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As the prevalence of obesity increases, so does the occurrence of obesity-related
complications, such as cardiovascular and cerebrovascular diseases, diabetes, and
some cancers. Increased adipose tissue is the main cause of harm in obesity. To
better understand obesity and its related complications, we analyzed the mRNA
expression profiles of adipose tissues from 126 patients with obesity and 275 non-obese
controls. Using an integrated bioinformatics method, we explored the functions of 113
differentially expressed genes (DEGs) between them. Gene ontology (GO) and kyoto
encyclopedia of genes and genomes (KEGG) pathway enrichment analyses revealed
that upregulated DEGs were enriched in immune cell chemotaxis, complement-related
cascade activation, and various inflammatory signaling pathways, while downregulated
DEGs enriched in nutrient metabolism. The CIBERSORT algorithm indicated that an
increase in macrophages may be the main cause of adipose tissue inflammation,
while decreased γδ T cells reduce sympathetic action, leading to dysregulation of
adipocyte thermogenesis. A protein-protein interaction network was constructed using
the STRING database, and the top 10 hub genes were identified using the cytoHubba
plug-in in Cytoscape. All were confirmed to be obesity-related using a separate dataset.
In addition, we identified chemicals related to these hub genes that may contribute
to obesity. In conclusion, we have successfully identified several hub genes in the
development of obesity, which provide insights into the possible mechanisms controlling
obesity and its related complications, as well as potential biomarkers and therapeutic
targets for further research.

Keywords: adipose tissue, inflammation, bioinformatics, obesity, mechanism

INTRODUCTION

Over the past 40 years, the incidence of obesity has increased in both developed and
developing countries because of unbalanced diets, inadequate physical activity, chronic stress,
and certain drugs and other environmental pollutants (Andersen et al., 2016; Yang et al.,
2017; Sung et al., 2019; Tomiyama, 2019). According to the latest report of the World Health
Organization, more than 1.9 million people were overweight in 2016, of which 6.5 million
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were obese (NCD Risk Factor Collaboration [NCD-RisC], 2017;
WHO, 2018). Obesity can cause many chronic diseases, including
cardiovascular and cerebrovascular diseases, diabetes, and some
cancers of the colon, rectum, gastric cardia, liver, gallbladder,
and pancreas (Arnold et al., 2016; Lauby-Secretan et al.,
2016; Gadde et al., 2018). The most characteristic pathological
changes associated with obesity are abnormal and excessive fat
accumulation (WHO, 2018). Adipose tissue is widely distributed
throughout the human body, and regulates metabolism by
storing and releasing fatty acids and secreting adipokines (Giralt
and Villarroya, 2013; Chait and den Hartigh, 2020). In obese
people, this regulatory ability is disrupted, as is adipokine
release (Munzberg and Myers, 2005; Leal and Mafra, 2013).
Current treatment strategies for obesity includes inhibition of fat
absorption, liposuction, and weight loss surgery (Yanovski and
Yanovski, 2014; Apovian et al., 2015; Wolfe et al., 2016). However,
these are symptomatic treatments rather than preventative
measures controlling obesity development, and the number of
obese individuals continues to increase annually. Therefore, it
is important to identify biomarkers of obesity in adipose tissue
and their related molecular mechanisms, to develop effective
therapies to prevent obesity and its complications.

With the growing popularity of chip and sequencing
technology, comprehensive bioinformatic analysis has become a
promising method for exploring disease-related biomarkers and
their molecular mechanisms (Sakharkar et al., 2019; Wan et al.,
2020). For example, Zhang et al. found that the adipose tissues of
insulin-resistant and non-insulin-resistant patients with obesity
had differential expression of a number of genes, including matrix
metallopeptidase 9, interleukin (IL)6, C-X-C motif chemokine
ligand (CXCL) 8, C-C motif chemokine ligand 4, and CXCL10,
which are enriched for several functions, including cytokine-
cytokine receptor interactions, tumor necrosis factor (TNF)
signaling, and pathways in cancer (Zhang et al., 2019). Ida
et al. found that ST8 alpha-N-acetyl-neuraminide alpha-2,8-
sialyltransferase 2 expression in omental fat was significantly
associated with weight loss after Roux-en-Y gastric bypass
(Hatoum et al., 2013). In addition, circadian clock and metabolic
gene expression rhythms are reduced in the subcutaneous
adipose tissue of obese patients with type 2 diabetes compared
to lean controls (Stenvers et al., 2019). However, no large-
scale studies have been performed to examine the differential
expression of genes in the adipose tissues of obese and non-obese
populations. In this study, we used an integrative bioinformatics
approach to analyze immune cell differences and gene expression
differences in adipose tissue from obese and non-obese patients.
Moreover, we combined the analysis of differentially expressed
genes (DEGs) with functional enhancement and protein-protein
interaction (PPI) analysis. Finally, we identified the hub genes
that may contribute to obesity.

