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ABSTRACT Mule deer (Odocoileus hemionus) are endemic to a wide variety of habitats in western North America,
many of which are shared in sympatry with their closely related sister-species white-tailed deer (Odocoileus
virginianus), whom they hybridize with in wild populations. Although mule deer meet many ideal conditions for a
molecular ecological research species, such as high abundance, ecological importance, and broad dispersal and
gene flow, conservation genetic studies have been limited by a relative lack of existing genomic resources and
inherent difficulties caused by introgression with white-tailed deer. Many molecular tools currently available for the
study of cervids were designed using reference assemblies of divergent model species, specifically cattle (Bos
taurus). Bovidae and Cervidae diverged approximately 28 million years ago, therefore, we sought to ameliorate
the available resources by contributing the first mule deer whole genome sequence draft assembly with an average
genome-wide read depth of 25X, using the white-tailed genome assembly (Ovir.te_1.0) as a reference. Comparing
the two assemblies, we identified �33 million single nucleotide polymorphisms (SNPs) and insertion/deletion
variants. We then verified fixed SNP differences between the two species and developed a 40-loci SNP assay
capable of identifying puremule deer, white-tailed deer, and interspecific hybrids. Assignment capacity of the panel,
which was tested on simulated datasets, is reliable up to and including the third backcross hybrid generation.
Identification of post-F1 hybrids will be necessary for hybrid zone population studies going forward, and the new
mule deer assembly will be a valuable resource for genetic and comparative genomics studies.
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Hybridization is not uncommon among plant and animal taxa world-
wide (Schwenk et al. 2008). Mallet (2005) estimated that 10–30% of
multicellular plant and animal species hybridize regularly and that, of

those species, between 1 in 100 and 1 in 10 000 sympatric individuals
are hybrids. Introgression has been identified as a mechanism for
generating progressive evolutionary events such as novelty, divergent
selection, and speciation (Dowling and Secor 1997; Lamer et al. 2015;
Seehausen 2004) though it can also complicate management and
conservation by compromising coadapted gene complexes (Edmands
et al. 2009), morphological discernment (Leary et al. 1996), local
adaptation (Martinsen et al. 2001), and the genetic integrity of unique
phylogenetic lineages (Rhymer and Simberloff 1996). For these rea-
sons, genetic tools to monitor current distributions and degrees of
hybridization will be valuable for future researchers, policy-makers,
hunters, and conservationists.

Introgressive hybridization tends to occur most frequently among
sympatric, closely related species in rapidly diversifying adaptive radi-
ations (Abbott et al. 2013; Gourbière and Mallet 2010; Price and
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Bouvier 2002) such as between mule deer (MD) (Odocoileus hemionus)
and its sister species, white-tailed deer (WT) (O. virginianus), in the
prairies of Western North America (Bradley et al. 2003 ; Cronin 1991;
Hornbeck andMahoney 2000; Stelfox and Adamczewski1993). Cervids
constitute cornerstone taxa in ecological, economic, and cultural sectors
of Western Canada. The output value of elk and deer farms, before
indirect spillover effects into other industries, is estimated to be more
than $43 million in Canada with Alberta being responsible for over a
quarter of that total (Petigara et al. 2011). As well, total big game
hunting expenditures by Canadian residents in 2012 exceeded $1 bil-
lion with $169million coming fromAlbertans (Federal, Provincial, and
Territorial Governments of Canada 2014). As of 2018, Canadian federal
and provincial laws do not recognize hybrid deer as a separate entity
from the parental species, which can create confusion as to hunting and
harvesting regulations. Access to tools capable of identifying hybrid
individuals and characterizing the rate of hybridization in wild popu-
lations could facilitate the implementation of management standards.
Hybridization may also play a role in the spread of chronic wasting
disease (CWD), a transmissible spongiform encephalopathy (TSE) that
affects both focal Odocoileus spp. (Miller et al. 2012; Williams 2005).
CWD has been reported to be more prevalent in MD relative toWT in
areas of sympatry (Habib et al. 2011; Miller et al. 2000). Behavioral
differences between species, in part, account for this asymmetry
(Cullingham et al. 2010; Cullingham et al. 2011) but genetic polymor-
phisms have also been implicated (Wilson et al. 2009). Considering that
hybrids potentially provide an opportunity to bridge disease transmis-
sion across species, further research of CWD susceptibility and perva-
siveness among hybrids may provide insight into the transmission
dynamics.

