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ABSTRACT

10 Rta is a transcription factor encoded by BRLF1 of
the Epstein–Barr virus (EBV). This factor is expressed
during the immediate-early stage of the lytic cycle
to activate the genes required for EBV lytic develop-
ment. Although transcription activation by Rta is

15 frequently associated with the binding of Rta to the
Rta-response element (RRE) in promoters, Rta some-
times activates promoters without an RRE. Here we
show that Rta interacts with an Sp1-interacting pro-
tein, MBD1-containing chromatin-associated factor 1

20 (MCAF1). This interaction is critical to the forma-
tion of an Sp1–MCAF1–Rta complex at Sp1 sites.
Therefore, following lytic induction and the expres-
sion ofRta,Rta increasesSp1-mediated transcription.
The genes that are thus activated include p16, p21,

25 SNRPN and BRLF1. However, the binding of Rta
to RRE prevents the interaction between Rta and
MCAF1; therefore, transcription activation by RRE
depends only on Rta, and not on MCAF1 or Sp1.
Furthermore, this study finds that MCAF1 promotes

30 the expression of Rta and Zta from EBV, indicating
that MCAF1 participates EBV lytic activation. Our
study documents the critical role of Rta in regulat-
ing the transcription of the genes that are mediated
by Sp1.

35 INTRODUCTION

Rta, encoded by BRLF1, is a transcription factor expressed by
Epstein–Barr virus (EBV) during the immediate-early stage
of the lytic cycle. This factor often cooperates with another
EBV immediate-early protein, Zta, to activate synergistic-

40 ally the transcription of EBV lytic genes (1–3). These two
immediate-early proteins are crucial to EBV lytic activation

because mutants that do not produce either one of these
two proteins do not produce infectious EBV particles (4).
Earlier studies have established that Rta frequently activates

45transcription by binding to a 17 bp cis sequence, the Rta-
response element (RRE) (5). The EBV genes that are activated
in this way include BMRF1, BHRF1, BHLF1 and BMLF1
(2,3,6–9). However, Rta also activates the transcription of
BRLF1, BZLF1, BALF5 and BNLF1 of EBV, which lack

50an RRE in their promoter (10–13). Although exactly how Rta
activates these promoters is unclear, an earlier work demon-
strated that the Sp1 sites in the BRLF1 promoter (Rp) are
critical to the activation by Rta (10). However, Rta does
not appear to interact directly with Sp1 to activate the

55transcription (10).
MBD1-containing chromatin-associated factor 1 (MCAF1),

a human homolog of murine ATFa-associated modulator, is a
transcription factor of 1270 amino acids with a transcriptional
repression activity (14). MCAF1 enhances SETDB1/ESET-

60mediated histone H3 methylation (15) to promote the forma-
tion of heterochromatin domains (16). MCAF1 also interacts
with MBD1 and Sp1 (14). The interaction between MCAF1
and MBD1 is crucial to MBD1-dependent transcriptional
repression (14); when it binds to MBD1, MCAF1 forms a

65repressive complex with MBD1 to prevent transcription from
a methylated promoter (14). However, when binding to Sp1,
MCAF1 becomes a coactivator to enhance Sp1-mediated tran-
scription (14). This work finds that Rta interacts with MCAF1,
which facilitates the formation of an Sp1–MCAF1–Rta

70complex on the Sp1-binding site to autoregulate the transcrip-
tion of BRLF1 and regulate the host genes in EBV-infected
cells.

MATERIALS AND METHODS

Cell lines and EBV lytic induction

75P3HR1 cells were cultured in RPMI 1640 medium that con-
tained 10% fetal calf serum (FCS). 293T and 293 cells were
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cultured in DMEM supplemented with 10% FCS. P3HR1 cells
were treated with 3 ng/ml of 12-O-tetradecanoylphobol-
13-acetate (TPA) and 3 mM sodium butyrate to activate the
EBV lytic cycle (17). Maxi-EBV is a laboratory-constructed

5 EBV strain that contains an F replicon (18).

Plasmids

Plasmid pCMV-R contains BRLF1 transcribed from the
cytomegalovirus (CMV) immediate-early promoter. Plasmids
pcDNA-MCAF1, pHA-Rta, pRRE, pRp-luc, pCMV-

10 R(K213A) and pET-Rta were described elsewhere (17,19).
Plasmid pGEX-4T1, which expresses GST, was purchased
from Amersham Pharmacia Biotech (Hong Kong). The
DNA fragment that encodes p621 (amino acids 650–1270
of MCAF1) was isolated from pcDNA-MCAF1 (14) by

15 HpaI–XhoI digestion and inserted into the SmaI and XhoI
sites to yield plasmid pGST-621. The Sp1 gene was amplified
by PCR, using GST-Sp1 (50-CCGGAATTCATGGATG-
AAATGACAGCTGTG) and Sp1-His (50-ACGCGTCGAC-
AAGCCATTGCCACTGATA) as primers, and plasmid

20 pCMV-Sp1 (20), which was obtained from Guntram Suske,
as a template. The fragment was inserted into the EcoRV and
SalI sites of pET32a or pGEX-4T1 to form plasmid pET-Sp1
or pGST-Sp1, respectively. Plasmid pR-Sp1 was construc-
ted by inserting a double-stranded oligonucleotide that con-

25 tained a sequence that covers the region between �53 and +4
of Rta, into the SmaI site of pGL2-Basic (Promega Corp.,
Madison, WI). In this sequence (50-GTCCCGCCCATGCC-
AGATATCCATAAAAGACCAGTAATCCATGTCAGCCG-
GCCTTT), a ZRE sequence and a nucleotide residue that

30 precedes the sequence was mutated from 50-ATGGCTCA to
50-GATATCCA (Fig. 1). The Sp1 site (50-CCGCCC), the
mutated ZRE sequence and the TATA sequence (5-AT-
AAAA) are underlined. Plasmid pR-mSp1 includes the same
sequence as pR-Sp1, except in that the Sp1 site, 50-CCGCCC,