MATERIALS AND METHODS

Research Design
The research was designed as shown in Figure 1. Firstly, we
downloaded relevant mRNA expression profiles from the Gene

Expression Omnibus (GEO). We then identified the pathways
that may contribute to obesity through gene set enrichment
analysis (GSEA) and analyzed the differences in immune cell
infiltration in obese patients using the CIBERSORT algorithm.
Secondly, we used an integrated bioinformatics approach to
identify DEGs and explore the genes-related disease. Gene
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses were used to explore
potential molecular mechanisms. A PPI network was constructed
to identify hub genes. Finally, we verified the hub genes
in a separate dataset and identified several chemicals that
may contribute to obesity using the comparative toxicology
genomics (CTD) database.

Microarray Data
GEO1 is the largest public database of microarray- and
sequencing-based expression data, and contains copious adipose
tissue data (Edgar et al., 2002; Civelek et al., 2017). The
search strategy used was “((obes∗) AND adipose tissue) AND
"Homo sapiens"[porgn:_txid9606].” The inclusion criteria were
as follows: subcutaneous adipose tissue samples, including those
from obese [body mass index (BMI) > 30 kg/m2] and non-obese
(BMI < 25 kg/m2) individuals. The GSE70353 and GSE59034
datasets were used. GSE70353 was submitted by the University
of California, Los Angeles in 2015, and includes subcutaneous
adipose biopsies from 770 people participating in the Metabolic
Syndrome in Men study (Civelek et al., 2017). GSE59034 was
submitted by the Karolinska Institute in 2014, and includes 48
subcutaneous adipose tissues from individuals with varying BMIs
(Petrus et al., 2018), the details are presented in Table 1. After
downloading the expression matrices and clinical data, samples
were selected according to the inclusion criteria. Samples from
126 obese people (110 from GSE70353 and 16 from GSE59034)
and 275 non-obese people (259 from GSE70353 and 16 from
GSE59034) were used in the following analysis.

Immune Cell Analysis
CIBERSORT is an analytical tool that uses gene expression
data to estimate the abundance of immune cell types in mixed
cell populations (Newman et al., 2015). We used the original
CIBERSORT gene signature file LM22, which defines 22 immune
cell subtypes, to analyze datasets from obese adipose tissues and
non-obese adipose tissues, with the number of permutations
set at 100. The CIBERSORT p-value represents the statistical
significance of the deconvolution results across all cell subsets
and can be used to filter out deconvolution with less significant
fitting accuracy. Samples with a p < 0.05 were selected from
the calculated score table for further analysis. Then, the output
was directly integrated to generate an entire matrix of immune
cell fractions. The vioplot package (version 0.3.5) was used to
visualize the results of immune infiltration between the adipose
tissues of obese and non-obese subjects, and the Wilcoxon test
was used to compare the differences in the means between obese
and normal samples (Gehan, 1965).

1http://www.ncbi.nlm.nih.gov/geo
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FIGURE 1 | The flow chart of this study. DEGs, differentially expressed genes; GSEA, Gene set enrichment analysis; GO, Gene ontology; KEGG, Kyoto Encyclopedia
of Genes and Genomes; MCC, maximal clique centrality.

TABLE 1 | Details for GEO obesity adipose tissue data.

Dataset Platform Obese
sample

Non-obese
sample

Gender Non-obese
age (years)

Obese Age
(years)

BMI for obesity
(kg/m2)

BMI for non-obesity
(kg/m2)

GSE70353 GPL13667 110 259 Men 54.8 ± 4.9 54.8 ± 5.2 23.2 ± 1.3 32.6 ± 2.9

GSE59034 GPL11532 16 16 Women 47.7 ± 2.2 46.1 ± 2.1 25.1 ± 0.5 41.1 ± 0.9

Age and BMI values are mean ± SEM (Standard Error of Mean); BMI: body mass index.

Gene Set Enrichment Analysis (GSEA)
GSEA was performed by comparing the obtained gene sets
with known disease-related gene sets (Subramanian et al., 2005).
GSE70353 and GSE59034 expression data and related phenotype
files were imported into the GSEA software (version 4.0.2). The
pre-validated curated C2 gene set database2 was employed as a
reference to highlight the distinct biological features of obesity.
Gene set permutations were performed 1,000 times for each
analysis. A false discovery rate < 25% and a p < 5% were the
criteria for significant gene set enrichment.