Identification of hybrid deer using morphological traits alone is
rarely donewith confidence. Coloration and antler shape are not always
intermediate between parental phenotypes. The most consistent and
accessible morphological marker appears to be the metatarsal gland,
which is intermediate in bothposition and size (Carr et al. 1986;Wishart
1980). The biomechanics of the escape gait may serve as another in-
dicator. While the stot of the MD is highly differentiated from the
gallop of the WT, the bound of the hybrid is highly variable, even
between strides of the same individual, and seems to be wholly ineffi-
cient (Lingle 1993). Molecular markers used to identify hybrids include
serum albumin electrophoresis (Hornbeck and Mahoney 2000), a ri-
bosomal 28S DNA marker (Bradley et al. 2003), and mitochondrial
endonuclease recognition sitemapping (Carr et al. 1986). None of these
methods, however, are reliably informative of backcrosses after the F1
generation. Single nucleotide polymorphisms (SNPs) have proven ef-
fective in investigations of admixture between divergent taxa in several
hybrid systems (Stephens et al. 2009; Twyford and Ennos 2011; Wiley
et al. 2009; Cullingham et al. 2013; Lamer et al. 2014). This is due, in
part, to their high abundance in the genome which improves discrim-
inating power and facilitates the recognition of varying levels of in-
trogression. Furthermore, SNPs are more consistently reproducible,
easier to automate, and more stable in mammals than microsatellites
(Fernández et al. 2013; Tokarska et al. 2009; Vignal et al. 2002). An
added benefit of SNPs is that their biallelic nature is convenient for the
discernment of two different species.

Aspecies-discriminatingSNPassaywill effectivelydescribe two traits
of hybridization: the classification of hybrids based on the presence of
species-specific alleles and a measure of hybridity based on the propor-
tions of those alleles. Quantification of the varying introgression depths
of hybridized populations will provide a snapshot withmore resolution
than would be available from observation of the F1 individuals alone.
Detection power of this magnitude is necessary to explore hybrid zone

structure because current hypotheses predict reduced fitness in F1
individuals (Hornbeck and Mahoney 2000); therefore, the frequency
and abundance of F1’s in the wild is not a suitable proxy for the
occurrence of advanced-generation backcrosses. The ability to resolve
backcross generation status will be informative of hybrid productivity
and directionality. By differentiating advanced-generation backcrosses
from pure breeding individuals, the rate of false negative hybrid di-
agnoses will drastically decrease, effectively increasing hybrid sample
size and lineage diversity as well as our understanding of hybridization
frequency and geographical distribution (Lamer et al. 2015). The iden-
tification of the degree of introgression is crucial for determining the
structure and stability of the population and the entire hybrid zone in
which it resides. For example, whether selection is working for or
against hybrids can help to elucidate the type of suture zone present
and, from that information, we can draw inferences and predictions
about the hybrid zone itself (Hu 2005). By better understanding the
structure of the populations that make up the hybrid zone, we improve
our ability to forecast its future.

Currently,molecular resources suitable for application inOdocoileus
spp. exist as sets of various individual loci but none capture mass se-
quence data capable of providing a reference to which polymorphisms
can be mapped. Along with assorted microsatellite loci (Bishop et al.
1994; DeWoody et al. 1995; Jones et al. 2000; Wilson et al. 1997),
current SNP datasets have been engineered by subjecting MD, black-
tailed deer (O. h. columbianus), and WT to genotyping on the Bovi-
neSNP50 Bead Chip (Haynes and Latch 2012); bovine exon-targeted
resequencing (Powell et al. 2016); and mapping high-throughput next-
generation sequencing data to an existing bovine reference genome
assembly (Brauning et al. 2015). All of these datasets, however, relied
heavily upon previously available bovine genomic resources for map-
ping and/or template purposes, thereby losing data in regions not
conserved after the divergence ofCervidae andBovidae some 28million
years ago (Hassanin et al. 2012). A whole genome sequence (WGS)
assembly of MD will function as a more suitable reference for future
polymorphism mining in Cervids and increase accessibility to regions
of the genome not conserved from Bovidae.

