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Background. Cardiac sympathetic dysfunction is closely associated with cardiac mortality
in patients with chronic heart failure (CHF). We analyzed the ability of machine learning
incorporating 123I-metaiodobenzylguanidine (MIBG) to differentially predict risk of life-
threatening arrhythmic events (ArE) and heart failure death (HFD).

Methods and Results. A model was created based on patients with documented 2-year
outcomes of CHF (n = 526; age, 66 ± 14 years). Classifiers were trained using 13 variables
including age, gender, NYHA functional class, left ventricular ejection fraction and planar 123I-
MIBG heart-to-mediastinum ratio (HMR). ArE comprised arrhythmic death and appropriate
therapy with an implantable cardioverter defibrillator. The probability of ArE and HFD at 2
years was separately calculated based on appropriate classifiers. The probability of HFD sig-
nificantly increased as HMR decreased when any variables were combined. However, the
probability of arrhythmic events was maximal when HMR was intermediate (1.5-2.0 for
patients with NYHA class III). Actual rates of ArE were 3% (10/379) and 18% (27/147) in
patients at low- (£ 11%) and high- (> 11%) risk of developing ArE (P < .0001), respectively,
whereas those of HFD were 2% (6/328) and 49% (98/198) in patients at low-(£ 15%) and high-
(> 15%) risk of HFD (P < .0001).

Conclusion. A risk model based on machine learning using clinical variables and 123I-
MIBG differentially predicted ArE and HFD as causes of cardiac death. (J Nucl Cardiol
2022;29:190–201.)
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Abbreviations
ArE Arrhythmic event

BNP b-Type natriuretic peptide

CHF Chronic heart failure

CRT-D Cardiac resynchronization therapy with

defibrillator

HFD Heart failure death

HMR Heart-to-mediastinum ratio

ICD Implantable cardioverter defibrillator

LVEF Left ventricular ejection fraction

MIBG Metaiodobenzylguanidine

NT-

ProBNP

N-terminal proBNP

NYHA New York Heart Association

INTRODUCTION

Chronic heart failure (CHF) has become a major

public health burden associated with aging of the global

population.1 Despite significant prognostic improve-

ments due to recent pharmacological therapies and

cardiac devices, morbidity and mortality rates remain

high; nearly 50% of patients with CHF do not survive

beyond 5 years after diagnosis. The conventional prog-

nostic biomarkers of CHF include New York Heart

Association (NYHA) functional class, left ventricular

ejection fraction (LVEF), blood b-type natriuretic pep-

tide (BNP) or N-terminal proBNP (NT-ProBNP), and

influential comorbidities such as diabetes, chronic kid-

ney disease and hypertension.2,3 Nevertheless, a

significant number of patients with CHF cannot benefit

from contemporary therapeutic strategies because of

exclusion criteria based on current guidelines of heart

failure management, cardiac device therapies, or no or

minimal responses to therapies. The causes of cardiac

death in patients with CHF have been consolidated into

progressive pump failure or sudden (arrhythmic) death.

Moreover, current guidelines and studies indicate a need

to improve risk stratification models for selecting risk-

based prophylactic or therapeutic strategies.

Changes in cardiac sympathetic function and inner-

vation assessed by 123I-metaiodobenzylguanidine

(MIBG) activity comprise prognostic biomarkers for

patients with CHF when combined with conventional

clinical parameters. Several studies including multicen-

ter investigations have shown that 123I-MIBG has

powerful ability to predict cardiac mortality risk due to

sudden cardiac or pump failure death.4-7 Some short- or

long-term mortality risk models have been created by

combining clinical parameters with cardiac 123I-MIBG

activity.8,9 We recently validated the significant prog-

nostic value of a risk model to differentiate low- and

high-risk populations among a series of patients with

CHF.10 However, the models could not separate cardiac

death due to end-stage heart failure (HFD) and life-

threatening arrhythmic events/sudden death (ArE).11

The appropriate management of patients with CHF

depending on risk of HFD or ArE is of paramount

importance, and implantable cardioverter defibrillators

(ICD) and cardiac resynchronization therapy (CRT) for

patients at high risk of ArE and HFD, respectively, seem

reasonable risk-based therapeutic interventions.

