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abstract

 

Regional blood flows in the heart muscle are remarkably heterogeneous. It is very likely that the
most important factor for this heterogeneity is the metabolic need of the tissue rather than flow dispersion by the
branching network of the coronary vasculature. To model the contribution of tissue needs to the observed flow
heterogeneities we use arterial trees generated on the computer by constrained constructive optimization. This
method allows to prescribe terminal flows as independent boundary conditions, rather than obtaining these flows
by the dispersive effects of the tree structure. We study two specific cases: equal terminal flows (model 1) and ter-
minal flows set proportional to the volumes of Voronoi polyhedra used as a model for blood supply regions of ter-
minal segments (model 2). Model 1 predicts, depending on the number 

 

N

 

term

 

 of end-points, fractal dimensions 

 

D

 

of perfusion heterogeneities in the range 1.20 to 1.40 and positively correlated nearest-neighbor regional flows, in
good agreement with experimental data of the normal heart. Although model 2 yields reasonable terminal flows
well approximated by a lognormal distribution, it fails to predict 

 

D

 

 and nearest-neighbor correlation coefficients 

 

r

 

1

 

of regional flows under normal physiologic conditions: model 2 gives 

 

D

 

 

 

�

 

 1.69 

 

�

 

 0.02 and 

 

r

 

1

 

 

 

�

 

 

 

�

 

0.18 

 

�

 

 0.03 (

 

n

 

 

 

�

 

5), independent of 

 

N

 

term

 

 and consistent with experimental data observed under coronary stenosis and under the
reduction of coronary perfusion pressure. In conclusion, flow heterogeneity can be modeled by terminal posi-
tions compatible with an existing tree structure without resorting to the flow-dispersive effects of a specific branch-
ing tree model to assign terminal flows.
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I N T R O D U C T I O N

 

It is now widely accepted that regional blood flows in
organs and tissues, including the heart, the lung and
skeletal muscles, are remarkably heterogeneous (Yip-
intsoi et al., 1973; Glenny and Robertson, 1990; Iversen
and Nicolaysen, 1995; Sonntag et al., 1996). Regional
flows per gram of uniformly sized tissue pieces have
been documented to vary 6–10-fold with only small
fluctuations over time (King and Bassingthwaighte,
1989), and recent experimental results suggest that
perfusion heterogeneity is maintained even down to
microscopic levels (Matsumoto et al., 1996; Glenny et
al., 2000; Bauer et al., 2001; Kalliokoski et al., 2001). In
particular, the magnitude of spatial heterogeneity, usu-
ally characterized by the relative dispersion (

 

RD

 

 

 

�

 

 SD/
mean) of regional flows, is dependent on the scale of
spatial resolution, i.e., on the size of the sample pieces.
Bassingthwaighte et al. (1989) have empirically estab-
lished a now well-known power-law relationship de-

scribing—within certain limits of piece sizes—the in-
crease of 

 

RD

 

 with decreasing piece size,

(1)

where 

 

v

 

 is the volume of the tissue pieces used to calcu-
late 

 

RD

 

 and 

 

v

 

ref

 

 is an arbitrarily chosen reference vol-
ume. On a double logarithmic scale Eq. 1 yields a lin-
ear relationship between the logarithm of 

 

RD

 

 and the
logarithm of piece size with slope (1 

 

�

 

 

 

D

 

), i.e., 

 

RD

 

 ex-
hibits self-similarity upon scaling with respect to the
size of sample pieces. In this sense, Eq. 1 represents a
fractal relationship and the parameter 

 

D

 

, which is a glo-
bal measure of heterogeneity, is identified as a spatial
fractal dimension (Mandelbrot, 1983; Bassingthwaighte
et al., 1994). 

 

D

 

 

 

�

 

 1.0 indicates uniform flow and 

 

D

 

 

 

�

 

1.5 indicates complete spatial randomness. For myocar-
dial perfusion heterogeneity, an average 

 

D

 

 of 

 

�

 

1.2 has
been found (Bassingthwaighte et al., 1989), suggesting
that heterogeneity is not random: Flows in adjacent tis-
sue samples are positively correlated (i.e., they tend to

RD v( ) RD vref( ) v
vref
-------- 

  1 D–

,⋅=

 

Address correspondence to Rudolf Karch, Department of Medi-
cal Computer Sciences, University of Vienna Medical School, Spi-
talgasse 23, A-1090 Wien, Austria. Fax: (43) 1-40400-6677; email:
rudolf.karch@univie.ac.at

 

Abbreviations used in this paper:

 

 CCO, constrained constructive optimi-
zation; FBT, fractal branching tree; pdf, probability density function.
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be alike). By means of Eq. 1, the correlation coefficient

 

r

 

1

 

 between flows in nearest-neighbor pieces is directly
expressible in terms of 

 

D

 

 (Van Beek et al., 1989),

(2)

i.e., for fractal heterogeneity Eq. 1 and 2 are equivalent
and (as a consequence of self-similarity) nearest-neigh-
bor correlations are independent of piece size.

There has been much debate whether the anatomic
structures of the arterial trees or local metabolic needs
of the supplied tissues are causative for the observed
heterogeneities in regional flows (Van Beek, 1997;
Deussen, 1998; Bassingthwaighte and Li, 1999; Balaban
and Arai, 2001). In an attempt to reveal the contribu-
tion of vascular anatomy to regional flow distributions,
numerous model studies have been reported, ranging
from fractal self-similar branching models (Van Beek et
al., 1989; Glenny and Robertson, 1991; Parker et al.,
1997) and models derived from the statistics of mor-
phometric data (VanBavel and Spaan, 1992), to whole-
organ network reconstructions (Beard and Bassing-
thwaighte, 2000) based on the extensive set of ana-
tomic data from VanBavel and Spaan (1992) and
Kassab et al. (1993).

Here, we employ the method of constrained con-
structive optimization (CCO) to generate three-dimen-
sional arterial model trees of some 10

 

4

 

 vessel segments
(Schreiner, 1993; Karch et al., 1999, 2000a). Given the
simplifying assumptions of this model, CCO trees ex-
hibit a realistic visual appearance and reproduce vari-
ous statistics of real arterial trees, such as branching an-
gles (Schreiner et al., 1994) and diameter ratios of par-
ent and daughter segments (Karch et al., 2000b). The
method of CCO generates end-point positions compat-
ible with the existing tree structure and allows—con-
trary to the approach of previous modeling efforts—to
prescribe terminal flows as an independent boundary
condition, thereby coming close to the notion that the
primary causes of flow heterogeneity are the metabolic
tissue needs and vascular anatomy is only a conse-
quence thereof.