35 was changed to 50-ATTAAT. R-TATA (50-CATAAAAGAC-
CAGTAATCCATGTCAGCCGGCCTTT), which contains a
sequence from the region from �32 to +4 in Rp, was inserted
into the SmaI site of pGL2-Basic to construct plasmid pTA.
Plasmid pSp1-luc contains four of the six Sp1-binding sites

40 from the promoter of p21 upstream of the firefly luciferase
gene (luc) in pTA. Plasmid pFlag-Rta that expresses full-
length Flag-tagged Rta was constructed by inserting a PCR-
amplified BRLF1 fragment into pCMV-Tag2A (Stratagene) at
the EcoRI and XhoI sites. The same approach was employed to

45 produce deletions in Flag-tagged Rta (Flag-Stu, Flag-HincII,
Flag-HinfI and Flag-EcoRII), which lacked the regions
between amino acids 1 and 190, 1 and 254, 1 and 290, and
1 and 360, respectively. Plasmid pEGFP-MCAF1-N, which
contains the N-terminal 561 amino acids of MCAF1, was

50 constructed by inserting a PCR-amplified fragment into the
HindIII and SmaI sites of pEGFP-C1 (Clontech). Plasmids
pEGFP-MCAF1-D1 and pEGFP-MCAF1-D2 were also con-
structed using the same strategy. An Rta deletion mutant,
HA-RN290 that contains the N-terminal 290 amino acids of

55 Rta was constructed by inserting a PCR fragment into the
EcoRI and XhoI sites of pcDNA3-HA. Plasmid pEGFP-
R255/290, which encodes the region between amino acid
255 and 290 in Rta fused with green fluorescence protein
(GFP), was constructed by inserting a PCR-amplified fragment

60into the EcoRI and SalI sites of pEGFP-C1. Plasmid pp21-luc
was obtained from W.-C. Hung. Plasmids pp16-luc and
pSNRPN-luc have been described elsewhere (14).

Yeast two-hybrid screen

The binding partners of Rta were identified by yeast two-
65hybrid screen with a bait plasmid, pR476, and a human testes

cDNA library, following a method described elsewhere (17).

GST-pull-down assay

GST or GST-p621 at a concentration of 40 ng/ml in 500 ml of
NETN buffer (20 mM Tris–HCl, pH 8.0, 100 mM NaCl, 1 mM

70EDTA and 0.5% NP-40), containing 10 mg/ml each of
leupeptin, aprotinin and 4-(2-aminoethyl)-benzenesulfonyl
fluoride, was added to 30 ml of glutathione–Sepharose 4B
beads (Amersham Pharmacia Biotech). The mixture was
incubated with shaking for 1 h at 4�C. The beads were washed

75three times in NETN buffer and added to a lysate (300 ml)
prepared from Escherichia coli BL21(DE3)(pET-Rta) or
E.coli BL21(DE3)(pET-Sp1). The reaction mixture was
incubated on ice for 1 h. The beads were then washed in
NETN buffer. An equal volume of 2· electrophoresis sample

80buffer was added to the mixture and proteins were extracted
from the beads by heating at 95�C for 5 min. Proteins were
finally separated by SDS–PAGE (21).

Immunoprecipitation

P3HR1 cells (1 · 107) treated with TPA and sodium butyrate
85were washed in phosphate-buffered saline (PBS). Lysate

was prepared using radioimmune precipitation assay (RIPA)
buffer, following a method described elsewhere (17). To the
supernatant, anti-Rta (1:500 dilution) (Argene, Varilhes,
France), anti-MCAF1 antibody (1:500 dilution) (14) or anti-

90Sp1 antibody (1:2000 dilution) (Santa Cruz Biotechnology
Inc., Santa Cruze, CA) was added and incubated at 4�C for
1 h. Protein-A/G agarose beads (30 ml) (Oncogene, Boston,
MA) were added to the lysate and the mixture was incubated
with shaking for 1 h at 4�C. The beads were finally collected

95by centrifugation and washed three times in RIPA buffer.
Proteins that bound to the beads were eluted by adding
20 ml of 2· electrophoresis sample buffer and analyzed by
immunoblotting (IB) with anti-Rta, anti-MCAF1 or anti-Sp1
antibody.

100DNA-affinity precipitation assay (DAPA)

A 50-biotin end-labeled double-stranded probe (Rp64/28)
that contains a sequence from �64 to �28 in Rp (50-ATAT-
TGCGATTGTCCCGCCCATGCCAATGGCTCATAA), was
synthesized by Mission Biotech, Inc. (Taipei, Taiwan). A mut-

105ant probe (mRp28/64), with the same sequence except in that
the Sp1 site was changed from 50-CCGCCC to 50-ATTAAT,
was used as a negative control. In both Rp64/28 and Rpm64/
28, the ZRE in Rp was mutated from 50-TGAGCCA to
50-TGCAGTC (Fig. 1). A biotin-labeled probe that contained

110an RRE sequence (50-CATGTCCCTCTATCATGGCG-
CAGAC) from the BMLF1 promoter was utilized to demon-
strate the binding of Rta to RRE. A cell lysate prepared from
P3HR1 cells treated with TPA/sodium butyrate or 293T cells
transfected with pCMV-R was mixed with 0.2 mg of a biotin-

115labeled probe in a binding buffer that contained 60 mM KCl,
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12 mM HEPES (pH 7.9), 4 mM Tris–HCl, 5% glycerol,
0.5 mM EDTA, 1 mM DTT and 10 mg/ml each of leupeptin,
aprotinin and 4-(2-aminoethyl)-benzenesulfonyl fluoride.
After it was incubated on ice for 45 min, DNA–protein com-

5 plexes were then incubated with 30 ml of Streptavidin
MagneSphere Paramagnetic particles (Promega Corp.),
which were pre-equilibrated in the binding buffer with gentle
shaking for 1 h at 4�C. DNA–protein complexes were
then washed five times in the binding buffer. Next, 2·

10 electrophoresis sample buffer was added to the precipitated
DNA–protein complex and the solution was boiled for 5 min to
dissociate the complexes. Finally, the proteins were resolved
by PAGE and detected by IB.