This study was designed to establish a means of

differentiating the probabilities of cardiac death due to

ArE and HFD using a machine learning-based classifier

combined with clinical and 123I-MIBG parameters, and

to evaluate relationship between 123I-MIBG activity and

events depending on clinical variables. The diagnostic

accuracy of the classifier was also determined using

training and validation databases that were built based

on a cohort of Japanese patients with CHF.

METHODS

This study included 526 patients with CHF who had been

consecutively assessed by 123I-MIBG imaging at one of four

participating hospitals. The patients who had completed

follow-up of at least 2 years when lethal cardiac events were

not documented within the initial 2 years, were retrospectively

selected from the patient medical records. The mean follow-up

interval was 30 ± 20 months. Cardiac 123I-MIBG studies

proceeded between 2005 and 2016, when the patients were

clinically stable. No patients had lethal acute myocardial

infarction for 2 years. In addition, due to the small number of

non-cardiac death events, they were excluded from the

statistical analysis so that this study could focus on discrim-

inating ArE and HFD risks. Standard optimal medical care for

CHF continued at each hospital after 123I-MIBG imaging. We

analyzed patient data only when at least 2-year outcomes were

confirmed. Among the patients, 77% and 23% had NYHA

functional classes I-II and III-IV, respectively, and a mean

LVEF of 38% ± 14% determined by two-dimensional

echocardiography or gated myocardial perfusion scintigraphy

(Table 1).

123I-MIBG Study

Patients were injected with 111 MBq of 123I-MIBG

(FUJIFILM Toyama Chemical Co. Ltd., Tokyo, Japan), then

anterior planar scintigrams were acquired 15-30 minutes (early

phase) and 3-4 hours (late phase) later at the participating

institutions. Standard acquisition protocol was used for 123I-

MIBG imaging12,13; 256 9 256-matrix anterior images using a

dual-detector SPECT, and energy centered at 159 keV with a

20% window. Cardiac 123I-MIBG activity was assessed at each

hospital by drawing cardiac and upper mediastinal regions,

then calculating heart-to-mediastinum average count ratios

(HMR) of 123I-MIBG.13 Since low-energy high-resolution,

See related editorial, pp. 202–203
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low-energy general-purpose, and low-medium-energy collima-

tors were used in four hospitals, we standardized the HMR to

medium-energy, general-purpose collimator conditions to

adjust for differences among collimators using a phantom-

based correction method.14,15 The 123I-MIBG washout rate was

calculated using the formula: (early HMR - late HMR)/early

HMR.16

Biomarkers

Blood BNP or NT-ProBNP was measured at the partic-

ipating hospitals. Data were acquired from clinically

stable patients around the time of the 123I-MIBG study.

Because both BNP and NT-ProBNP data were included, these

biomarkers were categorically classified for assessment as

grades 0, 1, 2, 3 and 4; as follows: BNP\ 40, 40-99, 100-199,

200-560 and[ 560 pg�mL-1, respectively, and NT-

ProBNP\ 125, 125-399, 400-899, 900-4800 and[ 4,800

pg�mL-1, respectively.17,18 Grades 0-3 were based on guide-

lines, and the highest (grade 4) threshold values were

determined by analyzing receiver-operating characteristics

(ROC) curves.10

Definitions of Cardiac Events

The primary endpoint of this study was cardiac death due

to end-stage heart failure and arrhythmic or sudden cardiac

death, which were recorded in the medical records. Sudden

cardiac death was defined as witnessed cardiac arrest and death

within 1 hour of onset of acute symptoms or unexpected death

in patients known to have been well within the previous 24

hours. Appropriate therapies against life-threatening arrhyth-

mic events including ICD discharge and/or anti-arrhythmic

pacing, were also included as ArE for patients under therapy

with an ICD or a CRT device with a defibrillator (CRT-D).