The values of 

 

D

 

 and 

 

r

 

1

 

 observed in the left ventricular
myocardium of animals under physiological conditions
range from 

 

D

 

 

 

�

 

 1.21 (Bassingthwaighte et al., 1989) to

 

D

 

 

 

�

 

 1.37 (Iversen and Nicolaysen, 1995), and from 

 

r

 

1

 

 

 

�

 

0.18 (Matsumoto et al., 1996) to 

 

r

 

1

 

 

 

�

 

 0.92 (Mori et al.,
1995), respectively. However, Kleen et al. (1997) re-
ported 

 

D

 

 

 

�

 

 1.6 for the subepicardial myocardium of
pigs at baseline and after the induction of coronary
stenosis, and Mori et al. (1995) observed 

 

r

 

1

 

 

 

�

 

 

 

�

 

0.16 for
aggregated adjacent sample regions in a dog myocar-
dium under reduced coronary perfusion pressure. In
this paper, we study spatial dispersions and nearest-
neighbor correlations of regional flows in model trees

r1 23 2D– 1,–=

 

generated by two different sets of boundary conditions
for the terminal flows: (a) equal terminal flows (model
1) and (b) terminal flows set proportional to the vol-
umes of Voronoi polyhedra associated with terminal
segment end-points (model 2).

 

M A T E R I A L S  A N D  M E T H O D S

 

Tree Generation

 

The method of CCO for arterial tree representation is derived
from the principle of optimal design (Rosen, 1967), which has
long been hypothesized for single arterial bifurcations (Murray,
1926a,b; Zamir, 1976a,b). Starting from a root segment, CCO
trees are generated by adding new terminal segments that con-
nect randomly chosen points of a geometric model of the perfu-
sion area with segments of the tree grown thus far, until a given
number 

 

N

 

term

 

 of terminal segments is reached. At each step of
growth, the geometry of the newly created bifurcation is opti-
mized under a prescribed set of physiologic boundary condi-
tions. However, no attempt is made to model the growth process
of real arterial trees (Hudlicka et al., 1986).

For ease of reference, we restate the main points of CCO: Arte-
rial trees are modeled as binary branching trees and segments
are assumed rigid cylindrical tubes. Arterial bifurcations (Zamir
et al., 1983; Zamir, 2001) are characterized by the diameters and
lengths of the parent segment and its two daughter branches—
the specific shape of the vascular wall of bifurcations and its im-
pact on hemodynamics are not considered. Likewise, blood is as-
sumed an incompressible, homogeneous Newtonian fluid at
steady-state and laminar flow conditions, and Poiseuille’s law is
used to estimate the hydrodynamic resistance 

 

R

 

 of individual seg-
ments,

 

(3)

 

where 

 

l

 

 and 

 

d

 

 are segment length and inner diameter, and 

 

�

 

 is
the viscosity of blood. The position of each new bifurcation is cal-
culated so as to minimize total intravascular volume (Kamiya and
Togawa, 1972; Schreiner et al., 1995) under the following bound-
ary conditions: At a given perfusion pressure 

 

p

 

perf

 

, perfusion flow

 

Q

 

perf

 

, terminal flows 

 

Q

 

term

 

, and at a preset diameter of the root
segment, segment diameters are scaled to obey the relationship
(Sherman, 1981)

 

(4)

 

at each bifurcation, where 

 

d

 

0

 

, 

 

d

 

1

 

, and 

 

d

 

2

 

 are the diameters of the
parent and daughter segments, respectively, and the constant

 

�

 

 

 

�

 

 0 characterizes the reduction of segment diameters across bi-
furcations.

 

Voronoi Polyhedra Construction

 

After model trees are grown to their final size (i.e., to the pre-
scribed number 

 

N

 

term

 

 of terminal segments) we consider the end-
points of these terminals. These points represent locations of
blood supply for the surrounding tissue regions, and in model 2
we hypothesize that these regions can be approximated by
Voronoi polyhedra: Given a set of distinct points in space, the
Voronoi polyhedron associated with one of these points is de-
fined as the convex region of space closer to this point than to
any other point of the given set (Preparata and Shamos, 1985).
The Voronoi tessellation of an entire point set yields a partition of

R 128µ
π

------------- l

d4
----- ,⋅=

d0
γ d1

γ d2
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space into convex nonoverlapping polyhedra that completely fill
the space (Fig. 1). Voronoi tessellations originally emerged in
pure mathematics as a number-theoretical problem (Dirichlet,
1850; Voronoi, 1908) and have since then been successfully ap-
plied in biology and medicine to model cellular patterns (Honda,
1978), capillary domains (Hoofd et al., 1985), and to describe the
apparent end-point distribution of arteries in the chorioallantoic
membrane of chicken eggs (Kurz and Sandau, 1997). To con-
struct the Voronoi tessellation of terminal segment end-points,
we have used the Qhull software package (designed by C.B. Bar-
ber and H. Huhdanpaa, University of Minnesota, MN). This pack-
age implements the Quickhull algorithm (Preparata and Sha-
mos, 1985), which reduces the construction of a 

 

n

 

-dimensional
Voronoi diagram to the problem of finding a convex hull (i.e.,
the smallest convex set that contains a given set of points) in (

 

n

 

 

 

�

 

1) dimensions. Qhull provides vertex coordinates of the Voronoi
polyhedra faces for all pairs of adjacent input sites and thus allows
straight-forward calculation of polyhedra volumes 

 

V

 

: From the ar-
eas 

 

A

 

k

 

 of individual faces (Ruocco et al., 1992),

 

(5)

 

where 

 

n

 

v

 

(

 

k

 

)

 

 is the number of vertices of the 

 

k-

 

th face, 

 

r

 

j

 

(k)

 

 is the po-
sition vector of the 

 

j-

 

th vertex of this face, and 	 denotes the
cross product of the respective vectors, we have

(6)

where hk is the normal distance of the polyhedron-center from its
k-th face and Nf is the total number of polyhedra faces.

Terminal Flow Assignment

In model 1 we assume that all terminal segments carry the same
fraction of the total perfusion flow, Qterm � Qperf/Nterm, so that
the variability of local flows is solely determined by the terminals’
spatial position, i.e., by the variability of the number of terminals
within the respective sample pieces.

In model 2 we assume that segments with relatively high flows
also perfuse large volumes of tissue (VanBavel and Spaan, 1992)
and we model the tissue regions supplied by individual terminal
segments by their associated Voronoi polyhedra and set terminal
flows proportional to the corresponding polyhedra volumes.
Note that the method of CCO assigns terminal flows after each
step of growth and rescales segment diameters during optimiza-
tion to fulfill these new boundary conditions together with Eq. 4.
For model 2 this algorithm is computationally demanding, since
each addition of a new terminal requires a complete Voronoi tes-
sellation of all terminal segment end-points. However, CCO trees
generated in this way are not significantly different (with respect
to, for example, the distribution of segment diameters, pressure
profile, and total intravascular volume) from trees in which
Voronoi tessellation with terminal flow assignment and rescaling
is performed only once after the trees are grown to their final
size (Karch et al., 2003). Therefore, the trees of model 2 are gen-
erated using the latter approach and actually represent rescaled
versions of the respective trees of model 1.

