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Intestinal fibrosis is an important complication of inflammatory bowel disease (IBD). In the
course of the development of fibrosis, certain parts of the intestine become narrowed,
significantly destroying the structure and function of the intestine and affecting the quality
of life of patients. Chronic inflammation is an important initiating factor of fibrosis.
Unfortunately, the existing anti-inflammatory drugs cannot effectively prevent and
alleviate fibrosis, and there is no effective anti-fibrotic drug, which makes surgical
treatment the mainstream treatment for intestinal fibrosis and stenosis. Mesenchymal
stem cells (MSCs) are capable of tissue regeneration and repair through their self-
differentiation, secretion of cytokines, and secretion of extracellular vesicles. MSCs have
been shown to play an important therapeutic role in the fibrosis of many organs. However,
the role of MSC in intestinal fibrosis largely remained unexplored. This review summarizes
the mechanism of intestinal fibrosis, including the role of immune cells, TGF-b, and the gut
microbiome and metabolites. Available treatment options for fibrosis, particularly, MSCs
are also discussed.
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INTRODUCTION

Intestinal fibrosis is a common complication of IBD and is usually defined as an excessive
accumulation of scar tissue in the intestinal wall. Intestinal fibrosis can occur in both forms of
IBD: ulcerative colitis (UC) and Crohn’s disease (CD), but mostly in CD (1). It represents a
challenge for both basic scientists and clinicians, with respect to diagnosis, pathogenic mechanisms,
and clinical management, owing to the lack of reliable and easily transferrable experimental models
of fibrosis, the lack of drugs targeting fibrosis, and the scarcity of predictive markers (2). In the past
years, researchers have intensely explored the mechanism of fibrosis. Similar to fibrosis of other
organs, intestinal fibrosis can activate an immune response, release cytokines, and act on various
cells of the intestine, including epithelial cells, fibroblasts, and smooth muscle cells, accelerating the
accumulation of extracellular matrix and depositing collagen. The common treatment for intestinal
fibrosis is always around anti-inflammation but not directly anti-fibrosis. Although existing
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treatment has some preventive effects on fibrosis, it still does not
prevent recurrence (3). In the existing clinical data, there is an
indication that many patients with IBD develop the later stage of
stenosis, and mostly experience unsatisfactory surgical
solutions (4).

In recent years, MSCs therapy has become a popular central
issue in anti-tumor and tissue regeneration because of their self-
differentiation ability, the release of regulatory factors, and
particularly, the secretion of extracellular vesicle (EV) (5).
Many studies have found that MSCs can play an important
role in the fibrosis of various organs. Notwithstanding, there has
not been much elaboration on the role of MSCs in intestinal
fibrosis. In addition, few studies have confirmed the role of MSCs
in the treatment of IBD (6). There is prospect and confidence
that MSCs could be an effective therapeutic solution to intestinal
fibrosis. We, therefore, explore the mechanism of intestinal
fibrosis and discuss available treatment options, particularly
the prospects of MSCs in IBD treatment.
INTESTINAL FIBROSIS

IBD, a chronic inflammatory disease that includes CD and UC,
severely affects the quality of life of the patient (7). A lot of factors
such as environment, genetic, gut microbiome, and immune
disorder can affect the occurrence and progression of IBD (8, 9).
In addition to affecting the quality of life of patients, IBD also
increases the risk of colorectal cancer between 1.4 to 2.2 fold,
with decreased survival rate in patients with IBD (10).

As a crucial complication of IBD, intestinal fibrosis serves as a
common and great challenge for IBD therapeutic. It is
documented that fibrotic complications occur in more than
Frontiers in Immunology | www.frontiersin.org 2
50% of patients with CD, mainly reflected as stricture and
penetrate. Stricture is a serious problem with an 8% incidence
in UC, whereas fibrostenotic complications lead to stricture
formation (narrowing), intestinal obstruction, and a need for
surgical intervention, and as such, is one of the largest unresolved
clinical challenges in IBD (11). The development of intestinal
fibrosis is complex and the specific mechanism has not been
understood until today, however, researchers widely believe that
the progression of intestinal fibrosis includes the following steps:
cells injury, production of transforming growth factor (TGF-b1),
recruitment of inflammatory cells, and activation of
myofibroblasts and collagen-producing cells (12–16).

Currently, there is no anti-inflammation medicine that
effectively prevents the development of intestinal fibrosis.
Patients with IBD always undergo surgery under the help of
endoscopic when strictures occur (17–19). Therefore, the
discovery of therapy targeting intestinal fibrosis reverse or
prevention will be a big breakthrough in medicine. One of the
keys focused in the study of colon fibrosis is the hope to detect
the appearance of fibrosis earlier in patients. Apart from the help
of colonoscopy and endoscope, researchers are probing at the
molecular level, including serum genetic markers (20),
extracellular matrix (ECM) components (21), growth factors
(22), and miRNAs (23) in fibrosis.

It is normally considered that unhealed inflammation triggers
the excessive accumulation of ECM and increased production of
collagen, indicating that the occurrence and severity of colon
fibrosis may show a positive correlation to an inflammatory
condition Figure 1. A study found that several fibrosis mediators
including the TGF-b signaling pathways, pro-fibrotic cytokines,
and other fibrosis-related factors were increased even in healed
mucosal of UC patients (24). Moreover, an earlier study also
FIGURE 1 | The progression of fibrosis in IBD. In the inflammatory condition, tissue injury is stimulated by inflammatory factors and cytokines, leading to the
proliferation and activation of fibroblasts in the intestine. In addition, epithelial cells and endothelial cells transition to mesenchymal cells. Fibroblasts and smooth
muscle cells also transition to myofibroblasts. Myofibroblasts and fibroblasts accumulate the product of ECM, leading to the development of fibrosis. ECM,
extracellular matrix; a-SMA, alpha-smooth muscle actin.
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found that intestinal fibrosis develops despite the removal of an
inflammatory stimulus and elimination of inflammation. This
implicates that, early intervention ameliorates but does not
abolish subsequent fibrosis, suggesting that fibrosis, once
initiated, is self-propagating, therefore a very early top-down
interventional approach may have the most impact on
fibrostenosing diseases (25). Similarly, Hünerwadel and
colleagues found that severity of inflammation does not affect
fibrosis, by using established animal models from IL10-/- mouse
(26). These observations clearly show the current situation,
whereby existing anti-inflammation drugs exert an insufficient
anti-fibrotic effect in the therapeutic process. Otherwise, the use
of current drugs is hard to prevent the appearance of fibrosis and
stricture recurrence (27). Therefore, it is a great challenge to
understand the development of intestinal fibrosis and explore
effective therapeutic and diagnostic methods that could finally
help ease patients’ care challenges.
MECHANISM OF INTESTINAL FIBROSIS