DEG Identification
DEG identification was performed as follows. Firstly, to convert
each probe expression matrix into a gene expression matrix, we
downloaded the annotation platform file and then mapped the

2http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp

probe IDs to the gene symbols using R software (version 4.0.3).
Probes without corresponding gene symbols were removed.
For several probes that matched only one gene symbol, mean
expression values were calculated and considered the final gene
expression values. Then, DEGs in the obese and non-obese
groups were analyzed using the linear models’ limma package
(version 3.44.3), and the Benjamini–Hochberg method was used
for multiple test correction. Genes with | log2 (fold change)|
> 0.5, and a corrected p < 0.05 were considered DEGs.
DEG heatmaps were generated using the Pheatmap package
(version 1.0.12) (Kolde, 2012). Finally, the online tool Draw
Venn Diagram3 was used to detect the DEGs shared by both
datasets (Bardou et al., 2014). Common DEGs were used in the
following analyses.

3http://jvenn.toulouse.inra.fr/app/example.html
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Enrichment Analysis in DisGeNET
The DisGeNET database integrates multiple disease gene
databases and is used to explore disease-related genes (Piñero
et al., 2016). We used Metascape, an online tool that
contains multiple enrichment methods (Zhou et al., 2019),
to query DisGeNET to determine the proportion of obesity-
related diseases.

Pathway and Functional Enrichment
Analyses
To identify the pathways in which DEGs cause obesity, we
conducted GO and KEGG enrichment analyses. GO analysis
involves detecting the enrichment of genes in particular cellular
components, biological processes, and molecular functions
(Gene Ontology Consortium[GOC], 2006). The KEGG database
contains various biological pathways. KEGG enrichment analysis
reveals which pathways DEGs are involved in, which can indicate
the molecular mechanisms of a disease (Kanehisa and Goto,
2000). In this study, GO and KEGG enrichment analyses were
both performed using the ClusterProfiler package (version 3.16.0)
in R (with a q < 0.05 and a p < 0.05 considered significant)
(Yu et al., 2012).

PPI Network Construction and Hub Gene
Identification
The STRING database (version 11)4 is a web resource containing
all known and predicted PPI networks (Szklarczyk et al., 2016),
and was used to explore the functional interactions between
proteins. Based on the STRING online tool, PPI networks of
the DEGs were constructed with a confidence score ≥ 0.4.
After removing unconnected nodes from the network, DEG PPIs
were visualized using Cytoscape (version 3.7.2). All data and
information were exported and plotted using Cytoscape software.
The DEGs are represented as nodes, and the interaction between
DEGs are represented as edges between nodes. The plug-in
cytoHubba was then used to identify hub genes in the network
(Chin et al., 2014) and the top 10 hub genes were explored using
the maximum clique centrality (MCC) method, a topological
analysis method in CytoHubba for identifying feature nodes and
hub genes from all DEGs.

Hub Gene Verification
To validate the differential expression of the hub genes
in obesity, we used the GSE55200 dataset, which contains
adipose tissue expression data from seven healthy lean
people, eight metabolically healthy obese people, and eight
metabolically unhealthy obese people (Badoud et al., 2014), by
downloading its normalized gene expression matrix, converting
the probes to gene names using R, and analyzing the differential
expression of 16 obesity- and seven non-obesity-associated
genes. Statistical analysis was performed using descriptive
statistics and the two-tailed Student’s t-test in GraphPad Prism
(version 8.0), with a p < 0.05 considered statistically significant
(Mavrevski et al., 2018).

4http://www.string-db.org/

Identification of Chemicals Associated
With Hub Genes
The CTD database5 is a major public resource of literature-based,
artificially planned linkages between chemistry, genetic products,
phenotypes, diseases, and environmental exposure (Davis et al.,
2019). We searched the database for the hub genes to identify
chemicals associated with obesity and weight gain.

RESULTS

Immune Cell Infiltration Analysis
CIBERSORT analysis of the expression matrix, which included
samples from 93 obese people and 129 non-obese people who
met the screening criteria (p < 0.05), was used to examine the
immune cell contents. As shown in Figure 2, the immune cells
in adipose tissue were mainly mast cells, T cells, macrophages,
monocytes, and neutrophils. Compared with non-obese adipose
tissue, M0 and M2 macrophages were significantly higher in
obese adipose tissues (p < 0.05), while M1 macrophages were
also higher, but the difference was not statistically significant
(p = 0.052). However, naive CD4+, CD8+, and γδ T cells were
significantly reduced in obese adipose tissues compared with
non-obese tissues (p < 0.05).