Fractal Dispersion and Correlation Analysis of Regional Flow

In fractal dispersion analysis we are interested in the scaling be-
havior of the relative dispersion of regional flow as a function of
spatial resolution: The perfusion domain is successively subdi-
vided into 8 � 2 	 2 	 2, 27 � 3 	 3 	 3, . . . , 4096 � 16 	 16 	
16 cubic volume elements of equal size and within each individ-

Ak
1
2
--- rj

k( ) r1
k( )–( ) rj 1+

k( ) r1
k( )–( )× ,

j 2=

nv
k( ) 1–

∑=

V 1
3
--- hkAk,

k 1=

Nf

∑=

ual element the regional flow q is calculated as the sum of flow
through all terminal segments within the respective element, di-
vided by the element volume. For each resolution (i.e., element
volume v), we calculate the overall mean 
q� (which is constant
and equal to the total perfusion flow Qperf divided by the volume
Vperf of the perfusion area), the standard deviation SD(v), and
relative dispersion RD(v) � SD(v)/
q� of regional flows and ob-
tain RD as a function of element size v. On a double logarithmic
scale, Eq. 1 yields a linear relation between RD and resolution,

(7)

and the spatial fractal dimension D is given by the slope (1 � D)
of this linear relation over a range of resolutions, where the slope
is constant (Glenny et al., 1991).

Fractal dimensions observed for regional flows in the lung
(Glenny and Robertson, 1990) and the myocardium (Bassing-
thwaighte et al., 1989) demonstrate that flow heterogeneity is not
random—flows in adjacent tissue samples are spatially corre-
lated. Glenny (1992) proposed Pearson’s linear correlation coef-
ficient,

(8)

as a measure of the linear relationship between nearest-neighbor
regional flows. The variables X and Y are paired observations (xi,
yi) of the magnitudes of flows in adjacent volume elements, 
X�
and 
Y� are their respective means, and n is the number of
paired observations. Note that we assume that the tissue is isotro-
pic and the average in Eq. 8 can be performed over all 3 spatial
directions. Thus, we effectively conduct a one-dimensional analy-
sis. By virtue of Eq. 2, determining r1 provides an additional
method to estimate D,

(9)

i.e., the global measure of heterogeneity, D, is related to the mea-
sure of averaged local flow relationships, r1. Given, the flow distri-
bution obeys a fractal relationship, Eq. 1, D is independent of the
resolution used to measure r1, i.e., the correlation between near-
est neighbors at one level of resolution is the same as between
neighbors at a higher (or lower) level (Bassingthwaighte and
Beyer, 1991).

Fractal Branching Tree Model

The fractal branching tree (FBT) model, originally introduced
by Van Beek et al. (1989), represents a dichotomously branching
tree in which, at each bifurcation, a fraction � (flow asymmetry
parameter, 0 � � � 0.5) of the parent blood flow enters one
daughter segment and a fraction (1 � �) enters the other. After
n bifurcations, i.e., in the n-th generation, there are 2n terminal
segments carrying discrete flows of magnitude

(10)

each occurring with a relative frequency

(11)

RD v( )log 1 D–( ) v
vref
-------- 

 log RD vref( ),log+⋅=

r1
Cov X Y,( )

Var X( ) Var Y( )
---------------------------------------------

xi X〈 〉–( ) yi Y〈 〉–( )
i 1=

n

∑

xi X〈 〉–( )2

i 1=

n

∑ yi Y〈 〉–( )2

i 1=

n

∑
------------------------------------------------------------------------------ ,= =

D 1
2
--- 8

r1 1+
------------- 

  ,
2

log⋅=

Qn k( ) αk 1 α–( )n k– Q0,=

p Qn k( )( ) 1

2n
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2
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where Q0 is the flow into the root segment and k � 0, 1,  . . . , n.
Thus, this model describes flow dispersion without considering
the spatial organization of the arterial tree.

Statistics

Statistical analysis of model results was performed using the SAS
system version 8.1 (SAS Institute). Group data are shown as
mean � SD. Normal distribution of data was tested with the Sha-
piro Wilks test. All correlation values refer to Pearson’s correla-
tion coefficient. Differences in D-values were tested by means of
Student’s t test for paired data. The level of statistical significance
was set to 5%.

R E S U L T S

Generation of Arterial Trees

We have computed five realizations of model 1 trees by
applying different seeds for the random number se-
quence used to generate new terminal locations. Simu-
lation parameters were set so as to model the large ar-
teries of the coronary arterial tree supplying �100 g of
myocardial tissue (having a volume of �100 cm3) un-
der cardiac arrest and maximum vasodilation (Table I).
Trees were grown up to a size of Nterm � 16,000 termi-
nal segments in a cube of 4.642 cm � (100 cm3)1/3

side-length. Nterm was chosen to yield RD-values for
model 1 similar to experimental data (Glenny and Rob-
ertson, 1995). The trees of model 2 were obtained from
the previously generated model 1 trees by constructing
the Voronoi polyhedra of terminal segment end-points,
calculating the respective polyhedra volumes, and set-
ting terminal flows proportional to these volumes. Note
that Voronoi tessellations were performed in a way pre-
serving the boundaries of the perfusion area (i.e., orig-
inal area boundaries are exactly recovered as parts of
the polyhedra, see Fig. 1). In a final step, these trees
were rescaled, i.e., segment diameters recalculated, so
as to meet the modified boundary conditions. There-
fore, the trees of model 2 represent rescaled versions of
model 1 trees and have identical topological structures.
Fig. 2 A shows a specific realization of a model 1 tree
and Fig. 2 B illustrates polyhedra resulting from the
Voronoi decomposition of end-points of a tree grown
to Nterm � 400 terminal segments.

Distribution of Regional Flows

Fig. 3 shows the probability density functions of rela-
tive regional flows, q* � q/
q�, i.e., regional flows q
divided by the mean regional flow 
q�, for four spe-
cific volume element sizes v. The distributions of re-
gional flows are fairly symmetric about q* � 1 for
each element size (ranging from v � 12.5 ml with n �
8 pieces to v � 0.024 ml with n � 4,096 pieces) and
each realization of models 1 and 2, so that the RD
is an adequate measure of their spread (Bassing-
thwaighte et al., 1994). With increasing resolution
(i.e., decreasing element size) the widths of the
probability density functions grow and their rela-
tive dispersions RD increase. At each specific level of
resolution, RD of model 2 is smaller than the respec-

T A B L E  I

Simulation Parameters

Parameter Meaning Value Source

pperf Perfusion pressure 100 mm Hg Chilian et al. (1989)

Qperf Total perfusion flow 500 ml/min Chilian (1991)

� Viscosity of blood 3.6 cp Lipowsky and Zweifach (1977)

droot Diameter of the root segment 4 mm Kassab et al. (1993)

� Bifurcation exponent 2.55 Arts et al. (1979)

Vperf Volume of perfusion domain 100 cm3

Nterm Number of terminal segments 16,000

Figure 1. Example of a Voronoi tessellation. The Voronoi poly-
gons were generated by n � 40 randomly distributed points in two
dimensions (solid lines). Dashed lines illustrate sample pieces
(squares of equal size) for dispersion analysis at one specific reso-
lution.
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Figure 2. Visual representation of a
model tree and corresponding Voronoi
polyhedra. (A) CCO tree with Nterm �
16,000 terminal segments optimized for
minimum intravascular volume. Simula-
tion parameters are listed in Table I. Vi-
sualization was performed by represent-
ing the vessel segments as the isosurface
of a pseudopotential assigned to the
whole tree (see Neumann et al., 1996).
(B) Voronoi polyhedra of the tree in
panel (A) with Nterm � 400 (boundary
polyhedra excluded). The visual repre-
sentation was generated by means of the
Geomview program (designed by S.
Levy, T. Munzer, M. Phillips, C. Fowler,
N. Thurston, D. Krech, S. Wisdom, D.
Meyer, and T. Rowley, University of Min-
nesota, MN).
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T A B L E  I I