Table 1. Demographics of patients with heart failure

Mean ± SD
(%)

ROC AUC
Model
test, P

Selection
for modelArE HFD Surviving

Number of patients (n) 526 37 105 384

Age (years) 66 ± 14 0.53 0.66 0.62 \ .0001 Yes

Male (%) 72% .049 Yes

NYHA class I/II/III/IV (%) 53/24/18/4% 0.57 0.83 0.79 \ .0001 Yes

Estimated glomerular filtration rate

(mL�min-1/1.73 m2)

49 ± 29 0.57 0.63 0.63 \ .0001 Yes

Left ventricular ejection fraction (%) 38 ± 14% 0.53 0.60 0.59 .0017 Yes

Hemoglobin (g�dL-1) 12 ± 3 0.54 0.63 0.60 .0004 Yes
123I-MIBG variables

Early HMR* 1.90 ± 0.43 0.59 0.73 0.69 \ .0001 No

Late HMR* 1.73 ± 0.42 0.57 0.77 0.73 \ .0001 Yes

Washout rate 8.6 ± 9.6% 0.56 0.61 0.60 .0029 Yes

BNP and NT-ProBNP categories 0–4 (%) 4/10/13/43/

30%

0.59 0.73 0.65 \ .0001 Yes

Hemodialysis (%) 14% .035 Yes

Ischemic etiology (%) 37% .077 Yes

Hypertension (%) 53% .015 Yes

Diabetes (%) 40% \ .0001 Yes

Dyslipidemia (%) 35% .65 No

Medications No

Beta blocker (%) 85% No

Angiotensin converting enzyme inhibitor

and/or Angiotensin II receptor blocker

(%)

70% No

Diuretics (%) 68% No

2-year mortality risk (statistical model)19 12.2 ± 10.9% 0.60 0.86 0.81 \ .0001 No

ArE, Arrhythmic event; BNP, b-type natriuretic peptide; HFD, heart failure death; HMR, heart-to-mediastinum ratio; NT-ProBNP, N-
terminal proBNP; ROC-AUC, receiver-operating characteristic analysis-area under the curve
*Standardized to medium-energy general-purpose collimator condition.14
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Ethics Approval

The Ethics Committees at Kanazawa University and at

each participating hospital approved this multicenter study.

The need for written informed consent from each patient was

waived because of the retrospective nature of this study.

Statistical 2-Year Mortality Risk Model

We described a statistical four-variable model to assess

cardiac death risk in which age, NYHA functional classes I-II

or III-IV, 123I-MIBG HMR and LVEF were combined.19 The

calculated mortality rates (%) at 2 years included HFD, sudden

cardiac/arrhythmic death and fatal acute myocardial infarction.

Machine Learning and Modeling of Event
Probability

The following 13 variables were selected by ROC

analysis: cardiac 123I-MIBG indices (late HMR and washout

rate), age, NYHA functional class, estimated glomerular

filtration rate (eGFR), LVEF, hemoglobin and BNP/NT-

ProBNP grade (Table 1). Gender and influencing states such

as hemodialysis, ischemic etiology, hypertension, and diabetes

mellitus were also included as potential risk factors for events

associated with heart failure. The output data comprised three

classes of events of HFD, ArE and none (survived). Although

various training methods with several optimization strategies

were available, we examined areas under ROC curves (AUC)

Figure 1. Receiver operating characteristics (ROC) curves of fourfold cross-validation using
various machine learning methods.
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derived from 75% of the patients for training and used the

remaining 25% for validation (fourfold cross-validation). As a

result, 105 patients with HFD were divided into 78-79 and 26-

27 patients for training and validation datasets, and 37 ArE

patients into 27-28 and 9-10 patients, respectively. The AUC

for logistic regression, support vector machine, gradient

boosted trees, random forests, nearest neighbors, and naı̈ve

Bayes classifiers are shown in Figure 1. We compared the

results of AUC between training and test datasets to avoid the

possibility of overfitting. Since the AUC for ArE was best for

logistic regression with appropriate regularization, we applied

this method to the probability calculation formula for all data.

Probability curves were plotted for the 123I-MIBG HMR

because we calculated the probability that HFD, ArE and no

events would occur for each patient using the classifier

function. We evaluated the performance of the probability

calculation using calibration plots of estimated vs. actual

probability. Machine learning was based on Mathematica

version 12 (Wolfram Research Inc., Champaign, IL. USA).

Statistical Analysis

Variables are expressed as means ± standard deviation

(SD). Mean values between groups were compared using

analyses of variance (ANOVA). Pairs of groups were com-

pared using t tests and contingency analyses, respectively, with

Pearson statistics for continuous and categorical variables. The

accuracy of the model was determined by calculating the AUC

of the dataset. Optimal cutoff values for groups with and

without events were determined using the greatest true positive

plus true negative rates. Values with P\ .05 and P C .05 were

considered significant and non-significant (n. s.), respectively.