Chromatin immunoprecipitation (CHIP) assay

15 CHIP assay was performed according to a method described
previously (19). P3HR1 cells (1 · 107) were transfected
with pcDNA-MCAF1, pCMV-R and pR-Sp1 or pR-mSp1.
Formaldehyde-fixed DNA–proteins complex was immuno-
precipitated with anti-Rta, anti-Sp1 or anti-MCAF1 antibody.

20 The presence of Rp fragments in the precipitates was detected
by PCR, using R-TATA1 (50-AAAGGCCGGCTGACATGG-
ATTACTGGTCTTTTATG) and F1 (50-GGTACGTGGAG-
GTTTTAC) as primers. PCR was performed for 28 cycles
under the conditions of 30 s at 94, 51 and 72�C.

25 Immunofluorescence analysis

P3HR1 cells were transfected with pCMV-R. After culturing
for 24 h, cells were harvested by centrifugation; plated on
poly-L-Lysine (Sigma)-coated coverslips, and fixed with 4%
paraformaldehyde in PBS for 30 min. Immunostaining was

30 conducted with anti-Rta monoclonal antibody, rabbit anti-
MCAF1 polyclonal antibody and rabbit anti-Sp1 polyclonal
antibody. The cells were then treated with fluorescein
isothiocyanate-conjugated donkey anti-mouse IgG polyclonal
antibody (KPL Inc., Gaithersburg, MD) or rhodamine-

35 conjugated donkey anti-rabbit IgG polyclonal antibody
(DAKO, Glostrup, Denmark), following a method described
elsewhere (17). Nuclei were visualized by staining with
5 mg/ml of 40-6-diamidino-2-phenylindole (DAPI). Finally,
cells were examined using an Olympus confocal laser-

40 scanning microscope (Model Fluoview 500).

Transient transfection assay

Plasmids (10 mg) were transfected into P3HR1 or 293T cells
by electroporation with a BioRad Gene-Pulser electroporator
(Richmond, CA) (22). Luciferase assay was performed,

45 using a luminometer (model LB593; Berthod, Bad Wildbad,
Germany), according to a method described elsewhere (22).
Each transfection experiment was performed three times and
each sample in each experiment was prepared in duplicate.

RESULTS

50 Interaction among Sp1, p621 and Rta in yeast and in vitro

A yeast two-hybrid screen was performed with pR476, which
encodes the N-terminal 476 amino acids of Rta, to screen
a human testes cDNA library constructed in pACT2. Of the
24 clones that produce a protein interacting with Rta, one

55cDNA clone encoded p621 (23), which interacts with Sp1
and has a sequence identical to that in the C-terminal 621
amino acid region of a 1270 amino acid protein, MCAF1
(14). The interaction between Rta and p621 was further veri-
fied by transforming the plasmid that expresses p621 into the

60yeast strain Y190(pR476). A GST-pull-down assay was then
performed with a bacterially expressed GST–p621 fusion
protein. GST or GST–p621 bound to glutathione–Sepharose
beads were added to the lysate that had been prepared
from P3HR1 cells treated with TPA and sodium butyrate.

65After extensive washing, proteins bound to the beads were
eluted and analyzed by IB with anti-Rta antibody. The results
revealed that Rta in the lysate (Figure 2A, lane 1) was retained
by GST–p621–glutathione–Sepharose (Figure 2A, lane 3) but
not by GST–glutathione–Sepharose beads (Figure 2A, lane 2).

70IB with anti-Sp1 antibody also produced a similar result, indic-
ating that Sp1 in the lysate (Figure 2B, lane 1) was retained by
GST–p621–glutathione–Sepharose (Figure 2B, lane 3) but not
by GST–glutathione–Sepharose beads (Figure 2B, lane 2). In
parallel experiments, MCAF1 in the P3HR1 lysate (Figure 2C,

75lane 1) was retained by GST–Rta- and GST–Sp1- (Figure 2C,
lanes 3 and 4) but not by GST–glutathione–Sepharose beads
(Figure 2C, lane 2). Bacterially expressed His-tagged Sp1,
GST–p621 and His-tagged Rta were mixed to elucidate
whether Sp1 and Rta simultaneously bind to p621. In a reac-

80tion mixture that contained all three proteins, Rta was immuno-
precipitated by anti-Sp1 antibody (Figure 2D, lane 5).
However, Rta was not immunoprecipitated by anti-Sp1 anti-
body when GST–p621 was not added to the binding mixture
(Figure 2D, lane 4). In negative controls, anti-HA antibody,

85which was used as a nonspecific antibody, did not immuno-
precipitate Rta even when GST–621 was present in the reac-
tion mixture (Figure 2D, lanes 2 and 3). Rta did not inhibit
the association of Sp1 with MCAF1, even the addition of
60 mg of Rta in the binding reaction did not influence the

90binding of Sp1 to MCAF1 (Figure 2E).

Coimmunoprecipitation of Sp1, MCAF1 and Rta

293T cells were cotransfected with pCMV-R and pcDNA-
MCAF1. A lysate was subsequently prepared and proteins

Figure 1. Reporter plasmids and the DNA fragments used in this study.
Numbers represent the nucleotide positions in relation to the +1 site of BRLF1.
A Zif268 site, located at �45, is not shown. A ZRE located close to the TATA
box of Rp was mutated. Rp, the BRLF1 promoter; Sp1, Sp1-binding sequence;
ZRE, Zta-response element; TATA, TATA box; 4XSp1: four Sp1 sites in
the p21 promoter.
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in the lysate were immunoprecipitated with anti-Rta and
anti-MCAF1 antibody. IB revealed that Rta was immuno-
precipitated by anti-Rta antibody (Figure 3A, lane 3) and
coimmunoprecipitated with MCAF1 by anti-MCAF1 antibody