In this study,wepresent twonovel genomic resources targeted for the
study of MD andMDXWT hybrids: a draft WGS assembly of the MD
and a species-diagnostic SNP panel. The MDWGS data are a versatile
and informative dataset for cervid researchers investigating the genetic
basis of traits, disease susceptibilities, and variants by providing a
reference genome to which polymorphisms can be mapped (Ng and
Kirkness 2010). The species-diagnostic SNP panel provides amethod to
reliably differentiate betweenMD andWT as well as to identify hybrids
and quantify introgressive geneflow, even in the limited amounts pre-
sent in advanced-generation backcrosses.

MATERIALS AND METHODS

Reference-guided MD Genome Assembly
and Annotation
Total DNA was isolated from the ear tissue of a hunter harvested MD.
The ear was shaved to remove hair and subsequently powdered by
grinding under liquid nitrogen with a mortar and pestle. DNA was
extracted from the powdered ear tissue (0.1g) for one hour at 68 degrees
centigrade with 500ml of an extraction buffer containing 2% cetrimo-
nium bromide, 100mM TrisCl pH 7.5, 1.4M NaCl, 20mM EDTA, 2%
polyvinylpyrrolidine, 0.2% mercaptoethanol, 100mg/mL proteinase K,
and 20mg/mL RNase A. An equal volume of chloroform/isoamyl alco-
hol (24:1) was added, the sample centrifuged for 5min at 14,000· g and
the aqueous phase collected. The aqueous phase was extracted with tris

912 | T. Russell et al.



saturated phenol/chloroform, centrifuged and again the aqueous phase
collected. Finally, the DNA was precipitated with 2.5 volumes of 95%
ethanol and 0.1 volume of sodium acetate. The pellet was washed with
70% ethanol, briefly dried to remove residual ethanol, and dissolved in
water. DNA quality was assessed by UV-Vis spectroscopy and agarose
gel electrophoresis.

Genomic DNA was sequenced on an Illumina HiSeq X Ten se-
quencer (shotgun PCR free library; paired-end sequencing; 150 bp
reads). Read quality was assessed using FastQC software (available at:
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) prior to
and after performing quality control (QC) steps. The QC included
quality based read trimming and adapter removal using Trimmomatic
(Bolger et al. 2014) followed by adapter and phiX read removal using
Cutadapt (Martin 2011) with default settings for both software. Reads
that passed QCwere mapped to theWT deer reference genome assem-
bly (Ovir.te_1.0; GenBank assembly accession: GCA_002102435.1) us-
ing the BWA-MEM algorithm of the Burrows-Wheeler Alignment tool
(Li 2013) with default settings. Mapped reads were sorted and indexed
using SAMtools (Li et al. 2009). Duplicate reads were tagged using
MarkDuplicates software from Picard tools (available at: http://broad-
institute.github.io/picard). Variant calling andMD consensus sequence
generation were performed using a combination of mpileup, bcftools
and vcfutils.pl scripts from SAMtools. Identified SNPs were annotated
using SnpEff (Cingolani et al. 2012). Regions with no coverage on the
consensus sequence were filled with N’s.

Selection and Validation of Species-discriminating SNPs
DNAwas extracted from a sampling group ofmultiple species of deer as
part of another study whose purpose was to aggregate and identify
markers that would be useful to the New Zealand deer industry for
parentage assignment and sub-speciesdifferentiation (Rowe et al. 2015).
Samples were genotyped on Illumina 50K CervusSNP50, 24-sample
Bead Chips (Illumina, San Diego), a high-throughput SNP assay devel-
oped for deer (Cervus genus) by comparing genomic sequence data from
red deer, wapiti (subspecies of Cervus elaphus), and sika (Cervus nippon)
by Brauning et al. (2015). A set of 44,448 SNPs were genotyped in 396 in-
dividuals, including 17 WT and 8 MD from Alberta and Saskatchewan,
Canada. Loci and samples exhibiting non-autosomal and non-Mendelian
inheritance patterns, low call rates, and duplication were excluded (Rowe
et al. 2015). The GenABEL package in R software (Aulchenko et al. 2007)
was used to carry out genotype quality control measures. We identified
129 loci that had call rates.0.7 in bothWTandMDand also appeared to
show fixed differences between the two species, i.e., biallelic loci where one
allele is homozygous in WT and the other in MD.