All data were analyzed using the SAS statistical package JMP

version 12 (SAS Institute, Cary, NC, USA).

RESULTS

During a 2-year followup, 137 (26%) patients

succumbed to cardiac death (HFD, n = 105 [20%];

ArE, n = 32 [6%]). Forty-one patients used an ICD or

CRT-D and 12 received appropriate therapy. Arrhyth-

mic events including sudden cardiac death and

appropriate ICD/CRT-D therapy occurred in 37 (7%)

of 526 patients. Figure 2 shows the probability curves

for HFD, ArE and their combination (total cardiac

events) relative to HMR on 123I-MIBG images as one

patient with specific clinical variables that can be

selected depending on the characteristics of individual

patients, including age, gender, eGFR, NYHA func-

tional class, LVEF, BNP category and 123I-MIBG

variables.

A comparison of prognostic variables between ArE

and HFD (Table 2) showed that patients with HFD were

older, had lower HMR, lower hemoglobin, and a higher

prevalence of diabetes and hypertension than those with

ArE. The rate of actual ArE events was higher in patents

with NYHA functional class I-II. Likewise, BNP/NT

ProBNP grades were significantly higher in patients with

HFD than ArE. The probabilities of ArE and HFD were

also estimated better compared with the conventional

statistical model for 2-year cardiac mortality.

Figure 2. Probability of heart failure death (HFD), arrhythmic events (ArE), survival (no events)
against 123I-MIBG heart-to-mediastinum ratio (HMR). The probabilities were calculated by a three-
category classifier. Selected conditions of the variables are shown in blue.

194 Nakajima et al Journal of Nuclear Cardiology�
Machine learning-based risk model using 123I-metaiodobenzylguanidine January/February 2022



We fixed the remaining variables to each mean

value to determine the effects of a single variable on the

probability of ArE and HFD. The probability of HFD

significantly increased in relation to NYHA functional

class but inversely decreased with increasing 123I-MIBG

HMR (Figure 3A). In contrast, the probability of ArE

was the highest at the intermediate range of MIBG

HMR, (1.5-2.0 for patients with NYHA class III),

showing a bell-shaped probability curve (Figure 3B).

The peak of ArE probability curves notably shifted

rightwards in parallel with an increase in NYHA

functional class. The ratio of ArE to HFD increased

proportionally with MIBG HMR in each NYHA cate-

gory (Figure 4). The increasing trend of ArE probability

was more evident when NYHA functional class

decreased.

The probability of HFD increased inversely with
123I-MIBG HMR among elderly patients, whereas

younger patients tended to have a greater probability

of ArE at an MIBG HMR range\ 1.6 (Figure 5A).

Compared with females, male patients had a greater

prevalence of cardiac mortality due to both HFD and

ArE (Figure 5B). When LVEF was categorized as 20%,

35% and 50%, the effect of LVEF was small, and 123I-

MIBG HMR was much more closely associated with the

probability of cardiac death (Figure 5C). A higher BNP

grade increased the probability of HFD but decreased

that of ArE (Figure 5D).

The AUC of the logistic regression-based ROC

curves used for these probability calculations were 0.88,

0.92 and 0.80 for all events, HFD and ArE, respectively.

Calibration plots showed that the classifier was unbi-

ased, or calibrated well, for estimated probability

(Figure 6).

The optimal cutoff probability with the highest sum

of sensitivity and specificity in each cardiac death mode

was 15% for HFD and 11% for ArE. At an HFD cutoff

of 15%, actual event rates were 2% (6/328) for the low-

risk category with B 15% probability and 49% (98/198)

for the high-risk category with a probability C 15%

Table 2. Comparison between groups with arrhythmic events and heart failure death

Variables
Fatal arrhythmic events

(n = 37)
Heart failure death

(n = 104) P

Continuous

Age (years) 64.7 ± 14.6 72.4 ± 9.8 .0005

LVEF (%) 36 ± 14 34 ± 13 .57

eGFR (mL�min-1/1.73 m2) 42.9 ± 23.3 39.5 ± 28.7 .51
123I-MIBG early HMR 1.86 ± 0.38 1.64 ± 0.34 .0014
123I-MIBG late HMR 1.66 ± 0.34 1.45 ± 0.30 .0005
123I-MIBG washout rate (%) 10.2 ± 9.8 11.2 ± 8.7 .58