5 (Figure 3A, lane 4); MCAF1 was also immunoprecipitated by
anti-MCAF1 antibody (Figure 3A, lane 8) and coimmuno-
precipitated by anti-Rta antibody (Figure 3A, lane 7). Immuno-
blot analysis also showed that Rta was immunoprecipitated by

anti-Rta antibody (Figure 3B, lane 3) and coimmuno-
10precipitated by anti-Sp1 antibody (Figure 3B, lane 4). In

parallel, Sp1 was immunoprecipitated by anti-Sp1 antibody
(Figure 3B, lane 8) and coimmunoprecipitated by anti-Rta
antibody (Figure 3B, lane 7). A similar study was performed
with the lysate from P3HR1 cells that were treated with TPA

15and sodium butyrate (Figure 3, panels C and D). Immunoblot
analysis revealed that Rta was coimmunoprecipitated by

Figure 3. Coimmunoprecipitation of Sp1, MCAF1 and Rta. Anti-Rta and anti-MCAF1 antibody were added to the lysates prepared from 293T cells transfected
with pCMV-R and pcDNA-MCAF1 (A and B) or from P3HR1 cells that were treated with TPA and sodium butyrate (C and D). Proteins in the lysate immuno-
precipitated by the anti-Rta antibody, anti-MCAF1 antibody or anti-Sp1 antibody were analyzed by IB with anti-Rta antibody (A–D, lanes 1–4), anti-MCAF1
antibody (A and C, lanes 5–8) and anti-Sp1 antibody (B and D, lanes 5–8). Reactions involving anti-IgG antibody were used as negative controls.

Figure 2. Interaction among Sp1, p621 and Rta in vitro. GST–p621 was added to the lysate prepared from P3HR1 cells treated with TPA and sodium butyrate.
Proteins bound to GST–p621 were pulled down with glutathione–Sepharose beads (Beads) and analyzed by IB using anti-Rta (A) and anti-Sp1 antibody (B). Parallel
experiments involving GST–Rta (lane 3) and GST–Sp1 (lane 4) were also conducted and IB was performed with anti-MCAF1 antibody (C). Meanwhile, anti-HA
antibody (lanes 2 and 3) and anti-Sp1 antibody (lanes 4 and 5) were added to mixtures containing Sp1, GST–p621 and Rta to determine whether the interaction
between Sp1 and Rta requires p621 (D). Various amounts of Rta were added to binding mixtures that contained Sp1 and GST–p621. Proteins were pulled down using
GST–p621–glutathione–Sepharose beads and analyzed by IB with anti-Sp1 antibody (E). In each part, lane 1 was loaded with cell lysate; in lane 2, proteins were
eluted from GST–glutathione–Sepharose beads.
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anti-MCAF1 antibody (Figure 3C lane 4) and vice versa
(Figure 3C, lane 7). Additionally, Rta was coimmunoprecip-
itated by anti-Sp1 antibody (Figure 3D, lane 3) and vice versa
(Figure 3D, lane 7).

5 Subcellular localization of Rta, MCAF1 and Sp1

Immunofluorescence analysis of P3HR1 cells was performed
with confocal microscopy to locate Sp1, MCAF1 and Rta in
the cell. After transfection with pCMV-R, Rta was detected
in the nucleus and in the cytoplasm (Figure 4B and J). How-

10 ever, MCAF1 and Sp1 were detected only in the nucleus
(Figure 4C, G, K and O). Merged pictures revealed that
MCAF1 (Figure 4D) and Sp1 (Figure 4L) were colocalized
with Rta in the nucleus. Colocalization was not observed,
however, in the cells that had been transfected with an

15 empty vector (Figure 4H and P).

Binding of the Sp1–MCAF1–Rta complex to the Sp1 site

A double-stranded 37 bp biotin-labeled Sp1 probe, Rp64/28
(Figure 1), which contains the sequence in the region between
�64 and �28 of Rp, was added to a lysate prepared from

20 P3HR1 cells treated with TPA and sodium butyrate. Immun-
oblot analysis revealed that Sp1, MCAF1 and Rta were
bound to the probe (Figure 5), but these proteins did not
bind to a mutant probe, Rpm64/28 (Figure 5), whose sequence
is identical to that of Rp64/28, except for a mutated

25 Sp1-binding sequence (Figure 1).

Binding of the Sp1–MCAF1–Rta complex to the
Sp1 sites in vivo

CHIP analysis was performed to demonstrate the binding of
Sp1, MCAF1 and Rta, to the Sp1 site on pR-Sp1 (Figure 6).

30Meanwhile, a parallel experiment was conducted with

Figure 4. Indirect immunofluorescence analysis. P3HR1 cells were transfected with pCMV-R (A–D, I–L) or an empty vector (E–H, M–P). Cells were incubated
with monoclonal anti-Rta antibody (B, F, J and N), rabbit anti-MCAF1 polyclonal antibody (C and G) and rabbit anti-Sp1 polyclonal antibody (K and O).
DAPI staining revealed the positions of the nucleus. Finally, cells were examined using a confocal laser-scanning microscope. D, H, L and P are merged images.

Figure 5. Binding of the Sp1, MCAF1 and Rta to an Sp1-binding site on Rp.
A biotin-labeled double-stranded Sp1 probe (Rp64/28) that contains the
sequence from �64 and �28 of Rp was added to a lysate prepared from
P3HR1 cells treated with TPA and sodium butyrate. A probe with an identical
sequence, except for a mutated Sp1-binding sequence (Rpm64/28), was used
as a negative control. Proteins bound to the probes were captured with strepta-
vidin magnetic beads, extracted and detected by IB with anti-Sp1, anti-MCAF1
and anti-Rta antibodies.

