to inhibit 
the expression of GUF1, EFTUD2, GSPT1, which may 
overcome many of the current limitations in the diagnosis 
and prognosis of cancer patients, and can improve the 
specificity and effectiveness of current tumor treatments, 
and provide new strategies and ideas for personalized 
treatment and comprehensive treatment of cancer patients.

Conclusions

In summary, we determined that GUF1, EFTUD2 and 
GSPT1 have diverse functions and complex regulatory 
mechanisms in cancer. The mechanism in tumors has not 
been studied to a great degree yet. However, there is no 
doubt that GUF1, EFTUD2 and GSPT1 play an important 
role in GC tumorigenesis and development and may be 
potential targets for clinical diagnosis and treatment of GC.
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