Fractal Analysis of Perfusion Heterogeneity

Model 1 Model 2

Tree no. RD(v) D r2 RD(v) D r2

1 0.410 1.406 0.99 0.354 1.667 0.99

2 0.425 1.407 0.99 0.352 1.707 0.99

3 0.414 1.418 0.99 0.357 1.701 0.98

4 0.408 1.393 0.98 0.346 1.694 0.98

5 0.414 1.399 0.99 0.354 1.687 0.99

Mean � SD 0.412 � 0.003 1.405 � 0.009 0.99 � 0.005 0.353 � 0.004 1.691 � 0.016 0.99 � 0.007

RD, relative dispersion of regional flows at the smallest sample volume v � 0.024 ml. D, fractal dimension of perfusion heterogeneity; three largest and
three smallest volume decompositions excluded. r2, Pearson’s correlation coefficient squared, measuring the linear relationship between log RD and log
v (see Fig. 5).

Figure 3. Probability density functions (mean � SD, 5 realiza-
tions) of relative regional flows, q* � q /
q�, at four different vol-
ume element sizes: v � 1.562 ml (�), v � 0.196 ml (�), v � 0.058
ml (�), and v � 0.024 ml (�), for model 1 (A) and model 2 (B).

tive value of model 1 (see Table II), indicating that
“Voronoi-scaled” terminal flows (model 2) render re-
gional flows more homogeneous than equal terminal
flows (model 1). This result is illustrated in Fig. 4,
where the clustering of high- and low-flow regions is
less pronounced for model 2 (Fig. 4 B) than for
model 1 (Fig. 4 A): model 2 looks more random (i.e.,
less heterogeneous) than model 1.

Fractal Scaling of Perfusion Heterogeneity

Fig. 5 presents the relative dispersion RD(v) of re-
gional flow as a function of volume element size v in
a double-logarithmic plot. The fractal dimension D
was obtained from the slope (1 � D) in a linear re-
gression of log RD vs. log v for each individual real-
ization of models 1 and 2 (see Eq. 7). The three larg-
est volume decompositions were excluded from the
linear fit, because (a) the samples were small (n � 8,
n � 27, and n � 64, respectively), and (b) log RD val-
ues did not fit the fractal relationship of Eq. 7. Like-
wise, the three smallest decompositions were also ex-
cluded, because of the small mean number of termi-
nals per sample volume (16,000/4,096 � 3.9 for the
smallest sample volume v � 0.024 ml). The linear
correlation between the remaining paired values of
log RD and log v was high, r2 � 0.99 � 0.005 for
model 1 and r2 � 0.99 � 0.007 for model 2. The frac-
tal dimension D for models 1 and 2 was estimated as
the mean of D-values obtained from individual linear
least-squares fits (see Table II). We find D � 1.405 �
0.009 for model 1 and D � 1.691 � 0.016 for model
2, both being significantly different from D � 1.5 for
randomly distributed terminal flows (Student’s t test,
P 
 0.0001, n � 5).

Nearest-neighbor Correlations

Fig. 6 shows the linear correlation coefficient r1, Eq. 8, be-
tween regional flows in adjacent sample pieces as a func-
tion of sample volume size v for the trees of models 1
and 2. Fig. 6 illustrates two distinctive properties of the

models: (a) Although model 1 always exhibits positive
correlations, we observe significant negative correlations
throughout model 2. (b) In both models, r1 is roughly
independent of the spatial resolution v. For the nearest-
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neighbor correlations, averaged over the same range of
piece sizes used in the previous section to estimate D, we
find 
r1� � 0.122 � 0.025 for model 1 and 
r1� �
�0.175 � 0.027 for model 2 (see Table III). Since r1

proved roughly constant over the range of piece sizes v
where log RD scales linearly with log v, Eq. 9 can be ap-
plied for an additional estimate of the fractal dimension D
from nearest-neighbor correlations r1. From the D-values
calculated from r1 at individual resolutions v, we find D �
1.417 � 0.016 for model 1 and D � 1.639 � 0.024 for
model 2, respectively (Table III). These values are in good
agreement with the results we obtained for D from the
method of scaling-analysis of log RD vs. log v (Table II).

Distribution of Segmental and Terminal Flows

In the following, we report some consequences of the
different terminal flow settings of models 1 and 2 on
the distribution of flow within the whole tree and com-
pare our results with the predictions of the FBT model.
Fig. 7 A shows the distribution of relative segmental
flows for model 1, model 2, and the FBT model with
n � 14 generations, i.e., 214 � 16,384 terminal segments
(yielding roughly the same number of terminals as the
CCO models with Nterm � 16,000), and a flow-asymme-
try parameter � � 0.46, obtained by a best-fit proce-
dure to the flow distribution of model 2. While the
probability density function (pdf) for segmental flows
of model 1 closely follows a power law, p(x) � x �, with
an exponent  � 1.83 � 0.03, the pdfs of both model 2
and the FBT model exhibit a distinctive maximum and
decrease at their lower ends, but otherwise behave very
similarly to model 1. Fig. 7 B presents the pdfs of rela-
tive terminal flows for model 2 and the FBT model.
Both models are well approximated by a lognormal dis-
tribution,

(12)

where 
x�0.5 is the median and �g is the geometric
standard deviation. The differences in the respective

p x( ) 1
2πx σglog

----------------------------
xlog x〈 〉0.5log–( )2

2 σ2
glog

-----------------------------------------------– , exp=

Figure 5. Fractal scaling of perfusion heterogeneity. Log-log
plot of relative dispersion RD (mean � SD) of regional flows vs.
volume element size v for 5 realizations of model 1 (�), fractal di-
mension D � 1.405 � 0.009, and model 2 (�), D � 1.691 � 0.016.
The number of volume elements corresponding to v is given at the
top of the plot. The other symbols indicate experimental data of
the myocardium: Sheep (�) with D � 1.17 � 0.07, n � 11; rabbits
(	) with D � 1.25 � 0.07, n � 7; baboons (�) with D � 1.21 �
0.04, n � 10 (Bassingthwaighte et al., 1989). Pig (�) from Exp. 3
of the normal saline (NS) group (D � 1.34 � 0.04, n � 7) of Kleen
et al., 1997. Rabbits (�) with D � 1.37 � 0.06, n � 46 (Iversen and
Nicolaysen, 1995). Dog #4 (�) of the control group of Mori et al.,
1995 (D � 1.21 � 0.08, n � 4). Straight solid and dashed lines are
linear least-squares fits to data points.