6532 Nucleic Acids Research, 2005, Vol. 33, No. 20



pR-mSp1 whose sequence is identical to that of pR-Sp1,
except in that the Sp1 sequence in Rp was mutated
(Figure 1). P3HR1 cells were cotransfected with pcDNA-
MCAF1, pCMV-R and pR-Sp1. After the cells were treated

5 with formaldehyde to cross-link DNA and proteins, DNA was
isolated, sonicated and immunoprecipitated with anti-Sp1,
anti-MCAF1 and anti-Rta antibody. PCR amplification of
immunoprecipitated DNA with primers that are comple-
mentary to the vector sequences that flank the Rp segment

10 in pR-Sp1 demonstrated that these three antibodies immuno-
precipitated the Rp segment (Figure 6, lanes 3–5). The DNA
fragment was not amplified by PCR if anti-IgG antibody
was utilized to immunoprecipitate DNA (Figure 6, lane 2).
The Rp sequence was undetected when pR-mSp1 was cotrans-

15 fected into the cells (Figure 6, lanes 7–10). In this work,
the ZRE sequence in Rp in both pR-Sp1 and pR-mSp1 was
purposely mutated (Figure 1). Mutating this ZRE sequence
was necessary to detect the binding of Sp1, MCAF1 and
Rta to the Sp1 site by CHIP analysis, because according to

20 our unpublished results, MCAF1 and Rta interact with Zta
and form a complex on ZRE.

Mapping the interaction domains in MCAF1 and Rta

Plasmids that expressed Rta and derivatives of MCAF1 fused
to GFP (Figure 7A) were cotransfected into 293T cells.

25 Immunoblot analysis revealed that a GFP fusion protein,
which contained the region between amino acids 562 and
981 of MCAF1 (GFP-MCAF1-D1), was coimmunoprecipit-
ated with Rta by anti-Rta antibody (Figure 7B, lane 7). How-
ever, GFP alone (Figure 7B, lane 5) and a GFP fusion protein

30 that contained the region from amino acid 1 to 561 (Figure 7B,
lane 6) or from 982 to 1270 (Figure 7B, lane 8) in MCAF1
were not coimmunoprecipitated by anti-Rta antibody. Thus,
the region between amino acid 562 and 981 in MCAF1 inter-
acts with Rta. Additionally, GST–p621, which contains the

35 region between amino acid 650 and 1270 in MCAF1, binds
to Rta (Figure 2), indicating that the region between amino
acid 650 and 981 in MCAF1 interacts with Rta. We performed
a similar study using Flag-tagged Rta, HA-tagged Rta and

GFP–Rta fusion proteins (Figure 7C) to identify the regions
40in Rta that interact with MCAF1. Coimmunoprecipitation

with anti-MCAF1 antibody revealed that full-length Rta
(Figure 7D, lanes 2, 8 and 11), the N-terminal 290 amino
acid region (HA-RN290) (Figure 7D, lane 9), Rta without
the N-terminal 190 amino acids (Figure 7D, lane 3) and

45Rta without the N-terminal 254 amino acids (Figure 7D,
lane 4), interact with MCAF1. Further deleting Rta into the
C-terminal region prevented the proteins from being coim-
munoprecipitated by anti-MCAF1 antibody (Figure 7D,
lanes 5 and 6), indicating that the region between amino

50acids 255 and 290 in Rta interacts with MCAF1. Furthermore,
immunoblot analysis revealed that a faint band, which
migrated to a position slightly higher than that of the 62 kDa
marker, was nonspecifically detected by anti-Rta antibody
(Figure 7D, lanes 5 and 6). To confirm that the 255–290

55amino acid region indeed interacted with MCAF1, a plasmid,
which expresses a protein that contains a GFP sequence in the
N-terminal region fused with the amino acid 255–290 region
of Rta (Figure 7C, lane 12), was transfected into cells. IB with
anti-GFP antibody revealed that anti-MCAF1 antibody coim-

60munoprecipitated the fusion protein with MCAF1 (Figure 7D,
lane 12) but not GFP (Figure 7D, lane 10).

Involvement of MCAF1 in Rta autoregulation

A reporter plasmid, pRp containing a full-length Rp, from
�963 to +5 in BRLF1, was transfected into P3HR1 cells.

65The reporter plasmid exhibited a background level of luci-
ferase activity (Figure 8A). Meanwhile, cotransfecting 1 mg
of pcDNA-MCAF1 had little effect on the transcription of
luc from the reporter plasmid (Figure 8A). However, as expec-
ted, transfecting pCMV-R activated the transcription of

70luc from the reporter plasmid (Figure 8A). Furthermore, trans-
fecting pcDNA-MCAF1 enhanced the transcription of the
luciferase gene activated by Rta in a dose-dependent manner
(Figure 8A). The activity increased to �130, 180 and 300% of
the original value when 1, 3 and 5 mg of pcDNA-MCAF1 were

75cotransfected, respectively (Figure 8A). Similar results were
obtained when another reporter plasmid, pR-Sp1, which
contained the region between �53 and +8 in Rp (Figure 1),
was transfected (Figure 8B). Luciferase activity exhibited by
the reporter plasmid increased to �200% when pCMV-R and

805 mg of pcDNA-MCAF1 were cotransfected into the cells
(Figure 8B). However, although transfecting pCMV-R activ-
ated an RRE-reporter plasmid, pRRE (Figure 8C), cotransfect-
ing pcDNA-MCAF1 did not further increase the transcription
activity in a dose-dependent manner (Figure 8C), indicating

85that MCAF1 cannot increase the activity of Rta on RRE.
Rta also activated an RRE promoter (pRRE) to a level of
�1.5 times that of an Sp1 promoter (pR-Sp1) (Figure 8D),
indicating that Rta activates an Sp1 promoter almost as
efficiently as it does an RRE promoter.