Role of MMPs and TIMPs
Intestinal fibrosis followed by chronic and recurrent
inflammation leads to deposition of extracellular matrix (ECM)
in the mucosa, including collagen and fibronectin. The
accumulation of ECM can be regulated by one pair of proteins,
matrix metalloproteinases (MMP) and their inhibitors, tissue
inhibitors metalloproteinases (TIMP) (28). MMPs regulate
fibrosis by degrading the ECM that is normally deposited as
the tissue renews. However, MMPs’ function is tightly regulated
by TIMPs, which inhibit MMP activity in a 1:1 ratio. Fibrotic
tissue resected from IBD patients and pre-clinical models of
intestinal fibrosis shows altered expression of MMP-2, MMP-3,
MMP-8, MMP-9, and TIMP-1 to varying degrees (28, 29).
However, MMPs and TIMPs are also increased in inflamed
intestinal tissue and it remains unclear how their expression is
altered in inflamed relative to fibrotic tissue (30).

The Role of TGF-b Signaling
Transforming growth factor-b (TGF-b) plays an important role
in inflammation, cell proliferation, and cancer. There are three
subtypes of TGF-b; TGF-b1, TGF-b2, and TGF-b3. It is known
to activate downstream mediators like Smad2, Smad3, and
Smad7 to play a positive or negative regulatory role. In vivo, it
does not only regulate proliferation to maintain homeostasis but
also promotes the development of cancer and fibrosis (31). A
clinical trial showed that the application of anti-TGF-b is able to
reduce fibronectin and high molecular weight type IV collagen
production (32). The use of TNFa antagonists can decrease the
occurrence of fibrosis on patients after irradiating through lower
TGF-b (33). Moreover, an earlier study proved that urinary
TGF-b is a potential marker and predictor of hepatocellular
carcinoma (HCC) (34).

As a central cytokine in the development of intestinal fibrosis,
TGF-b can play a role as an upstream molecule to activate
downstream signaling pathways. TGF-b binds receptors to
Frontiers in Immunology | www.frontiersin.org 3
activate the sphingosine kinase 1/sphingosine-1-phosphate/
mammalian target of rapamycin (SPHK1/S1P/mTOR) pathway
and accelerates the production of pro-fibrotic molecules, which
finally contribute to the occurrence of intestinal fibrosis (35). The
TGF-b/Smad signaling pathway is seen as a vital signaling
pathway in the development of fibrosis in a number of organs.
This pathway can regulate myofibroblast proliferation, fibroblast
transition to myofibroblast, and the process of epithelial-to-
mesenchymal transition (EMT). In addition to the canonical
TGF-b/Smad signaling pathway, TGF-b can activate other
signaling pathways, including extracellular regulated protein
kinases (ERK) signaling pathway, Phosphatidylinositol-3-
kinase/protein kinase B (PI3K/AKT) signaling pathway, and
WNT signaling pathway Figure 2.

In addition to its target on cells through signaling pathways,
TGF-b seems to associate with other physiological changes in
intestinal fibrosis. Reactive oxygen species (ROS) can lead to the
development of intestinal fibrosis on the account of TGF-b
dependency. NF-E2-Related Factor 2 (Nrf2) is a nuclear
transcription factor that plays a role in defending against
oxidative stress in cells. A study found that Nrf2 could
suppress intestinal fibrosis in vivo and in vitro. In that study,
TNBS-induced-fibrosis mice were given Nrf2 agonist, which
resulted in a reduced degree of fibrosis compared with the no
agonist group. Similarly, the application of siNrf2 inhibited the
differentiation of TGF-b-induced CCD18Co cells (36).

Due to its critical role in the development of fibrosis, TGF-b
targeted inhibition has been seen as a worth considering therapy
approach in intestinal fibrosis. In exploring this option,
peroxisome proliferator-activated receptor g (PPARg), which is
a member of ligand-activated transcription factors of the nuclear
hormone receptor superfamily and involved in many diseases
including inflammation has been tested. The result showed that
PPARg regulator GED-0507-34 Levo could ameliorate
inflammation-related fibrosis in the colon. Oral gavage of the
TGF-b inhibitor daily in DSS fibrotic mice effectively decreased
the expression offibrosis markers in the colon. Similarly, in vitro,
GED could inhibit the differentiation of myofibroblasts under the
stimulation of TGF-b, hence repressing the process of EMT of
HT29, a type of colon epithelial cells, and the expression of
fibrosis marker in human primary fibroblast (37).

The Contribution of Immune Cells
and Their Cytokines
T Cells
T cells are one of the most important immune cells in IBD.
Studies showed T cells can regulate fibrosis in different tissues
Table 1. The regulatory mechanism of T cells in intestinal cells
has not been well documented. Several pieces of research
demonstrate that T cells subsets such as Th1, Th2, Th9, Th17,
Th22, and regulatory T cells (Treg), and their expressed
cytokines could promote the development of intestinal fibrosis.

Th17 is one type of T helper cell that mainly produces
interleukin-17 (IL-17). The IL-17 produced by Th17 cells and
innate lymphoid cells has been confirmed to play an important
role in IBD (58, 59). Recently, researchers found that it also
March 2022 | Volume 13 | Article 835005
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exhibits a crucial function in intestinal fibrosis by contributing to
its pathogenesis. Jian Li and colleagues investigated the level of
profibrotic molecules and collagen in the blood of Balb/c mice
and found that the group treated with anti-IL-17 significantly
decreased the quantity of collagen and expression of pro-
fibrogenic molecules, leading to alleviated intestinal fibrosis
(60). At the same time, as a member of IL-17, IL-17A is found
to increase intestinal epithelial cell-6 (IEC-6) and potentially
induce EMT through reducing E-cadherin expression and
increasing the expression of Vimentin (61). Contrary to these
reports, a study found that Tregs and IL-17 had no important
contributions in regulating the DSS-induced fibrosis model (62).
Most of the studies on the function of IL-17/Th17 have been
conducted using an animal model, which could not completely
imitate the real situation in humans, therefore, more studies are
needed to confirm these observations.