Figure 4. Spatial distribution of relative regional flows, q* �
q/
q�, for a resolution of 10 	 10 	 10 volume elements of size v �
0.1 ml. Flow magnitudes are color coded as indicated in the side-
bar. Samples were taken from the central slice of the cubic perfu-
sion volume of specific realizations of model 1 (A) and model 2
(B). The different patterns illustrate that the clustering of high-
and low-flow regions is less pronounced for model 2 than for
model 1, i.e., terminal flows scaled by associated Voronoi polyhe-
dra volumes (model 2) render regional flows more homogeneous
than equal terminal flows (model 1).
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parameters between the models are very small, 
x�0.5 �
(5.93 � 0.04) 	 10�5, �g � 1.39 � 0.01 (model 2) and

x�0.5 � (5.74 � 0.04) 	 10�5, �g � 1.34 � 0.01
(FBT).

D I S C U S S I O N

Previous Model Studies

During the last decade since its discovery (Bassing-
thwaighte et al., 1989), a wealth of model studies have
been performed to broaden the understanding of the
fractal character of spatial heterogeneity of regional
blood flow in mammalian organs. Van Beek et al.
(1989) modeled the myocardial vascular tree as a di-
chotomous branching network and concluded that a
relatively small deviation from a symmetric flow split-
ting at bifurcations was sufficient to explain the ob-
served heterogeneity. Glenny and Robertson (1991) ap-
plied this model to study pulmonary blood flow hetero-
geneity and reported an excellent agreement with
experimental data. VanBavel and Spaan (1992) con-
structed computer models of the porcine coronary ar-
terial tree from the statistics of their morphometric
data and concluded that the coronary branching pat-
tern was a major determinant of flow heterogeneity. Al-
though these models provided valuable insight on flow
heterogeneity, they did not represent anatomic fea-
tures accurately (Bassingthwaighte et al., 1989), such as
the spatial organization of the arterial tree. Glenny and
Robertson (1995) reported on a space-filling three-
dimensional model with branches along the three or-

thogonal directions and randomly chosen flow asym-
metry at each bifurcation and found that this model ex-
plained both heterogeneity and spatial correlation of
regional pulmonary perfusion. Parker et al. (1997) ex-
tended this model to incorporate a range of branching
angles and daughter-parent length ratios and con-
cluded that a flow-symmetric model was sufficient to
predict the heterogeneity observed in dog lungs, while
negative correlations of flows with distance were ob-
tained only with an asymmetric flow-ratio along bifurca-
tions. Based on the extensive set of anatomic data from
VanBavel and Spaan (1992) and Kassab et al. (1993),
Beard and Bassingthwaighte (2000) presented a whole-
organ model of the coronary arterial network and suc-
cessfully predicted the degree of heterogeneity and the
spatial correlations of regional flows observed in the
myocardium of animals. Qian and Bassingthwaighte
(2000) presented a general flow bifurcation model
based on a dichotomous branching tree with asymmet-
ric branching and random flow variation at each bifur-
cation and showed that this model gives rise to an
asymptotic lognormal flow distribution and fractal scal-
ing in the dispersion of regional flows consistent with
experimental data. Kendal (2001) applied the statisti-
cal theory of exponential dispersion models to regional
organ blood flow and recovered Bassingthwaighte’s
fractal scaling relation, Eq. 1, assuming that the disper-
sion model was additive, scale invariant, and repre-
sented a compound Poisson distribution. Recently,
Marxen and Henkelman (2003) explained fractal per-
fusion heterogeneity in a branching tree model as a

T A B L E  I I I

Correlation Analysis of Regional Flows

Model 1 Model 2

No. of pieces r1 D r1 D

8 0.202 � 0.072 1.367 �0.352 � 0.195 1.813

27 0.141 � 0.027 1.405 �0.246 � 0.129 1.704

64 0.224 � 0.036 1.354 �0.153 � 0.063 1.620

125 0.167 � 0.012 1.388 �0.215 � 0.030 1.675

216 0.141 � 0.010 1.405 �0.203 � 0.057 1.664

343 0.117 � 0.014 1.420 �0.169 � 0.022 1.633

512 0.104 � 0.032 1.429 �0.192 � 0.029 1.654

729 0.140 � 0.004 1.405 �0.146 � 0.021 1.614

1,000 0.104 � 0.009 1.429 �0.179 � 0.023 1.642

1,331 0.098 � 0.017 1.432 �0.144 � 0.004 1.612

1,728 0.102 � 0.016 1.430 �0.149 � 0.016 1.616

2,197 0.093 � 0.011 1.436 �0.134 � 0.014 1.604

2,744 0.075 � 0.008 1.448 �0.141 � 0.011 1.610

3,375 0.077 � 0.006 1.446 �0.139 � 0.008 1.608

4,096 0.076 � 0.009 1.447 �0.125 � 0.009 1.596

Mean � SDa 0.122 � 0.025 1.417 � 0.016 �0.175 � 0.027 1.639 � 0.024

r1, linear correlation coefficient of regional flows (mean � SD, five realizations), Eq. 8. D, fractal dimension of perfusion heterogeneity calculated from r1

(Eq. 9).
aThe three largest and three smallest volume decompositions were excluded from the analysis.
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consequence of scale-independent branching asymme-
try and fractal vascular resistance.

Comparison with Experimental Data

Fig. 5 shows experimental data of myocardial perfusion
heterogeneity (log RD vs. log v) of various animals as
reported by four independent research groups, to-
gether with simulation results of models 1 and 2. We
have converted the experimental values of myocardial
tissue mass to sample element volumes v assuming a
specific mass of 1 g/ml for heart tissue (Spaan, 1991).
Results for models 1 and 2, together with experimental
data, are summarized in Table IV.

The value of D � 1.41 � 0.01 for Nterm � 16,000 pre-
dicted by model 1 (n � 5 simulations) is in good agree-
ment with the experimental findings of Iversen and
Nicolaysen (1995), D � 1.37 � 0.06 for n � 46 rabbits,
and of Kleen et al. (1997), D � 1.34 � 0.04 (D � 1.39 �
0.06) for n � 7 (n � 6) pigs, and only moderately above
the range of individual D-values (1.18–1.37) reported
for n � 6 rabbits by Bassingthwaighte et al. (1989).
However, model 1 overestimates the average D-values
reported for n � 11 sheep (D � 1.17 � 0.07), n � 10
baboons (D � 1.21 � 0.04), and n � 6 rabbits (D �
1.25 � 0.07) in the original study on the fractal nature
of regional myocardial blood flow heterogeneity by
Bassingthwaighte et al. (1989), as well as the average D
of 1.21 � 0.08 for n � 4 dogs measured by Mori et al.
(1995). As detailed below, the fractal dimension D of

model 1 decreases with increasing Nterm (for Nterm �
32,000 we obtain D � 1.38 � 0.01).

Model 2 predicts a fractal dimension of D � 1.69 �
0.02 (n � 5 realizations), independent of Nterm. To the
best of our knowledge, a value of D � 1.5 has not been
reported in previous model studies, although—as has
been pointed out by Bassingthwaighte et al. (1990)—it

Figure 7. Log-log plot of the probability density functions p(x)
of relative segmental flows (mean � SD, n � 5 simulations), nor-
malized by the flow through the root segment, for model 1 (�),
model 2 (�), and the fractal branching tree (FBT) model (�) of
Van Beek et al. (1989) with n � 14 generations and flow-asymme-
try parameter � � 0.46. (A) All segments included, the dashed
line indicates a least-squares fit to the data points of model 1 and
represents a power-law relation, p(x) � x � with  � 1.83 � 0.03.
(B) Terminal segments only, together with least-squares fits of log-
normal distributions, Eq. 12, to model 2 (solid line) and to the
FBT-model (dashed line). The dotted line is a least-squares fit of a
two-parameter gamma distribution, Eq. 13, to model 2. The arrow
marks the value of relative terminal flows in model 1, Qterm/Qroot �
1/16,000 � 6.25 	 10�5.