GSEA
GSEA was performed to identify possible mechanisms of
obesity. The samples were divided into obese and non-obese
groups. The analysis indicated that the most significantly
enriched gene sets were positively correlated with the obesity
group, and included pathogenic Escherichia coli infection, the
complement and coagulation cascades, the toll-like receptor
signaling pathway, the chemokine signaling pathway, and
cytokine-receptor interactions (Figures 3A,B), while top gene
sets negatively correlated with obesity were involved in fatty
acid metabolism, the insulin signaling pathway, adipocytokine
signaling pathway, the citric acid cycle, and the ribosome.

Identification of Obesity-Related DEGs
After standardization and normalization of the microarray
data, 147 and 904 DEGs between obese and non-obese
adipose tissues were extracted from GSE70353 and GSE59034,
respectively, as shown in the volcano plots (Figures 4A,B).
GSE70353 included 82 upregulated genes and 65 downregulated
genes, and GSE59034 included 648 upregulated genes and
256 downregulated genes. The heatmaps show the top
20 most significant downregulated and upregulated genes
(Figures 4C,D). The two datasets shared 64 and 49 genes that
were up- and downregulated in obesity (Figures 4E,F and
Table 2), which are analyzed in later sections.

Correlations Between Obesity-Related
DEGs and Diseases
Obesity-upregulated genes were related to many
diseases, including liver cirrhosis, pulmonary fibrosis,

5http://ctdbase.org/

Frontiers in Genetics | www.frontiersin.org 4 May 2021 | Volume 12 | Article 620740

http://www.string-db.org/
http://ctdbase.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-620740 May 20, 2021 Time: 9:41 # 5

Lu et al. Obese Adipose Tissue

FIGURE 2 | The difference of 22 kinds of immune cells in obesity and non-obesity, blue represents obese adipose tissue, red represents non-obesity adipose tissue.

FIGURE 3 | Enrichment analysis of gene set pathway. (A) Gene set enrichment analysis in GSE70353. (B) Gene set enrichment analysis in GSE59034.

asthma, hypertension, rheumatoid arthritis, diabetes, and
allergies (Table 3).

GO Enrichment Analysis of DEGs
The results of GO enrichment analysis varied with GO
classification and DEG expression changes, as shown in
Figures 5A,B. In terms of biological processes, upregulated
DEGs were significantly enriched in myeloid leukocyte
migration, neutrophil migration, granulocyte chemotaxis,
granulocyte migration, leukocyte chemotaxis, cell chemotaxis,
neutrophil activation, leukocyte migration, the response
to molecules of bacterial origin, and chemokine-mediated
signaling. For cellular components, DEGs were enriched in the
secretory granule membrane, collagen-containing extracellular
matrix, protein-lipid complexes, lipoprotein particles, plasma
lipoprotein particles, and low-density lipoprotein (LDL)
particles. Regarding molecular functions, upregulated DEGs
were significantly enriched for cytokine activity, receptor-ligand

activity, LDL particle binding, amide binding, and CCR
chemokine receptor binding. However, in terms of biological
processes, downregulated DEGs were only enriched in the
carboxylic acid catabolic process and the organic acid catabolic
process. More detailed GO enrichment results are shown in
Supplementary Tables 1, 2. The number of upregulated genes
involved in the different processes of BP, CC, and MF was much
higher than that of down-regulated genes. These results suggest
that obesity may undergo complex metabolic activities involving
adipose tissue inflammation.

KEGG Enrichment Analysis of DEGs
Upregulated genes were enriched in 23 pathways, and
downregulated genes were enriched in seven pathways,
as shown in Supplementary Tables 3, 4. The top 10 up-
and downregulated pathways are shown in Figures 5C,D.
Upregulated DEGs were enriched in pathways controlling
Staphylococcus aureus infection, hypoxia-inducible factor 1
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FIGURE 4 | (A) GSE70353 volcano plots of differentially expressed genes, 82 upregulated and 65 downregulated, Upregulated genes are marked in red,
downregulated genes are marked in blue; (B) GSE59034 volcano plots of differentially expressed genes 648 were upregulated and 256 downregulated;
(C) GSE70353 top 20 up and down expressed genes heatmap, Upregulated genes are marked in red, downregulated genes are marked in blue; (D) GSE59034 top
20 up and down expressed genes heatmap; (E) up-regulation of co-expression Venn map with 64 up-regulation; (F) down-regulation of co-expressive Venn map
with a total of 49 down-regulation co-expression.
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TABLE 2 | Co-expression of differential genes.