A preliminary validation step was implemented by aligning the
201 bp sequences that include the SNPand its 100 bpflanking sequences
to the newMDgenome assembly generated here and to theWTgenome
assembly (Ovir.te_1.0). This allowed us to eliminate 10 SNPs that were
non-discriminating or otherwise unable to be mapped prior to assay
design and further validation, leaving 119 species-discriminating loci,
fromwhicha subset of40were randomly selected for validation.Because
the morphology of hybrids varies and their frequency in wild popula-
tionsas ofnowcanonlybeapproximated, the genetic purityofdeer from
Alberta should not be assumed. Even minute levels of introgression in
individuals believed to be pure could compromise the efficacy of species
delimitation. As a precaution, we minimized the risk of ancestral
hybridization by importing samples from regions of allopatry, where
hybridization is less common or non-existent.MD are native towestern
North America; populations are rarely found further east than western
Minnesota or Iowa (Patterson et al. 2003). For this reason, we usedWT

samples collected in Ontario (n = 10). WT distribution spans conti-
nental North America but excludes most of Utah and Nevada (Hewitt
2011). MD samples used for validation were collected from Utah (n =
2), Nevada (n = 5), andMontana (n = 3). Note thatMontana is a known
region of sympatry and thus should be considered as quantitative sup-
port of the other two MD sampling locations but would otherwise not
be used independently. As well, samples of a priori hybrid heredity (n =
10) were obtained from Alberta Environment and Parks. Pedigree
records were available for these individuals, as they were intentionally
bred as hybrids as part of a long-term study in the mid-1980s (Wishart
et al. 1988). DNA was extracted using a Qiagen 96 DNeasy Blood and
Tissue kit following the manufacturer’s instructions (Qiagen, Missis-
sauga, Ontario, Canada) and genotyped on the final panel. Genotypes
of these individuals are listed in supplementary table S1.

SNP Assay Assignment Efficacy
HybridLab software (Nielsen et al. 2006) uses classical genetics princi-
ples to simulate offspring genotypes from a set of observed parental
genotypes. Two populations of pure and hybrid genotypes were in-
dependently simulated in HybridLab using the parental genotypes of
10 pure MD from Utah, Nevada, and Montana and 10 pure WT from
Ontario. Simulated populations consisted of 100 individuals in each of
10 hybrid generation classes: parental WT, parental MD, F1, F2, and
three backcross generations of each species. Posterior probabilities of
assignment for simulated populations were computed by NewHybrids
version 1.1 (Anderson and Thompson 2002) using 500,000 burnin
iterations preceding 500,000 sweeps. Genotype frequency classes were
set inNewHybrids using Jeffrey’s-like priors (Table 1). Repetitions were
also done using two and four backcross generations (data not shown):
fourth backcrosses could not be distinguished from third backcrosses or
pure-species and, upon retraction of the third backcross as an assignment
option, the post-secondary backcross individuals were erroneously
assigned to the second backcross generation. For these reasons, the third
backcross generationwas deemed as themost advanced introgression level
detectable. NewHybrids assignments were tested for efficacy using the R
package hybriddetective (Wringe et al. 2017). hybriddetective is designed to
analyze hybrid assignments as deep as one backcross generation, therefore,
some code was amended to account for two additional levels of introgres-
sion (available upon request). Assignment probabilities for simulated pop-
ulations, as calculated by NewHybrids, were evaluated by hybriddetective
using threemetrics: accuracy, the proportion of assignments to a particular
category that were correct ([correct assignments] / [total assignments of a
particular category]); efficiency, the proportion of individuals in a partic-
ular category that were assigned correctly ([correct assignments] / [total
individuals of a particular category]); and power, the product of accuracy
and efficiency (Vähä and Primmer 2006).