Hemoglobin (g�dL-1) 12.6 ± 2.2 11.6 ± 2.2 .014

Probability of all events (%/ 2 y) 39.5 ± 29.4 63.5 ± 26.7 \ .0001

Probability of HFD (%/2 y) 23.5 ± 22.8 54.4 ± 26.1 \ .0001

Probability of ArE (%/2 y) 16.6 ± 8.6 9.8 ± 7.1 \ .0001

ArE/HFD probability ratio 2.8 ± 5.9 0.38 ± 0.62 \ .0001

Statistical model of 2-year mortality

risk (%)19
13.5 ± 2.2 24.8 ± 14.1 \ .0001

Categorical

Sex (male) 78% 80% .85

NYHA class I/II/III/IV (%) 41/30/24/5% 6/37/44/13% \ .0001

BNP/NT-ProBNP groups 0/1/2/3/4

(%)

3/13/22/46/16% 1/2/3/34/60% \ .0001

Hemodialysis (%) 11% 22% .13

Ischemic etiology (%) 27% 45% .053

Hypertension (%) 16% 84% .014

Diabetes (%) 8% 42% .0002

ArE, Arrhythmic event; BNP, b-type natriuretic peptide; eGFR, estimated glomerular filtration rate; heart failure death; HMR, heart-
to-mediastinum ratio; LVEF, left ventricular ejection fraction; NT-ProBNP, N-terminal proBNP
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(P\ .0001). At an ArE cutoff of 11%, the actual event

rates were 3% (10/379) for the low-risk category

with B 11% probability and 18% (27/147) for the

high-risk category with a probability[ 11%

(P\ .0001). Figure 7 demonstrates combinations of

high and low probabilities for HFD and ArE and actual

incidence of HFD and ArE documented during the

follow-up. The patients with high HFD[ 15% and

ArE[ 11% showed respectively high HFD and ArE

events, whereas patients with a low probability of

HFD B 15% and ArE B 11% showed very low event

rate (P\ .0001).

DISCUSSION

We differentiated risk for HFD and serious arrhyth-

mic events using a multicenter database of CHF, 123I-

MIBG and a machine learning-based classifier.

Although conventional statistical models can predict

cardiac mortality risk using 123I-MIBG, risk for ArE and

HFD could not be clearly separated.8,9,19 The machine

learning-based approach was effective in the face of

multifactorial prediction models.

Machine Learning

The machine learning approach is becoming more

prevalent within the medical community, particularly

within the domain of cardiovascular diseases and cardiac

imaging.20 This approach can also be applied together

with conventional statistical methods to analyze non-

imaging clinical databases. For example, the diagnostic

ability of a machine learning algorithm combined with

automated perfusion quantitation software and clinical

variables was comparable to or better than that of

experts in terms of nuclear cardiology diagnoses.21

When an artificial neural network analysis was used for

myocardial perfusion imaging to identify ischemia and/

or infarction, the diagnostic accuracy was more effective

than conventional defect scoring using dedicated nuclear

cardiology software.22 Moreover, machine learning

could be applied to predict major adverse cardiac events

when combined with both clinical and imaging data

Figure 3. Probability of heart failure death and arrhythmic events vs 123I-MIBG heart-to-
mediastinum ratio (HMR) in patients with NYHA classes I to IV. Dotted line: Decreased reliability
because no patients with NYHA class IV had HMR[ 2.5.

Figure 4. Fraction of arrhythmic event (ArE) probability
divided by heart failure death (HFD) probability in patients
with NYHA classes I, II, III, and IV vs 123I-MIBG heart-to-
mediastinum ratio (HMR).
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Figure 5. Probabilities of heart failure death and arrhythmic events plotted against 123I-MIBG
heart-to-mediastinum ratio (HMR) in patients aged 40, 60 and 80 years (A), male and female (B)
patients with different LVEF (C) and BNP category (D).