Type Gene symbol

Up EGFL6,MMP9,SPP1,NPR3,CHI3L1,FCGBP,CTGF,TREM2,ACP5,EDN1,WISP2,C3AR1,MSR1,DHRS9,TNMD,HSD11B1,CCL18,IFI30,CD163,ITGB2,UCHL1,
TNFRSF11B,CCL19,VSIG4,LTBP2,CCND1,IL1RN,LYZ,IRF8,C1QC,PALLD,C1QB,CTSG,TYROBP,CD52,RNASE6,LCP1,CD68,NQO1,FCER1G,GLIPR2,CPVL,
FCGR2B,SFRP4,VGLL3,SELP,PTGFR,FOLR2,CTSS,MSC,PLA2G7,SEMA3C,CD53,PLEK,SLIT2,CD248,CPA3,CCL13,GLIPR1,TFRC,ADAP2,CCL2,
TUBB2A,TIMP1

Down SLC27A2,AZGP1,APOB,SLC7A10,PFKFB3,CA3,DMRT2,COL6A6,CIDEA,MKX,STOX1,NIPSNAP3B,RORB,GPD1L,SLC19A2,GSDMB,MAP3K5,SLC19A3,C6,
PHGDH,NDRG4,OR51E1,RASL10B,LDHD,GJC3,MYOC,BMP3,EIF4EBP1,TMEM100,CKB,NAALAD2,TWIST1,ORMDL3,GLUL,TTC36,ACSS3,ACVR1C,PKP2,
DAPK2,FAT3,PMM1,LPIN1,GINS3,TTLL7,EPB41L4B,PXMP2,KLF15,GPR146,ALDH6A1

TABLE 3 | Analysis of differential genes and related diseases.

GO Description Count % Log10 (P) Log10 (q)

C0023893 Liver cirhosis, experimental 20 31.00 −14.00 −10.00

C0034069 Pulmonary fibrosis 7 11.00 −8.70 −5.10

C0021368 Inflammation 7 11.00 −7.70 −4.30

C0020538 Hypertensive disease 9 14.00 −7.00 −3.90

C0006663 Calcinosis 5 7.80 −6.90 −3.80

C0004096 Asthma 6 9.40 −660 −3.60

C0003873 Rheumatoid arthritis 7 11.00 −6.40 −3.40

C0011853 Diabetes mellitus, experimental 6 9.40 −6.40 −3.40

C0022658 Kidney diseases 6 9.40 −6.20 −3.30

C0020517 Hypersensitivity 5 7.80 −6.20 −3.30

C0027626 Neoplasm invasiveness 6 9.40 −5.70 −2.80

C0018824 Heart valve disease 4 6.20 −5.60 −2.80

C0017661 IGA glomerulonephritis 4 6.20 −5.60 −2.70

C0023895 Liver diseases 5 7.80 −5.50 −2.70

C0032285 Pneumonia 5 7.80 −5.40 −2.70

C0003862 Arthralgia 5 7.80 −5.40 −2.60

C0151744 Myocardial ischemia 6 9.40 −5.20 −2.50

C0007621 Neoplastic cell transformation 5 7.80 −4.90 −2.20

C0016663 Pathological fracture 3 4.70 −4.70 −2.00

C0162820 Dermatitis, allergic contact 4 6.20 −4.60 −1.90

signaling, the complement and coagulation cascades, chemokine
signaling, TNF signaling, and advanced glycation end products-
receptor for advanced glycation end products signaling
during diabetic complications, while downregulated genes
were enriched in pathways controlling vitamin digestion
and absorption, nitrogen metabolism, fructose and mannose
metabolism, propanoate metabolism, amino acid biosynthesis,
and glycerophospholipid metabolism.

Construction of an Obesity-Related DEG
PPI Network
Based on the STRING database, we developed a PPI network
containing 85 nodes and 285 edges in the network. As shown
in Figure 6A, nodes are drawn in different sizes and colors,
representing the node degree and control (up or down), there
were 30 downregulated genes, 55 upregulated genes and 285
edges. The MCC method in cytoHubba plug-in was used to
identify the top ten hub genes (Figure 6B). These 10 hub
genes were all upregulated genes, as follows: the CD53 molecule
(CD53), pleckstrin (PLEK), cathepsin S (CTSS), integrin subunit
beta 2 (ITGB2), TYRO protein tyrosine kinase binding protein
(TYROBP), complement C1q B chain (C1QB), complement C1q

C chain (C1QC), complement C3a receptor 1 (C3AR1), Fc
fragment of IgG receptor IIb (FCGR2B), and Fc fragment of IgE
receptor Ig (FCER1G).

Verification of Hub Obesity Genes
To validate the changes in these hub genes in obesity, we
performed relevant analyses in the GSE55200 dataset, which
revealed that the expression of each hub gene was higher in the
adipose tissue of obese people than in those of non-obese people
(p < 0.05; Figure 7).