Data Availability
See Supplementary Table 1 for species-discriminating loci names and
genotypes of individuals used for validation. All SNP loci are available from
Brauning et al. (2015). This Whole Genome Shotgun project has been
deposited at DDBJ/ENA/GenBank under the accession RCHL00000000.
The version described in this paper is versionRCHL01000000. Supplemen-
tal material available at Figshare: https://doi.org/10.25387/g3.7250309.

RESULTS

MD Genome Assembly, Variant Identification
and Annotation
A total of 378,654,417 paired-end reads were obtained in fastq format
files. Following quality control steps, 334,409,387 paired-end reads
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remained thatwere then aligned to theWTreference genomeassembly.A
total of 536,357,624 reads were mapped (mapping rate of 75%) of which
81.69%were properlypaired.The average genome-wide coverage andGC
content of mapped reads were 25X and 40% respectively. Variant calling
onmappedreadscomparedtotheWTreferenceresulted inapproximately
30 million SNPs and 2.9 million INDELs. After filtering at SNPmapping
qualityQ20, the variants ranged from 30.1M at read depth 10 to 32.9M at
readdepth2.Thegenome-wide ratioof transitions to transversions at read
depth 5 andQ20was 2.4, which is similar to the value reported in human
studies (DePristo et al. 2011; Jun et al. 2015).

Species-discriminating SNP Assay
Based on aligning the selected loci and their 100 bp flanking sequences
to the genome assembly of the Red Deer (CerEla1.0, GenBank:
GCA_002197005.1), which is finished at chromosomal level, we de-
termined that the 40 loci were distributed across 24 of the 35 Red deer
chromosomes (Figure 1), indicating good genome-wide distribution.
SNP genotypes of 30 individuals, including pure MD, pure WT, and a
priori hybrids, were successfully called at all 40 loci. Because all loci
were highly discriminating, pure-breeding, F1, and F2 individuals were
assigned with predictable confidence: all reached 100% efficiency and
greater than 93% accuracy at a critical posterior probability threshold of
0.50. Likewise, first-generation backcrosses were detected at �95%
efficiency and accuracy at the same threshold. Second- and third-gen-
eration WT backcrosses were assigned with slightly more proficiency
than their MD counterparts; advanced-generation WT backcross as-
signments were accurate and efficient at a rate of�85%, while the same
MD assignments achieved rates of�75%. Accuracy increased with the
probability threshold, but efficiency and sample size decreased (Figure
2). Both of these trends agree with expected outcomes. The critical
probability threshold will be subjective based on the user’s research
question; by increasing the threshold, some samples assigned with a
lower probability will be excluded but those that remain are more likely
to be assigned correctly. For all samples to be assigned to a hybrid
category, a probability threshold of 0.5 should be used. The power of
assignment for a specific hybrid category slowly declined as the prob-
ability threshold was increased from 0.5 to 0.8, then decreased more
drastically. Alternatively, the power of assignment for hybrids in gen-
eral (i.e., all hybrid categories combined) remained relatively stable over
a wider range of probability thresholds: 0.80 at a critical probability
threshold of 0.5 and 0.69 at a threshold of 0.9.

DISCUSSION
Thedevelopmentof theMDgenomeassemblyhelpedus to identifyfixed
differences between WT and MD, and to develop a 40-loci SNP assay

capable of reliably classifying pureWT, pureMD, and their interspecific
hybrids into introgression categories. This diagnostic panel overcomes
several limitations encountered by previous methods used in deer
hybridization analyses, including: lack of assignment power due to
low marker abundance, ambiguity of distinguishing morphological
traits, inconsistent reproducibility, and inability to resolve advanced-
generation backcrosses. Along with a solution to these deficiencies, the
whole genome sequence, to which these and other polymorphisms can
be mapped, improves accessibility to regions of the MD genome pre-
viously withheld from analyses by divergence from model research
species. Together, these resources bear valuable conservation potential
for researchers, hunters, farmers, and environmentalists.