Th2 is another T helper cell that produces IL-4, IL-5. and IL-
13. IL-13 is able to inhibit MMP production, causing elevated
ECM deposition and induced TGF-b function (63). Interleukin-
10 (IL-10) is an anti-inflammation cytokine and has been seen as
a potential and novel target in anti-fibrotic therapies. IL-10 is an
anti-inflammation cytokine and has been seen as a potential and
novel target in anti-fibrotic therapies. IL-10 is first found as the
product of Th2 cells in the process of inhibiting T helper 1 cell
and it has been confirmed to be produced by different immune
cells (macrophage, B cells, dendritic cells, mast cells, and others)
(64). IL-10 plays an important role in inhibiting fibrosis. A study
found that IL-10KO mice treated with IL-10 decreased the
expression of collagen I and TGF-b (65). In addition,
compared with wild-type mice, IL-10 mice showed higher
fibrosis scores under the treatment (66).
Frontiers in Immunology | www.frontiersin.org 4
Tregs are a subset of T cells and secret IL-10 which functions
as an anti-inflammatory agent. Contrary to other subtypes of T
cells, Tregs seem to be activated in the process of anti-fibrosis. A
study found that treatment that induces Tregs could effectively
ameliorate intestinal fibrosis in mice (67).

IL-12 is a product that affects the polarization of naïve T helper
cells to the Th1 phenotype, while IL-23 plays an important role in
stabilizing Th17. It is reported that the administration of p40,
which blocks IL12 and IL 23 in TNBS chronic colitis animals,
could efficiently relieve the deposition of collagen (68). In another
study, the researchers used Th-related cytokine to induce colon
fibroblast and found that the cytokines could up-regulate or down-
regulate pro-fibrotic gene expression (69). This affirms the crucial
role of T cells and related cytokines in the development of
intestinal fibrosis. In addition, apart from the commonly used
chemical damage model, researchers usually use the T cells
transfer model to study T cell-related regulatory factors in
inflammation (70). This model also serves as an appropriate
medium for discussing T cell-related effects on fibrosis.

Macrophages
Macrophages are a critical part of the immune response in IBD.
A recent study showed that macrophage in patients’ blood has
the potential to differentiate IBD patients into different groups
with different phenotypes and may therefore help determine
response to therapy (71). In recent years, several studies have
focused on the role of macrophages in intestinal fibrosis.
Intestinal macrophages keep gut homeostasis through secreting
several cytokines, regulating molecules, and participating in
epithelial proliferation (72). The disorder of macrophage leads
to aberrant repair, abnormal inflammatory mediator and growth
FIGURE 2 | TGF-b activated signaling pathway in intestinal fibrosis. TGF-b promotes fibrosis by regulating related cells through the activation of the canonical Smad
signaling pathway and noncanonical pathway including MAPK and WNT, which contribute to the development of EMT in epithelial cells, the proliferation of
fibroblasts, and transformation of fibroblasts and smooth muscle cells to myofibroblasts. In effect, ECM is overexpressed, resulting in increased collagen deposition.
TGF-b, transforming growth factor b; Smad, drosophila mothers against decapentaplegic; Ras, rat sarcoma; MEK, methyl ethyl ketone; ERK, extracellular regulated
protein kinases; GSK3b, glycogen synthase kinase3b.
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factor production, and altered communication between
macrophages and fibroblasts, epithelial cells, and endothelial
cells, finally promoting the progression of fibrosis (73).
Macrophages are divided into M1 macrophages and M2
macrophages. In the inflammatory environment, M1 releases
pro-inflammatory cytokines while M2 releases IL-10 and TGF-b,
which inhibit inflammation (74). Although M2 macrophages
have anti-inflammatory properties, it does not mean that they
automatically play an anti-fibrotic role. Both M1 and M2
macrophages are involved in the occurrence and development
of fibrosis (75). Notwithstanding, the different macrophage
phenotypes play different roles in fibrosis. Pedro Salvador and
colleagues found that CD16+ macrophages are increased in the
mucosa of CD patients and were mediated by signal transducer
and activator of transcription-6 (STAT6), where the deficiency of
STAT6 elevated the population of CD16+ macrophages (76).
There are relatively few studies on the role of macrophages in
intestinal fibrosis, providing a research gap to be explored in
the future.

Mast Cells
Mast cells (MCs) are innate immune cells capable of responding to
different stimuli. They are fundamental elements of the intestinal
barrier as they regulate epithelial function and integrity, modulate
both innate and adaptive mucosal immunity, and maintain neuro-
immune interactions, which are closely linked to the functioning
of the gut (77–79). Although the role of MCs, which are members
of the sentinel immune cell population, remains largely unknown
in intestinal fibrosis, there are reports of a large influx of MCs into
the muscularis externa of the small intestine in fibrosis (80), and
the promotion of intestinal fibrosis after the breakdown of the
mucosal barrier (81).

The role of MCs in intestinal inflammation appears to own two
sides, i.e., anti-inflammation and inflammation. On the anti-
inflammation side, a study showed that MCs alleviate colitis and
(82) protect against intestinal barrier injury in IL-10 deficient
mouse models. Similarly, the infiltration of MCs in the intestine
tissue is especially increasedat theDSS-inducedexperimental colitis
remission phase and deficiency of MCs could lead to failed tissue
repair (83). On the contrary, other studies have demonstrated the
inflammatory property, reporting that MCs accelerate the
development of intestinal inflammation. For example, Musheng
Li and colleagues examinedMCs-derived exosomes, which showed
that exosomal miR-223 from humanmast cells-1 (HMCs-1) could
destroy intestinal epithelial function through inhibiting the
expression of CLDN8 (Claudin 8) in epithelial cells (84). These
findings implicate that MCs may have a more important role in
chronic inflammation, even in fibrosis development (85).