Figure 6. Calibration plots for all events (A), heart failure death (B) and arrhythmic events (C).
Number of patients in each bin and actual number of events shown at bottom.
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variables.23 Various machine learning methods can be

used to obtain appropriate classifier models, and the

optimal method for any purpose can be selected.

Univariate and multivariate analyses are usually

applied in conventional statistical analysis, and variables

with good probability (usually P\ .05) can be selected.

We selected age, gender, NYHA class, LVEF and 123I-

MIBG HMR to create models that could predict 2- or 5-

year cardiac death.8,19 However, ArE was impossible to

predict, because no single variable was useful.

Another viewpoint is how the combined effects of

variables on target events could be analyzed. Even when

each variable is insignificant in terms of event predic-

tion, combined morbidities such as diabetes, chronic

kidney disease and hypertension might synergistically

increase event risk. Such collective effects could be

more easily simulated by machine learning-based mod-

els, because they are better suited to finding nonlinear

relationship between inputs and outputs.

Since the present study aimed to create a classifier

function to evaluate associations between 123I-MIBG

HMR and event rates, we selected relatively simple

logistic sigmoid regression, which provided stable prob-

ability curves. We also tested a neural network approach

in a preliminary evaluation, but it was liable to result in

overfitting during training and thus it was not used to

prepare the classifier in the present study.

Risk of Heart Failure Death and Arrhythmic
Events

Characteristics curves of relationships differed

when the probabilities of HFD and ArE were plotted

against HMR. The ADMIRE-HF study using the mul-

tivariate Cox proportional hazards model identified

LVEF, BNP and 123I-MIBG defect scores as predictors

of time to an arrhythmic event and related an interme-

diate reduction in 123I-MIBG activity to a higher

likelihood of arrhythmic events.9 Five-year follow-up

by ADMIRE-HF showed that patients with preserved

sympathetic innervation (123I-MIBG HMR[ 1.60) were

at significantly lower risk of cardiac death, arrhythmic

events, sudden cardiac death, or potentially life-threat-

ening arrhythmias, but whether these risks were evident

at intermediate HMR was not documented.24,25 Euro-

pean multicenter studies of patients with prophylactic

ICD implantation independently associated late HMR

with combined endpoints such as appropriate ICD

therapy, progression of heart failure, and cardiac death,

and found that ICD therapy was appropriate in the

intermediate HMR range.26,27

Our machine learning-based modeling showed that

risk for ArE was the highest at the intermediate range of

HMR in association with NYHA class. The peak of the

bell-shaped curve for ArE probability vs HMR shifted

rightwards with increasing NYHA class. Since

Figure 7. Patients with high and low probabilities of HFD and ArE, and actual incidence of HFD
and ArE in each group. Estimated probability groups are as follows: HFD[ 15% and ArE B 11%
(A), ArE[ 11% and HFD B 15% (B), both HFD[ 15% and ArE[ 11% (C), and HFD B 15%
and ArE B 11% (D).
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ADMIRE-HF and European studies enrolled only

patients with NYHA functional classes II and III, the

characteristics of this bell-shaped correlation was only

partly evident.7,26,27 In contrast, the probability of ArE

consistently increased relative to a decrease in cardiac
123I-MIBG HMR in patients with NYHA functional

classes I and II.

The increased risk of ArE at intermediate 123I-

MIBG can be explained by the arrhythmogenicity of the

injured/denervated but viable myocardium. An imbal-

ance between preserved myocardial perfusion and

impaired sympathetic innervation is the most likely

pathophysiological cause of serious arrhythmias. A

regional mismatch between myocardial perfusion and
123I-MIBG uptake is associated with ventricular arrhyth-

mias, and large 123I-MIBG defects are significantly

related to more appropriate ICD therapy.28 Such a

mismatch might indicate that deranged metabolic activ-

ity and/or denervated hypersensitivity are responsible

for serious arrhythmias in the injured, but viable

myocardium. In contrast, advanced pathophysiology

with absolute denervation and total necrosis or fibrosis

might be less arrhythmogenic, thus blunting the corre-

lation between ArE risk and cardiac 123I-MIBG activity.