Hybrid populations simulated in duplicate using genotypes of pure-
species from regions of allopatry demonstrated that the SNP assay
diagnostic strength is reliable up to and including the third backcross
generation. Simulationswere composed of 10 hybrid classes (n= 100 for
each class), including both pure species, F1 and F2 hybrids, and
3 backcross generations of each species (Table 1). We chose not to
include simulations for individuals with pedigrees containing multiple
hybrids (e.g., backcross X backcross or backcross X F1/F2 scenarios)
because the differences in individual genotype frequencies are very low
between respective classes and any attempt to distinguish those classes
with medium-throughput genotype data would be impractical. Fur-
thermore, Wishart et al. (1988) found male F1 hybrids to be almost
exclusively sterile, significantly decreasing the likelihood of encounter-
ing, in a wild population, an F2 or other product of hybrid X hybrid
pairings. This apparent adherence to Haldane’s rule (Haldane 1922),
which predicts infertility in the heterogametic sex of interspecific hy-
brids, is just one opportunity for future research in a complex hybrid
system that now has the molecular resources for further investigation.
Another question of interest is the directionality of hybridization. In the
same study, more viable offspring were produced from crosses under
controlled laboratory conditions between MD males and WT females
than in the reciprocal cross (Wishart et al. 1988); however, studies of
hybrids in wild populations have both supported this finding (Carr
et al. 1986) and refuted it (Carr and Hughes 1993; Cathey et al. 1998;
Stelfox and Adamczewski 1993). Behavioral traits such as boldness and
promiscuity likely play major roles in this dynamic (Lingle et al. 2007a;
Lingle, et al. 2007b) but genetic incompatibilities may also contribute,
as indicated by increased spontaneous abortions of fetuses generated by
MD female XWTmalematings (Wishart et al. 1988). This assay will be
instrumental in validating observations such as these with empirical
data from the field by alleviating reliance on pedigree records. By con-
firming or disproving the persistence of these trends in wild popula-
tions, we can explore the structural dynamics of the hybrid zone with

n Table 1 Assignment criteria and category definition of white-tailed (WT) and mule deer (MD) hybrids. Heterozygous and homozygous
genotype frequencies are required as input prarmeters in NewHybrids to specify the number and configuration of hybrid classes

Genotype frequency

NewHybrid category WT (AA) H (AB) MD (BB) NewHybrid category expanded

WT Parental WT 1 0 0 WT
MD Parental MD 0 0 1 MD
F1 First-generation hybrid 0 1 0 (WT x MD)
F2 Second-generation hybrid 0.25 0.5 0.25 ((WT x MD) x (WT x MD))
BxWT First-generation backcross 0.5 0.5 0 (WT x (WT x MD))
BxMD First-generation backcross 0 0.5 0.5 (MD x MD x WT))
Bx2WT Second-generation backcross 0.75 0.25 0 (WT x (WT x (WT x MD)))
Bx2MD Second-generation backcross 0 0.25 0.75 (MD x (MD x (MD x WT)))
Bx3WT Third-generation backcross 0.875 0.125 0 (WT x (WT x (WT x (WT x MD))))
Bx3MD Third-generation backcross 0 0.125 0.875 (MD x (MD x (MD x (MD x WT))))
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more resolution than has been available in the past. Furthermore, the
focal hybrid system is not confined to western Canada; studies have
reported MD x WT hybridization in West Texas and Montana (Carr
et al. 1986; Cronin 1991). Whether these zones are consistent or clinal
in hybridization frequency is yet to be investigated. Rusek et al. (2015)
noted that, although hybrid complexes are not uncommon in nature,
their evolutionary inception and subsequent persistence remains rela-
tively ambiguous and that studies targeted toward fine-scale genetic
analyses of such systems are largely limited by lack of resources capable
of identifying and quantifying introgression.