MCs are confirmed to play a significant role in tissue fibrosis of
several organs, including liver, lung, pulmonary, and atrial (86, 87).
MCs also regulate fibrosis in Chronic Graft-Versus-Host Disease.
Interestingly, MCs seem to show contradictory effects in different
conditions fromdifferent researches. Some studies report thatwhen
fibrosis starts in the tissue, the MCs increase and are activated, as
shown by degranulation and secretion of cytokines including TGF-
b and other tryptases, which accelerate the ECM production and
promote the progression offibrosis (88). Bin Liu and colleagues also
Frontiers in Immunology | www.frontiersin.org 5
documented the elevated presence of MCs in fibrotic intestinal
tissues, and MCs affected the development of fibrosis with the
release of tryptase. Unfortunately, researchers in this area are not
rich and await further exploration (89).

EMT, EndoMT, and Intestinal Fibrosis
EMT is an important pathophysiological process in the
occurrence and development of many conditions, including
intestinal fibrosis and cancer initiation, invasion, and
metastasis (90). EMT is an important hallmark of intestinal
fibrogenesis through which epithelial cells lose their polarity or
their epithelial phenotype and transform into mesenchymal cells
functionally and morphologically (91). EMT-associated
molecules were found in the fibrotic lesion of CD patients (77).
According to Dolores Ortiz-Masiá and colleagues, the process of
EMT is accompanied by fistula development, which is an
abnormal tract between two epithelial cells and is associated
with fibrosis (92). Certain pro-inflammatory cytokines such as
IL-17A have been shown to possess profibrotic properties as they
are associated with fibrosis of multiple organs including the
intestine. IL-17A is found to participate in the initiation and
development of intestinal fibrosis through inducing EMT (61).

Other mechanisms involved in EMT induction that leads to
intestinal fibrosis include toll-like receptor 4 (TLR4) and succinate
stimulation. The absence of the TLR4 gene attenuated chronic
inflammation and colonic macrophages infiltration and
suppressed intestinal fibrosis and collagen deposition. Moreover,
suppression of TLR4 transcription affected myofibroblasts’
activity, collagen synthesis, and EMT in CCD-18Co cells, a
human cancer cell line (93). In another study, succinate and its
receptor UCNR1 were up-regulated around CD-fistulas and
activated WNT signaling-mediated EMT in intestinal epithelial
cells (92). In addition to studies of EMT in intestinal fibrosis in cell
lines and animal models, manner-organoid, a novel 3D model in
colon studies has been shown to be more specific than animal
models and more complex than cell models. In this model,
Soojung Hahn and colleagues used TGF-b or TNF-a to
stimulate the organoid colon model and the result showed a
combination of the two cytokines could effectively promote the
expression of mesenchymal markers like N-cadherin and fibrotic-
related factors including a-SMA (94).

In recent years, in addition to EMT, endothelial-to-
mesenchymal transition (EndoMT) has also been reported as a
novel mechanism in fibrosis, where transcription factors involved
in the transformation process were confirmed in both inflamed
human and murine intestine (95, 96). Moreover, EndoMT has
been detected in experimental colonic fibrosis of Tie2- green
fluorescent protein (GFP) reporter-expressing mice (97).

Involvement of the Gut Microbiome in
Intestinal Fibrosis
The gut microbiome influences health and disease. Changes in the
composition of the gut microflora, immune system, or intestinal
barrier function can upset the host-microbiome interaction and
lead to inflammation and fibrosis (98). For instance, adherent-
invasiveEscherichia. coli (AIEC), a typeof gut bacteria, is confirmed
to be involved in IBD, especially CD (99, 100). A study discovered
March 2022 | Volume 13 | Article 835005
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that AIEC could colonize the intestine when acute inflammation
occurs, leading to fibrosis via increased expression of ST2 -the
receptor of IL-33, under the mediation of Flagellin (101). The
microbial infection triggers a disorder of the immune
microenvironment, where the persistent infection of AIEC leads
to an active T-helper 17 response and increases the fibrotic growth
factors (102). Tumor necrosis factor-like cytokine 1A (TL1A,
TNFSF15) is associated with IBD, regulating the location and
severity of intestinal inflammation and fibrosis. TL1A production
is elevated in the inflamed gutmucosa, is linkedwith fibrostenosing
CD, and is well dependent on the gut microbiome. The authors
showed that pro-fibrotic and inflammatory phenotype resulting
from TL1A-upregulation was abrogated in the absence of resident
microbiota (8).

Salmonella enterica serovar Typhimurium also plays a key role
in intestinal fibrogenesis. Katrin Ehrhardt and colleagues found
that mice develop intestinal fibrosis under persistent infection with
Salmonella enterica serovar Typhimurium through inducing
protease expression in macrophages and epithelial cells (103).
Microbial products such as cell wall components can be directly
pro-fibrogenic, while the administration of fecal material or
anaerobic bacteria into autologous animals could also trigger
intestinal fibrosis (98). Generally, the CD is associated with
shifts in the composition of the enteric microbiota, with overall
reduced bacteria diversity and significantly depleted abundance of
the phyla Firmicutes and Bacteroidetes, while Proteobacteria and
Actinobacteria increase (104).

However, the gut microbe does not only contribute to the
induction but also the prevention of intestinal fibrosis. The gut
microbe and related proteins can protect the intestine from
fibrotic injury. For example, a study found heat-shock-protein
56 (HSP56) secreted by invasive Lactococcus lactis can reduce
the severity of fibrosis (105).

When the microbiome leads to dysregulation of the immune
response, the immune and non-immune cells sense the
pathogen-associated molecular patterns (PAMPs) from
microbe with the help of pattern recognition receptors (PRRs),
which consists of TLRs and Nod-like receptors (NLRs). MyD88
is an adaptor molecule that helps all TLRs except TLR3 to release
signals, hence, several researchers believe that MyD88 may have
a role in intestinal fibrosis. Shuai Zhao and colleagues confirmed
that intestinal fibrosis improves when the gene of MyD88 in a-
SMA positive cells is deleted (106). However, an earlier study
from C. Lutz et al. indicated that MyD88 shows no or little effect
in intestinal fibrosis (107). As a member of TLRs, TLR4 is
reported to participate in intestinal fibrosis. Studies show that
intestinal fibrosis and the deposition of collagen are suppressed
under the silence of the TLR4 gene in vivo and in vitro (93).