Figure 6. Linear correlation coefficient r1, Eq. 8, of nearest-
neighbor regional flows as a function of volume element size v for
5 realizations (mean � SD) of model 1 (�) and model 2 (�).
Dashed lines are the respective mean values of r1 over piece sizes,
excluding the three smallest and three largest volume decom-
positions (see Table III): 
r1� � 0.122 � 0.025 (model 1) and

r1� � �0.175 � 0.027 (model 2). Fractal dimensions calculated
from r1 values at individual resolutions v by means of Eq. 9 are D �
1.417 � 0.016 (model 1) and D � 1.639 � 0.024 (model 2).
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is possible to have a fractal dimension D � 1.5 when in-
verse correlations between nearest neighbors become
evident. Yet, in a recent experimental study, Kleen et al.
(1997) have observed D � 1.64 � 0.04 (1.66 � 0.03)
and D � 1.61 � 0.03 (1.65 � 0.04) in the epicardial lay-
ers of n � 6 (n � 7) pig hearts at baseline and after the
induction of coronary stenosis.

Since the absolute values of perfusion heterogeneity,
i.e., the relative dispersions RD of regional flows, also
depend on the number Nterm of end-points (see below),
Nterm was chosen so as to yield physiologically reason-
able RD values for model 1 (Fig. 5). With the same
Nterm, model 2 predicts realistic RD values only for sam-
ple volumes v 
 1 ml. In this range, model 2 is in rea-
sonable agreement with the data of Mori et al. (1995).
However, model 2 underestimates RD for large volume
elements when compared with the experimental data
of Bassingthwaighte et al. (1989) for sheep, rabbits,
and baboons.

As to the spatial correlation of blood flow to neigh-
boring sample volume elements, model 1 predicts a
mean linear correlation coefficient of 
r1� � 0.12 �
0.03 (n � 9) over the size range of volume elements
considered (Table III and Fig. 6). Kleen et al. (1997)
have reported r1 � 0.26 � 0.07 (n � 6) and r1 � 0.26 �
0.04 (n � 7) for pig myocardial tissue samples of 316
mg � 0.316 ml size. For this specific sample element
size, model 1 predicts r1 � 0.14 � 0.01 (n � 5), thus un-
derestimating the experimental values. Since in model
1 D depends on Nterm, we observe the respective varia-
tion also for r1 (see Eq. 2). For Nterm � 32,000, model 1
gives r1 � 0.22 � 0.02 (n � 5) for the above-mentioned
tissue sample size, in good agreement with the experi-
mental values. Moreover, the r1 values predicted by
model 1 are also within the range of 0.18–0.32 reported

by Matsumoto et al. (1996) for the within-layer correla-
tion of adjacent regional flows in rabbit hearts. How-
ever, the r1 values of 0.42–0.92 measured by Mori et al.
(1995) in dog hearts are underestimated by model 1.

Model 2 gives a negative linear correlation coeffi-
cient of 
r1� � �0.18 � 0.03 (n � 9), which has not
been observed in experimental studies under normal
physiological conditions, and thus fails to predict re-
gional flow heterogeneity of the normal heart. How-
ever, Mori et al. (1995) reported r1 � �0.16 for sample
aggregates of �40 mg � 0.040 ml in a dog heart under
reduced coronary perfusion pressure. These results
suggest the hypothesis that negative nearest-neighbor
correlations as predicted by model 2 may indicate myo-
cardial ischemia. This view is consistent with the ten-
dency of nearest-neighbor correlations being attenu-
ated in the myocardium of dogs under reduced coro-
nary perfusion pressure, as observed by Mori et al.
(1995). Kleen et al. (1997) reported D � 1.5 for epicar-
dial layers in pig hearts, yet their corresponding r1 val-
ues of 0.21 � 0.06 (n � 6) and 0.34 � 0.05 (n � 7)
failed to follow the fractal relation, Eq. 2, which would
predict negative r1 values for D � 1.5. These authors in-
terpreted their D values �1.5 as indicating very hetero-
geneous, nonself-similar perfusion in the subepicardial
myocardium. Glenny (1992) observed negative correla-
tions of regional pulmonary perfusion for distant sam-
ple elements (but not for adjacent pieces) and attrib-
uted these findings to the effect of positive correlations
at small distances in a finite volume under the bound-
ary condition of a fixed total perfusion flow.

Segmental and Terminal Flows

It is a specific feature of the method of CCO to pre-
scribe terminal flows during growth and optimization.

T A B L E  I V

Comparison of Results for Model 1 and 2

Model 1 Model 2

Fractal dimension D

Predicted 1.45 � 0.01 (Nterm � 8,000) 1.69 � 0.02

1.41 � 0.01 (Nterm � 16,000)

1.38 � 0.01 (Nterm � 32,000)

Measured 1.21 � 0.04 (Bassingthwaighte et al., 1989) 1.66 � 0.03 (Kleen et al., 1997)

1.25 � 0.14 (Mori et al., 1995)

1.32 � 0.04 (Matsumoto et al., 1996)

1.37 � 0.06 (Iversen and Nicolaysen, 1995)

1.39 � 0.06 (Kleen et al., 1997)

Nearest-neighbor correlation r1

Predicted 0.09 � 0.02 (Nterm � 8,000) �0.18 � 0.03

0.12 � 0.03 (Nterm � 16,000)

0.18 � 0.05 (Nterm � 32,000)

Measured 0.26 � 0.07 (Kleen et al., 1997) �0.16 (Mori et al., 1995)

0.18–0.32 (Matsumoto et al., 1996)

0.42–0.92 (Mori et al., 1995)
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As such, this method allows to model (adaptive) effects
of local substrate needs of the supplied tissue on the dis-
tribution of resistance and flow within the model trees.
Note that model 1 does not define a specific supply vol-
ume (neither size, nor shape) associated with terminals.
Only model 2 defines both size and shape of terminal
supply regions as well as associated terminal flows.

The influence of different terminal flow distributions
quickly diminishes toward the root (Fig. 7 A) through
the averaging effect of the resistance pathways within
the trees. Since the smallest flows can occur only at the
periphery, the different pdfs of models 1 and 2 in Fig. 7
A mainly originate from the terminals.

CCO trees with terminal flows set proportional to
Voronoi polyhedra volumes and FBT models give rise to
approximate lognormal terminal flow distributions and
the flow-asymmetry parameter � can be chosen to render
these distributions very similar (Fig. 7 B), a finding not
immediately obvious, given the different mechanisms that
determine the respective flows. This result is further sup-
ported by a recent paper of Qian and Bassingthwaighte
(2000), who showed that dichotomous branching tree
models with random flow variations at each bifurcation
yield an asymptotic lognormal flow distribution.