90Activation of Rta expression and the EBV lytic
cycle by MCAF1

To examine how MCAF1 influences the expression of Rta,
20 mg of pcDNA3.1 or pcDNA-MCAF1 was transfected into
5 · 106 of P3HR1 cells. Immunoblot analysis with anti-Rta

95antibody did not detect the expression of Rta at 48 h after the
transfection (Figure 9A, lanes 2 and 3). Cotransfecting the

Figure 6. CHIP analysis of the binding of Sp1, MCAF1 and Rta to an Sp1 site
on Rp. P3HR1 cells were cotransfected with pCMV-R, pcDNA-MCAF1 and
pR-Sp1 (lanes 1–5). Meanwhile, in separate experiments, pR-mSp1 (lanes
6–10) rather than pR-Sp1, was cotransfected. Binding of Sp1, MCAF1 and
Rta to the Sp1 site on pR-Sp1 was studied by CHIP analysis using anti-IgG
antibody (lanes 2 and 7), anti-Sp1 antibody (lanes 3 and 8), anti-MCAF1 anti-
body (lanes 4 and 9) and anti-Rta antibody (lanes 5 and 10). Meanwhile, in
positive controls, DNA in the cell lysate was used as a template for PCR to
amplify the Rp sequence (lanes 1 and 6); Rp, an Rp fragment amplified from
pR-Sp1; M, 100 bp ladder.
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cells with 0.5 mg of pCMV-R and 1 or 5 mg of pcDNA-MCAF1
also did not result in the synthesis of Rta at a level detectable
by IB (Figure 9A, lane 4 and 5). However, Rta was detected
if the cells were cotransfected with 0.5 mg of pCMV-R and

5>10 mg of pcDNA-MCAF1 (Figure 9A, lanes 6 and 7).
A similar study was also performed in 293 cells that were
infected with maxi-EBV. Because EBV expresses Rta con-
stitutively in epithelial cells (Figure 9B, lane 2), a low level of

Figure 7. Mapping the interaction domains on MCAF1 and Rta. Plasmid that expresses GFP-MCAF1 and its deletion derivatives (A) was cotransfected with
pCMV-R into 293T cells. (B) Proteins in the lysates prepared from cells that express GFP (lanes 1 and 5), GFP-MCAF-N (lanes 2 and 6), GFP-MCAF1-D1 (lanes 3
and 7) and GFP-MCAF1-D2 (lanes 4 and 8) were analyzed by IB using anti-GFP antibody (Input) and coimmunoprecipitation (Co-IP) with anti-Rta antibody
and studied by IB with anti-GFP antibody. (C) Plasmids that express Flag-Rta, HA-Rta, GFP-Rta or Rta deletion mutants were cotransfected with pcDNA-MCAF1
into 293T cells. (D) Cell lysates that contain Flag-Rta (lane 2), Flag-Stu (lane 3), Flag-HincII (lane 4), Flag-HinfI (lane 5), Flag-EcoRII (lane 6), HA-Rta (lane 8),
HA-RN290 (lane 9), GFP-Rta (lane 11) and GFP-R255/290 (lane 12) were immunoprecipitated with anti-MCAF1 antibody and analyzed by IB with anti-Rta
antibody (lanes 1–6), anti-HA antibody (lanes 7–9) and anti-GFP antibody (lanes 10–12). Lanes 1, 7 and 10 were loaded with the proteins from the cells transfected
with an empty vector.
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Rta expression was detected in the cells that were transfected
with an empty vector (Figure 9B, lanes 3 and 4). However, the
expression of Rta was markedly higher 1 and 2 days after the
cells had been transfected with 20 mg of pcDNA-MCAF1

5 (Figure 9B, lanes 5 and 6). Meanwhile, the transfection
also led to the expression of another EBV immediate-early
protein, Zta (Figure 9B, lanes 5 and 6). Meanwhile, pcDNA-
MCAF1, pCMV-R and pRRE were also transfected into
293T cells. Transfecting pcDNA-MCAF1 did not increase

10 the capacity of pCMV-R to activate pRRE (data not shown),
suggesting that MCAF1 did not activate the expression of
Rta from the CMV promoter (data not shown). This finding
shows that the increased Rta expression observed in this

study is caused by the autoregulation of BRLF1 transcription
15rather than the activation of the CMV promoter by MCAF1.

Activation of an RRE promoter by Rta is independent
of MCAF1 and Sp1

Transfecting pcDNA-MCAF1 had little effect on the activa-
tion of an RRE-reporter plasmid by Rta, so we tested whether

20the Rta–MCAF1–Sp1 complex could bind to RRE. A DAPA
experiment with a biotin-labeled RRE probe showed that
streptavidin beads could capture Rta (Figure 10A, lane 2).
The beads did not capture Rta when a mutant probe (mRRE),
in which the RRE sequence was mutated, was utilized

Figure 8. Involvement of MCAF1 in Rp autoregulation. Reporter plasmids, pRp (A), pR-Spl (B) and pRRE (C) were cotransfected with pCMV-R and pcDNA-
MCAF1 into P3HR1 cells. (D) Displays the luciferase activity expressed by pRRE and pR-Sp1 after cotransfecting pCMV-R. Luciferase activity was determined
at 24 h after transfection. Each transfection experiment was performed at least three times, and each sample in the experiments was prepared in duplicate. The values
obtained from the experiment were analyzed statistically by the least square means method. *, P < 0.05; **, P < 0.01.

Figure 9. Activation of the expression of EBV immediate-early genes by MCAF1. (A) P3HR1 cells (5 · 106) were treated with TPA and sodium butyrate to activate
the expression of Rta (lane 1). Cells untreated with TPA and sodium butyrate were transfected with 20 mg of pcDNA3.1 (lanes 2) and pcDNA-MCAF1 (lanes 3).
Cotransfection was also performed by transfecting 0.5 mg of pCMV-R and 1–20 mg of pcDNA-MCAF1 (lanes 4–7). Lysates were prepared at 48 h after transfection.
Immunoblot analysis was performed with anti-Rta and anti-a-tubulin antibodies. (B) 293 cells (5 · 106) that were infected by maxi-EBV (lane 2) were transfected
with 20mg of pcDNA3.1 (lanes 3 and 4) and pcDNA-MCAF1 (lanes 5 and 6). Proteins were prepared from the cells at 24 h (lanes 3 and 5) and 48 h (lanes 4 and 6) after
transfection. Lane 1 was loaded with the lysate from 293 cells. Immunoblot analysis was performed using anti-Rta, anti-Zta and anti-a-tubulin antibodies.
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(Figure 10A, lane 3), indicating that Rta binds to RRE. How-
ever, although Rta binds to MCAF1 (Figure 2), MCAF1 was
not retained by the RRE probe (Figure 10A, lane 2). Addi-
tionally, by testing a panel of mutations in the DNA-binding