Autophagy and Intestinal Fibrosis
Autophagy is an evolutionarily conserved important process for the
turnover of intracellular substances in eukaryotes with cytoplasmic
cargo transferring to the lysosome and degradation (108).
Autophagy is considered to be widely involved in various
conditions such as intestinal fibrosis (109), cancer (110), kidney
diseases (111), and pulmonary diseases (112).In intestinal epithelial
cells of IBD subjects, autophagy could regulate programmed cell
Frontiers in Immunology | www.frontiersin.org 6
death and limit the development of colitis (113). At the same time,
autophagy functions in regulating inflammatory cytokines, such as
IL-1b (114). Under physiological conditions, the system of cellular
adaptation permits the intestinal mucosa to maintain the gut barrier
function and avoids excessive immune response to non-self-
antigens from commensal microbes or dietary origin (115, 116).
Interestingly, autophagy inhibits the pathogenic immune response
to dietary antigens in cystic fibrosis, an inherited disorder that
causes severe damage to the digestive system, lungs, and other
organs (115).

A study confirmed that autophagy played an important role in
regulating intestinal fibrosis in mice, where the administration of
autophagy inhibitor, resulted in the appearance of intestinal
fibrosis, implicating autophagy as a protective mechanism
against fibrosis generation (64). Moreover, autophagy is reported
to increase in the mice colitis model, which helps to ease
inflammation (3). In another study, the antifibrotic effects of
curcumin were demonstrated via its alleviation of IL-6-induced
endothelial-to-mesenchymal transition through promoting
autophagy in allografted organs and human umbilical vein
endothelial cells (HUVECs) (117). However, it is reported that
autophagy in immune cells could induce an immune response that
finally aggravates fibrosis. The autophagy in CX3Cr1+
mononuclear phagocytes could up-regulate IL-23/IL-22 axis (15).

The Link of the Renin-Angiotensin System
(RAS) to Intestinal Fibrosis
The renin-angiotensin system (RAS) is widely present in various
parts of the body including blood vessels, kidneys, and heart, and
is an important regulatory system for several disease conditions.
Recent researches confirm that the renin-angiotensin-
aldosterone system (RAAS) interacts with the TGF-b pathway,
participating in fibrosis development by regulating cells and
cytokines. Further exploration revealed that different pathways
of RAAS may lead to different outcomes; while some molecules
prevent fibrosis, others promote it (118).

Other studies show that the imbalance of RAS induces
inflammation and fibrosis in the colon. For example, a recent
study by Garg et.al., reported that Ang (1-7) reduced the
proliferation of myofibroblasts and secretion of collagen, whereas
Ang II promoted these events. When the quantity of RAS
components in IBD patients was compared with healthy people,
circulating renin and alternative RAS components were high in IBD
patients. Interestingly, patients with CD had reduced the
requirement of hospitalization and surgery after treatment with
RAS blockers (119). These findings indicate that drugs targeting the
RAS, besides being antihypertensive, also possess antifibrotic and
anti-inflammatory properties and could offer an inexpensive
alternative to control inflammation and fibrosis in the gut.

The Role of Non-Coding RNAs in Fibrosis
In recent studies, the importance of non-coding RNAs (ncRNAs)
stands out in fibrotic diseases in that ncRNAs exhibit a remarkable
variety of biological functions in modulating fibrogenic responses.
The participation of ncRNAs in intestinal fibrogenesis makes them
potential therapeutic targets and diagnostic biomarkers in the
management of intestinal fibrosis (120). The overexpression of
March 2022 | Volume 13 | Article 835005
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certain microRNA(miRNAs) can inhibit the development of
fibrosis. For instance, studies on MiR-200 in intestinal fibrosis
show down-regulated expression of miR-200 family in intestine
tissue from CD patients (121, 122). Moreover, treatment of IEC-6
with micro-vesicles carrying miR-200b induced by TGF-b
prevented the process of EMT and alleviated fibrosis (123). In
radiation-induced intestinal fibrosis, lncRNA WWC2-AS1
functions as a competing endogenous RNA in the regulation of
FGF2 expression via sponging miR-16. The resultant inhibition of
FGF2 function, prevents intestinal cell proliferation, migration,
invasion, and fibrosis (124). Contrary to these observations, other
studies have reported thefibrosis-promoting effects of ncRNAs. For
example, it isdocumented that themiR-29 family enhances collagen
deposition (125).

In addition to the intestine, several studies have demonstrated
ncRNAs to participate in the fibrotic diseases of multiple organs
including liver diseases, myocardial fibrosis, and renal fibrosis. The
ncRNAs involved in fibrotic diseases mainly consist of miRNAs,
long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs).
ncRNAs modulate the function of mesenchymal cells,
inflammatory cascades, ECM, and microbiota via mechanisms of
endogenous RNA competition, RNA transcription regulation,
protein sponges, and translation regulation (126, 127).

miRNA occupy advantages in the future for early non-
invasive diagnosis. Using serum from healthy people and CD
patients, an earlier study found miR-19 to have lower expression
in the serum of CD patients (23).
PRESENT TREATMENT OPTIONS FOR
INTESTINAL FIBROSIS AND STRICTURE

A variety of drugs and standardized treatment guidelines are
available for IBD, and these measures are confirmed to be
Frontiers in Immunology | www.frontiersin.org 7
effective to relieve inflammation in IBD. However, no anti-fibrotic
drug is currently approved, although some present popular anti-
inflammation drugs appear effective against fibrosis. When IBD
patients develop severe intestinal fibrosis and stricture, the first
treatment choice is surgery. However, surgery does not always
resolve fibrosis, thus, it persists and continues to develop, and new
stricturesmayappear (128).Therefore, theobservation that someof
the anti-inflammatory drugs can alleviate fibrosis and stricture to a
certain extent, is crucial. Table 2 shows the present treatment
measures in IBD-associated fibrosis and stricture in addition to
surgery for resection. Although these current therapeutic options
can alleviate the suffering of patients to a certain degree, the
preventive rate is low, and surgical methods also have a high or
low recurrence rate. This provides grounds to seek more effective
treatment options.