Patients with advanced heart failure are far more likely

to experience progressive heart failure leading to pump

failure death rather than arrhythmic events at a relatively

earlier stage of the clinical course. Thus, in contrast to

the consistent correlation between the likelihood of HFD

and cardiac 123I-MIBG activity (HMR), ArE risk was

less likely at a low HMR range of cardiac 123I-MIBG

activity.

Clinical Implications

Patients with CHF at increased risk for fatal cardiac

events need an effective prophylactic strategy. The

potential value of 123I-MIBG for predicting a need for

ICD has also been evaluated.28-33 For this purpose, the

accurate identification of responsible cardiac risks and of

which is the most involved in the mode of cardiac death

of individual patients with CHF is critical. The present

study showed that ArE was more likely to develop in

younger patients with less severe heart failure and

moderately reduced 123I-MIBGactivity, whereas HFD

was more frequent in older patients with a worse NYHA

class, comorbidities and far less 123I-MIBG activity.

Besides information about cardiac sympathetic nerve

function, these features were similar to the clinical

observations of the ESC-Failure Pilot study.2 In this

study, sudden cardiac death was more prevalent among

younger male patients with a better NYHA functional

class. In contrast, pump failure death was more

prevalent among older patients who had more symp-

toms, a worse NYHA class and/or non-cardiac

comorbidities.

Although multiple factors are involved in the

development of fatal outcomes, cardiac sympathetic

innervation assessed by neuroimaging tracers has the

potential to identify patients at increased risk of sudden/

arrhythmic death who are likely to benefit the most from

appropriate ICD treatment.34 Several 123I-MIBG studies

have identified a significant incremental prognostic

value of 123I-MIBG together with clinical information

for the overall cardiac mortality of patients at low and

high risk.10,19,35 Based on current indication criteria for

ICD and CRT, a significant number of ICD devices are

unlikely to deliver appropriate therapy during the

lifetimes of patients, and about one-third of patients

under CRT will succumb to cardiac death while under

treatment with ineffective devices.36 Device-related

issues and unrequited medical costs for such patients

can reduce the cost-effectiveness of device therapy,

indicating the need to establish more appropriate iden-

tification of those who are most likely to benefit from it

in a cost-effective fashion.

Positron tracers such as 11C-hydroxyephedrine

(HED)37 and 18F-labeled norepinephrine transporter

(LMI1195)38 have superior image quality and quantita-

tive accuracy to single-photon 123I tracers. In ischemic

cardiomyopathy the potential utility of 11C-HED to

identify patients most likely benefit from ICD therapy

has been investigated (PARAPET study). Whether these

new radiotracers have roles in risk stratification in

conjunction with machine learning needs to be

evaluated.

LIMITATIONS

This study used a CHF database that were retro-

spectively created by combining medical charts from

four hospitals. Cutoffs for risk stratification of ArE can

be influenced by the database used for machine learning.

Inclusion of acute myocardial infarction, which was not

included in this database, may enhance the clinical

applicability in CHF patients. However, although MIBG

studies may be indicated in patients with CHF, it is not

usually indicated to those who have high likelihood of

acute myocardial infarction in clinical practice. A

prospective cohort study using more accurate clinical

information and outcomes is desirable to improve the

predictive accuracy of the risk model. The low (7%)

event rate of ArE might have been insufficient for

clinically reliable analysis, indicating a need for a larger

and more long-term cohort study to develop a high-

performance risk model. Finally, a prospective inter-

ventional study is required to establish not only the
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clinical implications of machine learning-based risk

assessment, but also risk-based therapeutic strategies.

NEW KNOWLEDGE GAINED

Based on machine learning, the likelihood of death

from heart failure and fatal arrhythmic events can be

arbitrarily simulated by the probability function, and

relationship between 123I-MIBG HMR and fatal events

can be estimated. The probability of fatal arrhythmic

events was separately determined for the first time.

CONCLUSION

We differentiated serious arrhythmias from end-

stage heart failure as adverse cardiac event risks using a

machine learning-based prognostic model created using

variables that included cardiac 123I-MIBG activity,

LVEF, NYHA class, age, gender, and other clinical

variables. Our findings revealed differences in the

probabilities of these two modes of cardiac death as

well as in the pathophysiology of lethal cardiac events in

chronic heart failure. Therefore, this information should

contribute to more precise selection of prophylactic

strategies tailored to the risk status of individual

patients.
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