5 domain in Rta, we found that the K213 residue in Rta was
critical to its binding to RRE; a lysine to alanine substitution
of this residue (K213A) eliminated the binding capacity of
Rta to RRE (Figure 10A, lane 7). This site was outside the
MCAF1-binding domain, so this mutant protein could be used

10 to establish that activating an Sp1 promoter was independent
of DNA binding. In a transient transfection study, both Rta
and Rta(K213A) activated pR-Sp1 and pSp1-luc in 293T cells
(Figure 10B). However, Rta(K213A) activated an RRE-
reporter plasmid at a level �60% lower than that activated

15 by Rta (Figure 10B). Furthermore, cotransfecting pcDNA-
MCAF1 did not affect the ability of HA, HA-R and
Rta(K213A) to activate the pRRE promoter (Figure 10B).

Activation of Sp1-mediated transcription by Rta

We also tested whether Rta activates cellular promoters that
20 are activated by Sp1, including the promoters of p16, p21

and SNRPN, in an epithelial cell line, 293T. Transfecting
pTA (Figure 11) alone, which contained a luciferase gene
transcribed from a promoter with only a TATA sequence,
expressed a low background value of luciferase activity. How-

25 ever, the activity was activated 6.9-fold by cotransfection
of pCMV-R. In parallel experiments, the p16 promoter was
activated by pCMV-R 14.8-fold; the p21 promoter 8.2-fold
and the SNRPN promoter 11.1-fold (Figure 11).

DISCUSSION

30Rta is an EBV-encoded transcription factor, which is crucial in
regulating the expression of EBV lytic gene. However, as well
as regulating the EBV genes, Rta binds to Rb to release E2F1

Figure 10. Transcriptional activation of Rp, an Sp1 promoter and an RRE promoter by Rta. (A) 293T cells were transfected with pCMV-R and the lysate was mixed
with biotin-labeled probes, RRE and mRRE. Proteins bound to the probe were captured using streptavidin magnetic beads. Proteins extracted from the beads were
analyzed by IB with anti-Rta and anti-MCAF1 antibody. A similar study was performed with 293T cells transfected with plasmids that expressed HA-Rta (HA-R) and
Rta(K213A). (B) An empty vector (HA) and plasmids that expressed HA-Rta (HA-R) and Rta(K213A) (K213A) were cotransfected with reporter plasmids pR-Spl,
pSp1-luc, pRRE and pGL2-Basic (closed rectangle). Meanwhile, pcDNA-MCAF1 was also cotransfected to examine whether MCAF1 influenced the transactivation
activity of pRRE (open rectangle). The nonspecific activation of the transcription of the luciferase gene in pGL2-Basic by Rta and Rta(K213A) was probably
attributed to a GGGAGG sequence, which resembles an Sp1-binding site, near the cloning site of the plasmid. Luciferase activity was determined at 24 h after
transfection. Each transfection experiment was performed at least three times, and each sample in the experiments was prepared in duplicate.

Figure 11. Activating the promoters of p16, p21 and SNRPN by Rta. 293T cells
were cotransfected with a reporter plasmid and pCMV-R (closed rectangle)
or an empty vector (open rectangle). The reporter plasmids used herein con-
tained a luciferase gene transcribed from the promoter of p16 (pp16), SNRPN
(pSNRPN) and p21 (pp21). Plasmid pTA was a reporter plasmid that contained
the TATA sequence of BRLF1. Activation of pTA by Rta was probably attrib-
uted to an Sp1-binding sequence, GGGAGG, in the multiple cloning site of the
cloning vector, pGL2-Basic, that was used to construct pTA. Luciferase activity
was determined at 24 h after transfection. Each transfection experiment was
performed at least three times, and each sample in the experiment was prepared
in duplicate.
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from Rb to affect the cell cycle progression (24). Rta also
modulates the phosphorylation of p38 and c-Jun-N-terminal
kinases, ultimately affecting gene expression (11), indicating
that Rta affects not only the expression of EBV but also the

5 functions of cellular genes. Expression of Rta may be espe-
cially important to epithelial cells since Rta is constitutively
expressed by EBV in these cells (25). Ragoczy et al. (10)
established already that Rta activates the transcription of
BRLF1 through two Sp1 sites in Rp. Sp1 is a crucial tran-

10 scription factor that regulates many cellular genes, including
those involved in housekeeping functions (26), cell differen-
tiation (27), methylation (28) and oncogenesis (29). Hence,
if Rta influences Sp1-mediated transcription, then the expres-
sion of Rta may profoundly affect the expression of cellular

15 genes. Accordingly, the ultimate goals of this work are to
explore whether and how Rta affects the transcription of
the genes that are activated by Sp1.

A yeast two-hybrid screen was performed and revealed
that an Sp1-binding protein, MCAF1, interacts with Rta.

20 The interaction was then verified in vitro with bacterially
expressed proteins (Figure 2) and in vivo by immunoprecip-
itation (Figure 3). Additionally, CHIP analysis revealed the
formation of an Sp1–MCAF1–Rta complex on an Sp1 site in
cells (Figure 6). This work also verifies the results of Ragoczy

25 et al. (10), who noted that binding of Rta to Sp1 on an Sp1
probe could not be detected by electrophoretic mobility shift
assay, perhaps because the protein complex is large. The putat-
ive protein–DNA complex might not enter the gel or might
have dissociated during electrophoresis. We therefore used

30 DAPA to search for binding of the protein complex to a
biotin-labeled Sp1 probe (Figure 5). Additionally, a CHIP
assay was performed to verify the binding of these proteins
to the Sp1 site in Rp in vivo. This investigation was originally
conducted in P3HR1 cells following EBV lytic induction. The

35 results indicated that MCAF1, Rta and Sp1 bind to Rp (data
not shown). However, our subsequent investigations showed
that MCAF1 and Rta also form a complex on ZRE
(L.-K. Chang and S.-T. Liu, unpublished data). Only 7 nt
separate the Sp1 site and ZRE in Rp, making it extremely

40 difficult to distinguish the binding of MCAF1 to the Sp1
site or ZRE by CHIP analysis. Therefore, CHIP assay was
conducted by immunoprecipitating the proteins at the Sp1
site in Rp in pR-Sp1 (Figure 4), in which the ZRE was mutated
(Figure 1).