MSCs were discovered in the past few years and quickly
became a research hotspot in curative and regenerative medicine,
with an outstanding performance in tissue regeneration.
Considering the admirable therapeutic prospects of MSCs, its
application in intestinal fibrosis offers hope for future treatment.
THERAPEUTIC PROSPECTS OF MSCS IN
INTESTINAL FIBROSIS

Characteristics of MSCs
MSCs, which possess great self-renewal and multilineage
differentiation potential, have been certified to have a great
therapeutic effect, including tissue regeneration. Relying on
their low antigenicity, MSCs are an expectant hope as a
potential therapy in the future. In addition to their wonderful
self-renewal and multilineage differentiation abilities, MSCs also
possess multipotency with osteogenic, chondrogenic, and
adipogenic potentials. All MSCs express similar surface
TABLE 1 | Function of T cells subsets in different fibrosis.

Immune cells Organ Effects in fibrosis References

Th1 cells Lung Anti-fibrotic (38)
Heart Pro-fibrotic (39, 40)
Liver Anti-fibrotic (41)

Th2 cells Skin Pro-fibrotic (42)
Liver Pro-fibrotic (41, 43)
Kidney Pro-fibrotic (44)
Biliary Pro-fibrotic (45)

Th9 cells Liver Pro-fibrotic (46)
Th17 cells Liver Pro-fibrotic (41)

Lung Pro-fibrotic (38)
Heart Pro-fibrotic (47)

Th22 cells Liver Anti-fibrotic (48)
Treg cells Lung Anti-fibrotic (49)

Lung Pro-fibrotic (50)
Kidney Pro-fibrotic (51)

Cytotoxic T Cell Lung Pro-fibrotic (52)
Kidney Anti-fibrotic (53)
Thyroid Pro-fibrotic (54)

NKT cells Liver Anti-fibrotic (55)
Liver Pro-fibrotic (56)
Heart Anti-fibrotic (57)
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markers such as a cluster of differentiation CD73, CD90, and
CD105 and lack the expression of CD14, CD34, CD45, and
human leukocyte antigen-DR (HLA-DR) (142).

Since the discovery of MSCs from bone marrow in 1968, a
variety of sources have also been confirmed to produce MSCs,
like adipose tissue (143), human umbilical cord (144), Wharton’s
Jelly (145), placenta (146), among others. These MSCs have been
confirmed to have therapeutic potential in both experimental
and clinical settings among many diseases including IBD,
cardiovascular conditions, Parkinson’s disease, osteoarthritis,
diabetes, neurological conditions, wounds, and malignancies
(147). Some of the most classic cases of the application of
MSCs include certain clinically intractable diseases such as
spinal cord injury (148), autoimmune diseases (149), and liver
diseases (150). MSCs function not only in tissue regeneration but
also in drug delivery. They serve as anti-cancer drug delivery
vehicles by loading nanoparticles to be delivered to the tumor
microenvironment, producing high transport efficiency (151).

The study of MSCs in IBD has been extensively explored,
where MSCs actively ease IBD. For example, umbilical cord
MSCs (ucMSCs) are commonly used in disease treatment and
their transplantation (from Kunming mice and humans) can
effectively protect mice from intestinal injury (152). In addition,
ucMSCs can also attenuate colitis through regulating immune
cells and associated cytokines. For instance, ucMSCs attenuate
IBD by releasing miR148b-5p to inhibit the expression of 15-lox-
1 in macrophages (153) and by inhibiting ERK phosphorylation
in neutrophils (154). Moreover, clinical trials of MSCs performed
on luminal IBD have been proven effective (155). However, there
are limitations as the safety and stability data are not absolute,
and the effective result is also accompanied by side effects (156).
Meanwhile, the number of patients participating in such trials
remains small, thus, larger trials are needed in the future.

Exosomes that are secreted by MSCs constitute the classical
functional mechanism behind the therapeutic properties of MSCs.
Asasubtypeof extracellularvesicles (EVs), exosomesare lipidvesicles
secreted by cells into extracellular space. The other types of EVs are
Frontiers in Immunology | www.frontiersin.org 8
micro-vesicles (MVs)and apoptotic bodies (157). Exosomes are
typically 30–150 nm in diameter and recognized through electron
microscopy, NTA, and surface markers such as CD9, CD81, and
HSP70. Exosomes are secretedbynearly all cells andhave been found
in plasma, urine, semen, saliva, bronchial fluid, cerebral spinal fluid
(CSF), breastmilk, serum, amnioticfluid, synovialfluid, tears, lymph,
etc (158). They carry different molecules including proteins, nucleic
acid, and lipid, which influence their function. When exosomes are
transferred to recipient cells, they influence the phenotype of
recipient cells, therefore, exosomes are recognized as an important
medium for cell-to-cell commutation (159). In the therapeutic
application in IBD, exosomal proteins, RNAs, and lipids capably
modulate IBD microenvironmental components such as cytokines,
chemokines, immune cells, the gut microbiota, and the intestinal
mucosal barrier, as part of the mechanism to repair damage and
restore intestinal mucosal functions as extensively reviewed by
Ocansey et al. (160).

Compared toMSCs, exosomes derived fromMSCs or other cells
appear to have more desirable unique structural, compositional,
and morphological characteristics as well as predominant
physiochemical stability and biocompatibility properties,
producing enhanced injury repair and disease resolution in
animal models (161). The regulatory effect of exosomes in IBD
has been extensively investigated in recent years, where MSCs-
derived exosomes alleviate colitis through targeting immune cells
such as macrophages (162), T cells (163, 164), and neutrophils
(154). Exosomes from immune cells, such asmacrophages, can also
attenuate DSS-induced colitis (165). It is worth noting that EVs
from food sources including bovine milk are confirmed to alleviate
CD by regulating the immune environment and microbiota (166).
This suggests that EVsderived frommaterials that are easy toobtain
could serve as a more practical and useful research direction.

MSCs Therapy in Intestinal Fibrosis in IBD
Currently, available research on the function and mechanism of
MSCs in intestinal fibrosis is severely minimal. However, the few
available studies largely present a goodprospect ofMSCs therapy in
TABLE 2 | Present treatments in IBD-associated fibrosis.