Chemicals Associated With Hub Genes
We searched the CTD database for the 10 hub genes, and seven
were related to obesity. For example, many chemicals have been
identified that affect the expression of CD53 and lead to obesity,
including bisphenol A, cadmium chloride, carbon tetrachloride,
choline, cisplatin, dexamethasone, dietary fats, diethylstilbestrol,
ethinyl estradiol, lipopolysaccharides, methionine, parathion,
phenobarbital, resveratrol, sodium selenite, streptozocin,
tamoxifen, testosterone enanthate, tetrabromobisphenol A,
tetrachlorodibenzodioxin, and tretinoin. The complete results
are shown in Table 4.
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FIGURE 5 | (A) Enrichment of upregulated differentially expressed genes in gene ontology (GO); (B) enrichment of downregulated differentially expressed genes in
GO, different colored circles indicate different adjusted P-values. The size of the circle indicates the gene count. The Y-axis represents the GO term, the X-axis
represents the gene proportion. (C) Enrichment of upregulated differentially expressed genes in KEGG, X-axis represents gene count, Y-axis represents different
pathways, and different colors indicate different adjusted P-values; (D) enrichment of downregulated differentially expressed genes in KEGG.

FIGURE 6 | (A) The protein-protein interaction network diagram of DEGs in obese adipose tissue, red and green indicate that the node is upregulated and
downregulated, respectively. The area of the node indicates the degree to which the node is connected to other nodes. (B) The top 10 hub genes screened by the
MCC method in Cytohubba. The deeper yellow is the hub gene with a higher score, MCODE Score is calculated by MCC method, higher score means higher
degree of connectivity.

DISCUSSION

Globally, the incidence of obesity is continuously increasing. The
harms and economic losses caused by obesity are significant. In

2014, economic losses directly or indirectly caused by obesity
were as high as $2.0 trillion (Woetzel et al., 2014). The main
feature of obesity is the accumulation of excessive adipose
tissue, which can induce several diseases via oxygen deprivation,
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FIGURE 7 | Verification in GSE55200 dataset, the comparison of hub gene in adipose tissue of obese and non-obese population. Y-axis represents the relative
expression counts of genes. Obesity was marked in red, non-obesity was marked in black. ** for < 0.01, **** for < 0.0001.

abnormal cytokine secretion, and interference with glycolipid
metabolism (Chait and den Hartigh, 2020). Therefore, it is
important to explore gene expression changes and associated
molecular mechanisms in the adipose tissue of obese individuals.
As the different estrogen levels and neural underpinnings affect
body adipose tissue levels and appetite, obesity rates are higher
in women than in men in most countries and regions, with
an average prevalence of 10 and 18% in men and women,
respectively (Kroll et al., 2020). Because of this, many studies
have examined male and female obesity separately (Garawi
et al., 2014). However, other studies have shown that variants
of certain genes, including FTO alpha-ketoglutarate dependent
dioxygenase, retinoic acid induced 1, MAGE family member L2,
and melanocortin 4 receptor contribute to obesity development
(Fall and Ingelsson, 2014; Poitou et al., 2020). To identify genes
and pathways that cause obesity in everyone, in this study we
analyzed two datasets, GSE70353, containing samples from men
in Northern Finland with an average age of 54, and GSE59034,
containing samples from women in Sweden with an average
age of 45. We analyzed their DEGs separately, then performed
overlap analysis to obtain a list of DEGs that were meaningful
to all. A total of 64 upregulated and 49 downregulated genes
were identified. Upregulated DEGs were associated with many
diseases, including liver cirrhosis, pulmonary fibrosis, asthma,
hypertension, rheumatoid arthritis, and diabetes. This evidence
and epidemiological data provide mutual verification of the
harmful effects of obesity (Chooi et al., 2019). These DEGs
may represent key targets for the treatment of obesity and
its complications.

Functional enrichment analyses revealed that the upregulated
genes were mainly involved in the enhancement of inflammatory
signals, including hypoxia-inducible factor 1, chemokine, and
TNF signaling pathways. The increased oxygen consumption and