Previous sets of molecular markers and a few diagnostic morpho-
logical traits were successful at identifying F1 hybrids with some degree
of accuracy but none had the diagnostic power to differentiate sub-
sequent backcross generations; many backcross hybrids were mistaken
either as F1’s or as pure-species. Without the ability to interrogate
more advanced generations, the underlying factors balancing the
co-existence of hybrids with parental species has remained inaccessible
to researchers and conservationists (Hornbeck and Mahoney 2000).
Such factors are both ecological and genetic in nature and typically
include reproductive barrier strength, vigor and fertility of hybrids,

Figure 1 MD/WT species discriminating SNP loci mapped to Red Deer genome assembly. Red bars indicate the positions on the Red deer
chromosomes that the 40 loci SNP assay mapped to. The mapping positions were determined by alignments of the SNP loci along with the 100 bp
flanking sequences onto the Red deer genome assembly (CerEla1.0) using BLAT. The loci covered 24 of the 35 chromosomes, with some chromosomes
harboring multiple loci (chromosomes not covered are shaded gray). One of the loci mapped to an unplaced contig (not depicted here).
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pathogen pressure, and selection by predation (Daum et al. 2012;
Duenez-Guzman et al. 2009; Hall et al. 2006; Wolf et al. 2001). The
first step to elucidating the specific conditions of these factors as they
pertain to the focal system is to delve deeper into the structure and
distribution of hybridized populations via a large-scale study. With
access to advanced-generation backcrosses, we now have the detection
power necessary to capture a robust snapshot of the hybrid landscape.
Population data will be imperative to resolve broad questions about the
hybrid zone in which the Odocoileus system resides. For example,
which model does it most resemble? Endogenous selection against
hybrids (heterozygote breakdown) is indicative of a tension zone
(Hewitt 1988), whereas exogenous selective pressure potentially driven
by niche divergence in the parental species is more consistent with the
geographical selection-gradient model (Johnson et al. 2016). A third
possibility would be that hybrids fill some ecological niche and are
being selected for. Until a population-scale study is undertaken,
we can only theorize. The results of that study will not only advance
the collective body of knowledge of hybrid zones, but more gener-
ally, that of cervid evolution and ecology in western North America
at a time when they are faced with the looming threat of chronic
wasting disease. CWD is a fatal neurodegenerative disorder that has
proven highly transmissible in wild populations (Williams et al.
2002). At the time of this writing, CWD is endemic in two Canadian
provinces, Alberta and Saskatchewan, and at least 23 states in the

continental United States, including some near the Canadian border
such as Minnesota, Wisconsin, Michigan, Pennsylvania, New York,
and both Dakotas (Haley and Hoover 2015; Richards 2018; see also
https://www.cdc.gov/prions/cwd/occurrence.html). Containing the
spread of CWD continues to be a high priority for governmental
bodies, researchers, and conservationists because of the cultural,
economic, and ecological importance of cervids in Canada and
the United States.

The MD whole genome sequence presented here may also serve to
progress the study of CWD. Genetic polymorphisms of the Prnp gene,
which encodes the protein that is eventually converted into the infec-
tious agent, have been associated with varied disease incubation periods
(Wilson et al. 2009). Our assembly provides an ideal reference to which
these and other variable sites can be mapped, while also serving as a
localizing template for structures of interest, such as primer design.
The utility of this functional, all-purposeOdocoileus reference lies in
alleviating the reliance on model-species genomes that may be less
recently diverged. In doing so, ease of access to novel regions of the
genome, including those not conserved in Bovidae and undocu-
mented subtleties such as promoters, splice sites, and introns, will
be vastly improved. Facilitating access to these untapped domains
will effectively foster the development of more specific molecular
advances applicable to a range of research questions throughout the
Odocoileus genera.

Figure 2 Hybrid assignment efficacy as determined by the hybridPowerComp function in the R package hybriddetective. Facets labeled as Pure
indicate parental WT and MD, Generational Hybrids refers to F1 and F2 individuals (lines overlaid), and Back-cross includes first, second, and third
generation backcrosses of both species. Accuracy was calculated as [correct assignments] / [total assignments of a particular category]. Efficiency
was calculated as [correct assignments] / [total individuals of a particular category].
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