Type Treatment
route

Effect Reference

Drugs Mesalazine Oral Lower endoscopic postoperative recurrences in Mesalazine group compared with placebo groups (129)
Azathioprine Oral 49% of patients are free of rehospitalization in 36 mouths (130)
Infliximab Intravenous

injection
No development of new small bowel stenosis; Part of stenosis completely regressed (27, 131–

134)
Adalimumab Subcutaneous

injection
Effectively prevent the occurrence of small bowel stenosis; keep patients being free of surgery (135, 136)

Vedolizumab Intravenous
injection

The patient remains in clinical and endoscopic remission without need for surgical treatment. (137)

Thiopurines Oral Early use is associated with preventing surgery and the development of fibrostenosis (138)
Surgery Endoscopic

stricturotomy
(ESt)

Endoscopic Offers comparable surgery-free survival; Avoids a surgical resection for a stricture at a previous ileocolonic
anastomosis (ICA); Appears to be effective in treating short ICA strictures with no pre-stenotic proximal dilation
in CD patients

(139)

Stenting Endoscopic Effective treatment for strictures relapse; High technical success rate; Risk of adherence of the stent to the
mucus membrane of the bowel, perforation, and spontaneous distal migration of the stent

(140)

Endoscopic
balloon dilation
(EBD)

Endoscopic Complete through gastrointestinal endoscopy; Reduce the need for surgery for resection (141)
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intestinal fibrosis, a potential opportunity for both preventing and
treatingfibrogenesisFigure 3. For example, Lei Lian and colleagues
found that bonemarrow-derivedMSCs reduced fibrotic associated
activities such as collagen deposition and EMT in the TNBS-
induced colitis mice model (167). In another study of colorectal
fibrosis, MSCs mediated the downregulation of fibrogenesis via
controlling ECM turnover. Further investigation revealed that
MSCs induced a decreased expression of profibrotic genes and
proteins by releasing hepatocyte growth factor (HGF) and tumor
necrosis factor-stimulated gene 6 (TSG-6) (168). The anti-fibrotic
effects of MSCs through the release of HGF are reported in other
tissue injuries including liver fibrosis (169). and lung fibrosis (170).

Both allogeneic and autologousMSCs transplantation is safe and
consequently represents a treatment option for fibrosing diseases,
fistulizing colitis likeCD, and refractory connective tissue diseases, as
they are non-immunogenic (171, 172). Moreover, systemic
administration of MSCs for the treatment of refractory irradiation-
induced colitis was safe and effective on pain, diarrhea, hemorrhage,
inflammation, and fistulization accompanied by regulation of the
lymphocyte subsets towards an elevated Tregs cell and a reduction of
activated effector T cells (173, 174). A study revealed that both i.v.
infusion and i.m. injunction of MSCs after anal sphincter injury in
rats resulted inamarkeddecrease infibrosis and scar tissue compared
with PBS-treated groups (175).

The EVs derived fromMSCs affect the development of intestinal
fibrosis through their cargoes, including proteins and RNAs. A
study by Jia Yang and colleagues demonstrated that micro-vesicles
containing miR-200b attenuate colitis-associated fibrosis by
preventing EMT (27). A recent study of experimental CD
examined the effect of MSCs engineered to overexpress hypoxia-
inducible factor 1-alpha and telomerase (MSC-T-HIF) and
conditioned with pro-inflammatory stimuli to release EVs
(EVMSC-T-HIFC) on fibrosis and inflammatory response of
Frontiers in Immunology | www.frontiersin.org 9
activated endothelium. The authors found that in addition to
dampening inflammation, the EVMSC-T-HIFC prevented
myofibroblast differentiation of TGF-b-treated fibroblasts (176).
In a similar study, paracrine factors derived from MSCs were
shown to protect against lung fibrosis in terms of fibrotic scores,
collagen deposition, inflammation, and cell apoptosis (177). It is also
exciting that MSC treatment is confirmed to be effective and safe in
a clinical trial on idiopathic pulmonary fibrosis patients (178). The
administration of culture supernatant ofMSCs significantly reduced
the degree of luminal stricture in the rectum and attenuated
myofibroblast activation and hypertrophy of the muscularis
propria in pigs (179). In clinical trial, autologous bone marrow-
derived MSCs was confirmed to control the inflammation in IBD,
especially in inhibiting TNF-a production (171). In a phase 2 study,
administration of allogeneic MSCs reduced CD activity index and
CD endoscopic index of severity scores in patients with luminal CD
refractory to biologic therapy (180). Although these clinical trials did
not examine fibrotic proliferation and stenosis, the results provide
an important proof-of-principal and intention of follow-up research
on fibrosis, considering the relationship between inflammation
and fibrosis.

In addition, an anal fistula is a common complication of CD
which mainly occurs around the anal rather than intestinal lumen.
However, the development of the fistula is closely related tofibrosis.
Studies show that MSCs are an optional treatment for fistula.
Allogeneic adipose-derived MSCs can reduce the occurrence of
fistula in CD patients (181). Moreover, injection of autologous
adipose-derived MSCs is safe and could completely heal 57% of
patients with fistulas and reduce secretion in part of remaining
patients (182). Furthermore, allogeneic and autologous adipose-
derived MSCs have shown advantageous results for fistula
treatment in long-term clinical trials, and are proven to be safe
(183, 184).
FIGURE 3 | The regulatory effect of MSCs in the progression of fibrosis in IBD. MSCs regulate intestinal fibrosis. MSCs regulate cells in the process of fibrosis by
producing cytokines and growth factors or by secreting EVs. MSCs inhibit the proliferation and activation of pro-fibrotic immune cells, like Th17 cells, Th2 cells, M1
macrophages, and mast cells, and promote the production of M2 macrophages and Tregs which inhibit fibrosis. In addition, MSCs inhibit the EMT process and the
production of myofibroblasts. EVs, extracellular vesicles; Th, T helper; Treg, Regulatory cells.
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As expected of every research field, the hope of MSCs and
related EVs therapy in intestinal fibrosis is to translate the
outcome into clinical application. Although some clues have
been shown regarding the possibility of MSCs application in
intestinal fibrosis, the evidence is far from enough. There is still a
long way to go for laboratory research to transform into clinical
applications, as several questions remain unanswered and
mechanisms largely unclear.