the increasing size of adipocytes in turn leads to the occurrence of
adipose tissue hypoxia (Lee et al., 2014). This may further induce
increased production of adipokines such as chemokines, which
increase myeloid leukocyte and neutrophil migration leading to
chronic inflammation of adipose tissue (Krinninger et al., 2014).
Downregulated genes were mainly involved in the metabolism of
various nutrients, including fructose and mannose, propanoate,
and glycerophospholipid metabolism, as well as amino acid
biosynthesis (Shi et al., 2020). This indicates decreased metabolic
function and nutrient dysregulation in the adipose tissue of
obese people (Rogero and Calder, 2018). We also used GSEA
to verify and supplement the DEG enrichment results. Pathways
positively related to obesity included inflammatory infection,
the complement cascade, and the toll-like receptor signaling
pathway, which indicated that the complement system and toll-
like receptors are the main factors of inflammation in adipose
tissue during obesity (Rogero and Calder, 2018). Pathways
negatively related to obesity included adipocytokine signaling,
insulin signaling, and fatty acid metabolism, which reflect a
dysregulation of adipokines and insulin signaling in obese
patients. As enrichment analysis indicated inflammation-related
signal upregulation in the adipose tissue of obese people, we used
the CIBERSORT algorithm to detect whether there were changes
in the immune cell composition between tissues from the two
groups. It revealed increases in M0, M1, and M2 macrophages
in the tissues of obese people, which may be the main reasons
of adipose tissue inflammation. It also showed decreases in T
cells, including CD4, CD8, and γδ types. Hu et al. showed that T
cells (especially γδ T cells) can promote sympathetic innervation
by driving the expression of transforming growth factor β1
in parenchymal cells via IL17 receptor C (Hu et al., 2020).
Interestingly, recent studies have also reported fewer circulating
γδ T cells in obesity (Li et al., 2020), which reduces the ability
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TABLE 4 | Chemicals associated with obesity and weight gain.

Num. Gene symbol Gene name Inference network Inference score

1 CD53 CD53 molecule Benzo(a)pyrene, bissulfone, bisphenol A, Cadmium Chloride, Carbon Tetrachloride, Choline, Cisplatin,
Dexamethasone, Dietary Fats, Diethylstilbestrol, Ethinyl Estradiol, Lipopolysaccharides, Methionine, Parathion,
Phenobarbital, Resveratrol, Sodium Selenite, Streptozocin, Tamoxifen, testosterone enanthate,
tetrabromobisphenol A, Tetrachlorodibenzodioxin, Tretinoin

76.60

2 FCER1G Fc fragment of IgE
receptor Ig

Azoxymethane, Benzo(a)pyrene, bis(4-hydroxyphenyl)sulfone, bisphenol A, Carbon Tetrachloride, Choline, Cisplatin,
Cyclophosphamide, Dexamethasone, Dietary Fats, Diethylhexyl Phthalate, Diethylstilbestrol, Estradiol, Ethinyl
Estradiol, Lipopolysaccharides, Methionine, methylmercuric chloride, Plant Preparations, Probucol, Quercetin,
Resveratrol, sodium arsenite, Streptozocin, testosterone enanthate, tetrabromobisphenol A,
Tetrachlorodibenzodioxin, Tobacco Smoke Pollution, Tretinoin, Troglitazone, Valproic Acid

101.45

3 TYROBP TYRO protein
tyrosine kinase
binding protein

Acrylamide, benzo(a)pyrene, bissulfone, bisphenol a, carbon tetrachloride, choline, cisplatin, curcumin,
cyclophosphamide, dexamethasone, dietary fats, diethylstilbestrol, estradiol, ethinyl estradiol, genistein,
lipopolysaccharides, methionine, oxygen, resveratrol, sodium arsenite, streptozocin, tetrachlorodibenzodioxin,
tobacco smoke pollution, tretinoin, troglitazone, valproic acid

84.36

4 CTSS Cathepsin S Bissulfone, bisphenol a, chlorpyrifos, cholesterol, dietary, curcumin, cyclosporine, dietary fats, diethylnitrosamine,
fenretinide, folic acid, pirinixic acid, polychlorinated biphenyls, resveratrol, streptozocin, tetrachlorodibenzodioxin,
valproic acid

37.38

5 C1QC Complement C1q
C chain

3,4,5,3′,4′-pentachlorobiphenyl, amitriptyline, azoxymethane, benzo(a)pyrene, bis(4-hydroxyphenyl)sulfone,
bisphenol a, cadmium chloride, carbon tetrachloride, cisplatin, coenzyme q10, curcumin, cyclophosphamide,
decabromobiphenyl ether, dexamethasone, dietary fats, diethylhexyl phthalate, diethylstilbestrol, estradiol, ethanol,
ethinyl estradiol, genistein, lipopolysaccharides, lycopene, medroxyprogesterone acetate, nickel sulfate, oxygen,
phenobarbital, resveratrol, sirolimus, streptozocin, tacrolimus, testosterone enanthate, tetrabromobisphenol a,
tetrachlorodibenzodioxin, thioctic acid, tobacco smoke pollution, troglitazone, valproic acid