Finally, we note that Kendal (2001) has shown that
Bassingthwaighte’s fractal scaling relation, Eq. 1, is a con-
sequence of a compound Poisson-gamma distribution,
representing regional flow. This author assumed that the
sites of microsphere entrapment (corresponding to the
end-points of our model trees) are randomly (Poisson)
distributed within the sample pieces and that blood flow
at the sites of entrapment obeys a gamma distribution,

(13)

where �(a) denotes the gamma function and the mean
and variance of p(x) are given by ab and ab 2, respec-
tively. Above we have used a lognormal distribution to
characterize terminal flows; however, Vaz and Fortes
(1988) have shown that lognormal and two-parameter
gamma distributions with suitable parameters are very
similar. This is illustrated in Fig. 7 B, displaying a least-
squares fit of a two-parameter gamma distribution to
the relative terminal flows of model 2. We find a � 10.1 �
0.3 and b � (6.0 � 0.2) 	 10�6.

Sensitivity of Model Predictions

The method of CCO does not directly incorporate ana-
tomic information to reconstruct arterial trees. Yet, the
model contains adjustable parameters (see Table I) that
determine various properties of the simulated trees.

The number Nterm of terminal segments, i.e., the trees’
spatial resolution, is of particular relevance in predicting
the dispersion of regional flows. Fig. 8 shows the depen-
dence of the relative dispersion RD and fractal dimen-

p x( ) xa 1–

baΓ a( )
---------------- x

b
--– 

  ,exp=

sion D on Nterm for Nterm � 8,000, 16,000, and 32,000 ter-
minal segments. The absolute values of RD systematically
decrease with increasing Nterm, both for models 1 and 2.
For model 1, where RD measures the variability of the
number of end-points in the sample volume elements,
this behavior can be qualitatively understood by the
properties of N randomly positioned points (drawn from
a uniform distribution) in a spatial domain of volume V.
For such a distribution, the probability P(nv � k) of find-
ing exactly nv � k points in a cubic sample box of volume
v is given by a Poisson distribution,

(14)

where � � N/V is the spatial point density (e.g., Stoyan
and Stoyan, 1994). Since for a Poisson distribution the
mean and variance are 
nv� � Var(nv) � �v, we have

P nv k=( ) λv( )k

k!
------------- λv–( ),exp=

Figure 8. Dependence of the relative dispersion RD (mean �
SD, n � 5 simulations) and fractal dimension D of perfusion het-
erogeneity on the number Nterm of terminal segments for model 1
(A), model 2 (B), and for Nterm � 8,000 (�), Nterm � 16000 (�),
and Nterm � 32,000 (�). In both models, the absolute values of RD
systematically decrease with increasing Nterm. Although D of model
2 is practically insensitive to Nterm, model 1 exhibits a gradual de-
crease of D with increasing Nterm.
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(15)

i.e., RD decreases with increasing N as . Note that
the last equation directly gives

(16)

with D � 1.5, in accordance with the result of King et al.
(1990) obtained by direct simulation of randomly dis-
tributed points. RD values of model 2 also show a 
dependence, since respective RD values collapse onto a
single line when scaled by , see Fig. 8 B. Although
the fractal dimension D of model 2 is practically insensi-
tive to the choice of Nterm, model 1 exhibits a gradual de-
crease of D with increasing Nterm from D � 1.45 � 0.01 at
Nterm � 8,000 to D � 1.38 � 0.01 at Nterm � 32,000. At
small Nterm, D is close to the value of 1.5 for randomly dis-
tributed points, while for larger Nterm the spatial distribu-
tion of end-points is more and more disturbed by the
tree structure, resulting in a decreasing D. Our choice of
Nterm � 16,000 has been dictated mainly by adjusting
model 1 to realistic RD values and by available computa-
tional resources, in particular with respect to the mem-
ory-demanding calculation of Voronoi-tessellations of
trees grown to their final size. However, VanBavel and
Spaan (1992) have estimated the total number of end
segments (diameters between 5 and 10 �m) in myocar-
dial tissue to be �5.5 	 106/100 g, i.e., more than two
orders of magnitude larger than in the present models.
By extrapolation of D to a realistic number of end-points
we estimate D � 1.2 at Nterm � 106, a value still consistent
with experimental data (Bassingthwaighte et al., 1989).
We finally note that, by virtue of Eq. 2, a dependence
of D on Nterm entails a respective variation of r1. Ac-
cordingly, we find for model 1 
r1� � 0.09 � 0.02
(Nterm � 8,000), 
r1� � 0.12 � 0.03 (Nterm � 16,000),
and 
r1� � 0.18 � 0.05 (Nterm � 32,000).

The bifurcation exponent �, Eq. 4, defines the amount
by which segment diameters decrease along arterial bifur-
cations when moving from the root toward the periphery.
As such, � influences—besides segment length and blood
viscosity—the distribution of segmental resistance and
flow within the trees, see Eq. 3. As a consequence, differ-
ent values of � cause model trees to follow different paths
during growth, resulting in trees of different structure
and spatial arrangement of terminals (Schreiner, 2001).
Thus, we expect � to be an important determinant of the
amount of heterogeneity predicted by CCO trees. For � �
2.0 we find D � 1.27 � 0.01 (n � 5) for model 1 and D �
1.60 � 0.02 (n � 5) for model 2. � � 3.0 tends to increase
D, yielding D � 1.46 � 0.01 (n � 5) for model 1 and D �
1.69 � 0.02 (n � 5) for model 2.

Limitations

The representation of the coronary arterial tree by the
method of CCO is an overly simple description of real-

RD v λ,( )
Var nv( )

nv〈 〉
------------------------

1
λv

---------- ,= =

1 N⁄

RD v( )
RD vref( )
---------------------

v
vref
-------- 

  1 2⁄– v
vref
-------- 

  1 D–

,= =

1 N⁄

N

ity. In the framework of this model, heterogeneity of
blood flow per unit volume of tissue depends both on
the positioning and on the amount of flow delivered by
individual terminal segments (for model 1, only the po-
sitions are relevant, since all terminal flows are set to
the same value). At each step of tree construction, ter-
minals are positioned such as to be compatible with the
tree generated thus far, but are otherwise randomly ar-
ranged in space, i.e., drawn from pseudo-random num-
bers with a uniform distribution. As such, the model
represents a purely geometric and mechanistic ap-
proach, neither taking into account a realistic spatial
distribution of arteriolar end-points nor the complex
interactions of regulatory processes that have been hy-
pothesized as a possible cause for the observed flow
heterogeneities (Balaban and Arai, 2001).