Concerning other challenges in this field of study, previous
research on fibrosis used different animal models, usually mice or
rats, which are confronted with many limitations. For better
experimental outcomes and subsequent clinical application, there
is theneed tousemodels closer to thedetails of thedisease. Intestinal
organoids have beenwidely used in intestinal research recently and
have also been reported in the research of intestinal fibrosis (94). As
amore three-dimensional andmore specific experimentalmodel, it
can also be used in future research.

The Function of MSCs in Other
Tissue Fibrosis
Liver Fibrosis
Liver fibrosis which is triggered by viral or metabolic chronic
liver diseases is one of the common fibrosis in the clinical setting
and has the risk of transition to cancer (185). Due to the
admirable effect of MSCs on other diseases, researchers have
set to explore the function of liver fibrosis. Concerning immune
cells, macrophage has been proven to play a significant role in the
progression of liver fibrosis. Xiao-Yu Luo et al. reported that the
transplanted BM-MSC can increase the M2/M1 macrophage
ratio through migrating to injury liver location, and the action,
in turn, affects hepatic stellate cells (HSCs) apoptosis (186).
Ly6Chi/lo macrophages are two different types of macrophages
in the liver. Ly6Chi is highly inflammatory and fibrotic while
Ly6Clo could alternatively decrease liver inflammation and
fibrosis through secreting certain cytokines. A study confirmed
Frontiers in Immunology | www.frontiersin.org 10
that BM-MSCs ameliorate liver fibrosis by regulating Ly6Chi/
Ly6Clo conversion and preventing Ly6Chi recruitment (187).
Apart from macrophage, MSCs also promote liver regeneration
through regulating neutrophils (188) and T cells (189). The
cross-talk between MSCs and Tregs is crucially important for
the attenuation of acute liver injury.

Engineered MSC possesses an enhanced regulatory effect in
inhibiting and reversing liver fibrosis. IC-2 engineered BM-MSC
was proven to have the potential to relieve liver fibrosis (190).
Just as indicated earlier, MSCs functionally alleviate liver fibrosis
by producing cytokines or factors, directly acting on target cells,
and secreting EVs. Earlier research shows that BM-MSC-derived
exosomes could potently relieve fibrotic change in the CCI4 rat
model and protect the function of the liver. It is worth noting
that many comparative studies report that the effect of BM-MSC
exosomes is better than BM-MSC itself (191). Li yang Dong and
colleagues confirmed that hucMSC-EV was able to effectively
ameliorate liver fibrosis in rat models by inhibiting HSC
activation (192). In CCI4 rat models, EVs from amnion-
derived MSCs were also capable of targeting HSCs activation
to relieve liver fibrosis (193). In recent research, the authors
combined MSCs with Kampo medicine Juzentaihoto (JTT),
which is dried and powdered from 10 crude drugs, and used it
for liver fibrosis therapy in animal models. The results showed
that the combination therapy attenuated liver fibrosis by the JTT
increasing the CD4+/CD8+ratio while MSCs promoted the
transition of inflammatory macrophages to anti-inflammatory
macrophages (194).

Kidney Fibrosis
Kidney fibrosis is the final outcome in the progression of certain
kidney diseases, especially chronic kidney diseases (CKD). Recent
reports show that hucMSCs effectively ameliorate renal fibrosis in
DN rats, including decreasing fibrotic molecules expression and
restoring tissue integrity. Meanwhile, hucMSCs would depress
FIGURE 4 | MSCs studies on different tissue fibrosis in recent 5 years. Using the keywords “fibrosis” and “mesenchymal stem cells”, as well as specific organs, a
search was conducted on the PubMed online library. Results were restricted to studies published from 2017 to 2021.
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TGF-b expression, which has been widely confirmed to be a key
cytokine in tissue fibrosis and secret anti-fibrotic molecule in the
tubular epithelial cells (195). Another research reported that the
transplantation of BM-MSCs induced anti-fibrotic events in rats by
decreasing collagen production and myofibroblast accumulation.
Besides, BM-MSCs could also regulate non-coding RNAs, such as
miRNAs to influence downstreamproteins for easingfibrosis (196).

Pulmonary Fibrosis
Pulmonary fibrosis is a type of lung chronic diseases complication,
with a high global incidence. Studies show that the incidence of
pulmonary fibrosis in Europe and North America is estimated to
range between 2.8 and 18 cases per 100000 people per year (196).
However, the major health and safety incidents- the epidemic of
COVID-19pushed it tobecomeamoremeaningful need forfinding
anti-fibrotic therapy (197). In experimental models, MSCs can act
on immune cells to regulate lung fibrosis. In a clinical trial,
idiopathic pulmonary fibrosis patients who received doses of
allogeneic MSCs showed greater performance in lung function
examinations compared with patients with placebo (178). In
addition, MSCs-EVs have also shown positive implications in
lung fibrosis. Studies show EVs from human BM-MSCs could
prevent andalleviatepulmonaryfibrosisbychanging thephenotype
of monocyte (198). Regardless, MSCs may have a profibrogenic
function. As a type of stem cell which owns multilineage
differentiation, MSCs might have the chance to differentiate to
myofibroblast under certain stimuli on the process of fibrosis
prevention and therapy. For example, a study found that BM-
MSC could accelerate lung fibrosis through a transform to
myofibroblast (199). This calls for more investigations in
establishing a stable condition in which MSCs and their secretory
products could induce and sustain anti-fibrotic effect to a period
necessary to produce the desired outcome.
Frontiers in Immunology | www.frontiersin.org 11
Apart from the three tissues above, MSCs could have a
profibrogenic function in other tissues. Figure 4 shows MSCs-
related studiesondifferent tissues in recent5years, from2017to2021.
CONCLUSION

Intestinal fibrosis has a high incidence rate in the course of IBD
and there is no ideal treatment solution currently. Fortunately,
studies have confirmed that MSCs and their secretory products
such as exosomes can alleviate fibrosis by inhibiting the EMT
process and reducing collagen deposition. Although studies on
MSCs application in intestinal fibrosis in IBD are woefully low,
by considering the promising role of MSCs in collective studies
on fibrosis of organs, we have reasons to believe that it can also
play an effective role in intestinal fibrosis. The mechanisms
involved still need further exploration.
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