129.98

6 ITGB2 Integrin subunit
beta 2

3,4,5,3′,4′-pentachlorobiphenyl, atorvastatin, azoxymethane, benzo(a)pyrene, bis(4-hydroxyphenyl)sulfone,
bisphenol a, cadmium chloride, carbon tetrachloride, catechin, choline, cisplatin, decabromobiphenyl ether,
dexamethasone, diazinon, dietary fats, environmental pollutants, estradiol, ethanol, ethinyl estradiol,
lipopolysaccharides, lovastatin, methionine, probucol, quercetin, resveratrol, sodium arsenite, streptozocin,
tetrabromobisphenol a, tetrachlorodibenzodioxin, tobacco smoke pollution, tretinoin, tributyltin, valproic acid

91.08

7 PLEK Pleckstrin Arsenic, azoxymethane, benzo(a)pyrene, bisphenol a, carbon tetrachloride, celecoxib, choline, cisplatin, dietary fats,
ethanol, ethinyl estradiol, methionine, nickel sulfate, pioglitazone, plant extracts, quercetin, resveratrol,
tetrabromobisphenol a, tetrachlorodibenzodioxin, Tobacco Smoke Pollution, Tretinoin

73.29
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to fight viral infections, leading to a poorer prognosis for obese
people than for lean people after infections such as severe
acute respiratory syndrome coronavirus 2 (Jouan et al., 2020).
Strategies to increase γδ T cell activation in these patients may
be a promising direction for future research.

To identify the most critical hub genes among the 113 DEGs,
we constructed a PPI network to identify the most interconnected
genes. The top 10 hub genes were all upregulated. CD53 is
the most connected protein in the PPI network. It is mainly
expressed on the membranes of immune cells, where it helps
regulate many of their functions, including adhesion, migration,
and cell fusion (Dunlock, 2020), and plays an important role
in antigen presentation. Many studies have shown that CD53
is increased in obese and inflammatory tissues, and regulating
its expression may be an effective treatment for obesity with
complications (Nair et al., 2005; Zhao et al., 2020). PLEK is
the major protein kinase C substrate phosphorylated in diabetic
macrophages, where a 30% reduction in PLEK can inhibit TNFα

secretion by 80% (Ding et al., 2007). CTSS can promote adipocyte
differentiation by degrading fibronectin. In vitro studies have also
shown that the inflammatory factors TNFα and IL1β can induce
cathepsin secretion in adipose tissue (Hooton et al., 2012). The
expression of cathepsin mRNA in the adipose tissue of obese
subjects was two times higher than that of healthy-weight subjects
and decreased after weight loss, which shows that cathepsins can
be effective markers of obesity (Naour et al., 2010).

ITGB2 is positively correlated with obesity (Taleb et al., 2005;
Pei et al., 2014; Imaizumi et al., 2018). It plays an important
role in the immune response, and defects in ITGB2 cause
leukocyte adhesion deficiency (Ng et al., 2015). TYROBP is
strongly related to insulin resistance and is mainly involved
in the regulation of immune responses and integrin-mediated
signaling (Das et al., 2015). C3AR1 is a complement receptor
that is expressed in both adipocytes and macrophages, and is
increased by a high-fat diet (Mamane et al., 2009). C3AR1
activation can enhance lipolysis induced by adrenaline, which
may be a good way to treat obesity (Cero et al., 2017). C1QB
and C1QC belong to a family of complement proteins that
are positively correlated with immune cell chemotaxis and can
regulate the expression of the immune cells. Recent findings have
revealed that C1Q-related gene knockouts can prevent obesity-
related complications of Alzheimer’s disease (Graham et al.,
2020). FCGR2B and FCER1G are immunoglobulin fragments
that regulate the immune response, and increase the likelihood
of obese patients developing allergic diseases (Mathur et al.,
2013). Shu et al. (2018) showed that FCGR2B promotes lipid
accumulation and gluconeogenesis in hepatocytes.

In summary, CD53, PLEK, CTSS, ITGB2, TYROBP, C1QB,
C1QC, C3AR1, FCGR2B, and FCER1G were all highly expressed

in the adipose tissue of obese people. They all contribute
to obesity and its complications, primarily through immune
inflammation and glucolipid metabolism-related effects. In
addition, the problem of environmental pollution is becoming
increasingly serious, and many fat-soluble chemicals can
accumulate in adipose tissue and interfere with gene expression,
leading to obesity. The CTD database indicated that cadmium
chloride, parathion, tetrachlorodiben, zodioxin, and bisphenol
A may cause obesity by interfering with the expression of these
hub genes. Therefore, it is important to reduce exposure to these
chemicals. A limitation of this study is that it is strictly based
on bioinformatic analysis, and the results will require further
verification in vitro and in vivo.

CONCLUSION

In conclusion, this is the first large-scale study to examine
differential gene expression in the adipose tissues of obese and
non-obese populations. Our study provides several potential
biomarkers and related molecular mechanisms for obesity and its
complications, and lays a foundation for the exploration of new
targeted treatments.
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