In model 2 we essentially make two assumptions: (a)
terminal flow is proportional to the volume of supplied
tissue, and (b) the regions of tissue supplied by individ-
ual terminals can be modeled by their respective
Voronoi polyhedra. While the first assumption seems
reasonable (VanBavel and Spaan, 1992), the second is a
hypothesis that has to be validated by experimental
data. Seiler et al. (1992) have reported a power-law re-
lationship between luminal cross-sectional areas of hu-
man coronary artery segments and perfused regional
myocardial mass with exponents in the range between
0.62 and 0.82. In good agreement with these results, we
find for model 2 a � vVP

 with  � 0.77 � 0.01, r 2 �
0.95 (n � 5), where a is the luminal cross-sectional area
of segments and vVP is the volume of tissue supplied by
the respective distal subtree, Fig. 9. Here, tissue volume
vVP is the total volume of the Voronoi polyhedra at-

Figure 9. Scaling of segmental cross-sectional area with supply
volume. Relation between the luminal cross-sectional area a
([cm2], y-axis) of tree segments and the volume vVP ([cm3], x-axis)
of tissue supplied by the respective distal subtrees for a specific re-
alization of model 2 (solid circles), where vVP is the total volume of
all Voronoi polyhedra associated with the subtrees’ terminals. The
solid line is a least-squares fit to the data and represents a power-
law relation, a � vVP

0.77.
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tached to the subtrees’ terminals. Moreover, model 2
yields a scaling-relation of intravascular volume as a
function of the volume of tissue supplied consistent
with experimental (Prothero, 1980) and theoretical
(West et al., 1997) findings (Karch et al., 2003). Yet, set-
ting terminal flows proportional to polyhedra volumes
homogenizes regional flows to an extent that reduces
RD to unphysiological values, in particular for large
sample pieces (Fig. 5), and results in negative nearest-
neighbor correlations of regional flows in contrast to
experimental data of the normal heart.

The structure of the model trees, which in turn
guides the spatial positioning of terminals, is primarily
based on an optimality principle. However, for com-
plex biological systems any such principle is only a hy-
pothesis (Kassab and Fung, 1995) and minimizing in-
travascular volume might not be adequate for all parts
of the cardiovascular system with different functions
and modes of operation (Zamir, 1977). Moreover, as
has been pointed out by Pries et al. (1995), optimiza-
tion of vascular beds is possible only within the limits
imposed by functional requirements. The usage of a
single optimization principle might be the reason why
the model fails to predict a connective structure that
agrees with experimental data at all levels of a topologi-
cal ordering parameter, such as the diameter-defined
Strahler system (Kassab et al., 1993). Thus, it would be
desirable to model the topological structure directly
from Kassab’s connectivity matrix, similar to the ap-
proach taken by Beard and Bassingthwaighte (2000).

CCO models assume that blood flow in arterial trees
is steady and that the hydrodynamic resistance of each
segment follows Poiseuille’s law, Eq. 3. Given the pulsa-
tile nature of flow and the complex geometry of arte-
rial walls, in particular in the neighborhood of vessel
junctions, these assumptions are an idealization. Actu-
ally, blood flow depends on the dimensionless Reynolds
and Womersley numbers (e.g., Fung, 1990): only if
both are much smaller than 1, deviations from Poi-
seuille’s law can be neglected. Kassab et al. (1997) have
pointed out that for the coronary arteries, Womersley
numbers are 
1 and flow may therefore be considered
approximately quasisteady. Yet, application of Poi-
seuille’s law in the larger coronary arteries underesti-
mates flow resistance due to arterial branching and
flow entrance and exit disturbances. Not taking into ac-
count the pulsatile nature of blood flow means that re-
gional flows predicted by CCO models represent val-
ues averaged over many heart beats. On the other
hand, experimental data demonstrate that temporal
fluctuations in regional myocardial flows are small in
comparison with spatial fluctuations (King and Bassing-
thwaighte, 1989) and that spatial blood flow heteroge-
neity is temporally stable over hours (Deussen et al.,
1996). These results suggest that neglecting pulsatile
flow in CCO trees may be of minor importance within

the context of modeling spatial blood flow heteroge-
neity.

Finally, we note that Wang and Bassingthwaighte
(2001) showed for a parallel arrangement of capillaries
that capillary supply regions, i.e., regions based on the
functional measure of capillary diffusion, cannot—
except in very special cases—be approximated by Voronoi
polygons. However, terminal segments of CCO models
do not represent real terminal arterioles or capillaries,
nor do they form a system of parallel pipes. In particu-
lar, Ellsworth et al. (1994) have pointed out that capil-
laries are not the only source of oxygen, and that a
complex pattern of oxygen exchange may exist be-
tween arterioles, venules, and adjacent capillary net-
works. Yet, although model 2 yields reasonable distribu-
tions of terminal flows and scaling of luminal cross-sec-
tional area with the volume of supplied tissue, it fails to
predict fractal dimensions D and nearest-neighbor cor-
relation coefficients r1 of regional flows under normal
physiological conditions, but gives D and r1 values con-
sistent with data observed under coronary stenosis and
reduced coronary perfusion pressure and may thus
characterize the associated disturbances of regional
flows. In particular, the negative nearest-neighbor cor-
relations predicted by model 2 may represent a vascular
steal phenomenon in partially ischemic hearts, similar
to coronary steal observed under vasodilator-induced
conditions in myocardial ischemia (Becker, 1978).

Conclusions

In recent years, there has been increasing experimen-
tal evidence that the most important factor for regional
flow heterogeneity in the heart is not the structure of
the vascular network, but the metabolic need of the tis-
sue itself (Van Beek, 1997; Deussen, 1998; Bassing-
thwaighte and Li, 1999; Balaban and Arai, 2001;
Bassingthwaighte et al., 2001; Decking, 2002). In the
light of these advances, the virtue of the present model
lies in the approach of prescribing terminal flows as an
independent boundary condition rather than obtain-
ing these flows by means of the dispersive effect of an
artificially generated vascular network.

We have studied two models for the distribution of ter-
minal flows: Model 1 employs equal terminal flows and
predicts, depending on the specific setting of the num-
ber Nterm of end-points, fractal dimensions of perfusion
heterogeneities in the range from 1.20 to 1.40 and posi-
tively correlated nearest-neighbor regional flows in good
agreement with experimental data observed under nor-
mal physiological conditions. In model 2 we hypothesize
that (a) terminal flows are proportional to the volume of
supplied tissue regions, and that (b) these supply re-
gions can be modeled as Voronoi polyhedra. Although
these boundary conditions yield terminal flows well ap-
proximated by a lognormal distribution, model 2 sub-
stantially homogenizes regional flows and results in in-



T
he

 J
ou

rn
al

 o
f 

G
en

er
al

 P
hy

si
ol

og
y

320 Perfusion Heterogeneity of Arterial Tree Models

verse correlations of nearest-neighbor regional flows,
thus failing to predict D and r1 values of the normal
heart: We find D � 1.69 � 0.02 and r1 � �0.18 � 0.03,
independent of Nterm and consistent with experimental
data observed under coronary stenosis and under reduc-
tion of coronary perfusion pressure.

We conclude that flow heterogeneity can be modeled
by generating terminal positions compatible with an
existing tree structure and assigning terminal flows
without directly resorting to the flow-dispersive effects
of a specific branching tree model. As such, the current
approach comes closer to the notion that metabolic tis-
sue needs are more likely to be causative for the ob-
served heterogeneity than the flow-dispersive effects of
a vascular network. Further research is necessary to im-
prove the model, in particular with regard to realistic
settings of the total number and spatial positions of
end-points, the topological connectivity of the gener-
ated trees, as well as an attempt to include a model of
the main regulatory processes and signaling pathways
that have been hypothesized as a possible origin of re-
gional blood flow heterogeneity in the heart.
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