45 We mapped the Rta-binding domain on MCAF1 in the
region between amino acids 650 and 981 (Figure 7B). An
earlier work revealed that the domains in MCAF1 that interact
with Sp1 are located in D1 and D2 (Figure 7A) (14). We
determined that excess Rta does not affect the binding of

50 MCAF1 to Sp1 (Figure 2E), indicating that although the
Sp1- and Rta-binding regions overlap on MCAF1, Rta does
not interfere with the binding of Sp1 to MCAF1. A lysine
to alanine substitution on the K213 residue eliminated the
capacity of Rta to bind to RRE (Figure 10A) and reduced

55 the capacity of Rta to activate an RRE-reporter plasmid
(Figure 10B). The fact that K213 is located outside of the
MCAF1-binding domain and the K213A mutation transactiv-
ates pR-Sp1 and pSp1-luc (Figure 10B) verifies that the trans-
activation of Rp by Rta is independent of RRE binding.

60 Rta contains an RRE-binding domain located between
amino acids 1 and 320 (Figure 7), so the Rta–MCAF1–Sp1

complex might also bind to an RRE. However, our DAPA
study indicates that this is not the case (Figure 10A). Addi-
tionally, transfecting pcDNA-MCAF1 has little effect on the

65activation of an RRE-reporter plasmid by Rta (Figure 8C),
further indicating that MCAF1 does not participate in that
activation. The lack of activation may be attributed to the
fact that the RRE-binding domain and the MCAF1-binding
domain overlap on Rta (Figure 7); the binding of Rta to RRE

70may prevent the binding of Rta to MCAF1.
We find that Rta activates Rp through Sp1, suggesting that

the expression of Rta may also influence the transcription of
the cellular genes that are regulated by Sp1. We chose three
important regulating genes, p16, p21 and SNRPN, that contain

75Sp1 sites to study the capacity of Rta to activate Sp1-mediated
transcription. p16 is a tumor suppressor gene that contains
aberrantly hypermethylated CpG islands in its promoter in
cancer cells (30). p21 is known to regulate cell cycle progres-
sion (31); SNRPN is an imprinted gene, typically unmethy-

80lated and heavily methylated on the active paternal and
inactive maternal alleles, respectively (32). pCMV-R activates
the promoters of these three cellular genes 10- to 15-fold
in transfection experiments (Figure 11). A reporter plasmid
that contains four of the six Sp1 sites in the p21 promoter,

85pSp1-luc (Figure 1), is also strongly activated by Rta
(Figure 10B). The BNLF1 promoters contain several Sp1
sites (33,34); the transcription activation of this gene by
Rta probably involves the binding of the Sp1–MCAF1–Rta
complex to these sites. Furthermore, Rta activates the tran-

90scription of c-myc proto-oncogene (35). The promoter of
this gene lacks an RRE but contains several Sp1 sites near
the TATA sequence (36). These findings indicate the crucial
role of Rta in regulating Sp1-mediated transcription. More-
over, EBV lytic promoters are typically hypermethylated

95during viral latency (37,38). Additionally, MCAF1 binds to
MBD1 on CpG sequences to repress gene transcription, so this
laboratory is currently studying how the interaction between
Rta and MCAF1 affects CpG methylation during EBV latent-
lytic switching.

100One of the important questions addressed herein concerns
the effect of the interactions among Sp1, MCAF1 and Rta on
the activation of the EBV lytic cycle. As is generally known,
BRLF1 is not transcribed during EBV latency in B cells but
is transcribed in epithelial cells (25). Therefore, if MCAF1

105participates in BRLF1 autoregulation, then transfecting
pcDNA-MCAF1 to epithelial cells that are infected by EBV
may promote expression of Rta from the virus. This, indeed, is
the case; the expression of Rta from maxi-EBV in 293
cells was enhanced after the cells were transfected with

110pcDNA-MCAF1 (Figure 9B, lanes 5 and 6). Additionally,
the transfection also led to the expression of Zta
(Figure 9A), perhaps through the activation of BZLF1 tran-
scription by Rta (11). These observations indicate that MCAF1
participates in EBV lytic activation in 293 cells. However,

115MCAF1 did not activate Rta expression in P3HR1 cells
(Figure 9A). The expression of Rta was only evident when
a little pCMV-R was cotransfected with pcDNA-MCAF1
(Figure 9A, lanes 6 and 7), suggesting that the expression
of Rta is a prerequisite for EBV lytic activation by

120MCAF1. Moreover, an earlier work demonstrated that
MCAF1 is abundant in the cell, which may explain why trans-
fecting >10 mg of pcDNA-MCAF1 is required to detect the
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enhancement of the expression of EBV immediate-early
genes (Figure 9).

This work demonstrates that Rta can activate gene trans-
cription by two mechanisms, by which Rta activates not only

5 EBV but also cellular genes, which may ultimately affect cell
cycle progression and oncogenesis. EBV in epithelial cells is
generally known to express Rta constitutively (25). Therefore,
activation of cellular genes and especially an EBV oncogene,
BNLF1, may be crucial to the oncogenesis of the cells. How-

10 ever, Rta expression causes the expression of Zta and activates
the EBV lytic cycle (11). Therefore, the cells die by the lytic
production of EBV virions. Accordingly, the activation of
host genes may only be possible if the lytic productive
cycle is abortive. However, our work seems to indicate that

15 although Rta is constitutively expressed from maxi-EBV in
293 cells, the extent of Rta expression may not sufficiently
activate the EBV lytic cycle. Not only was Rta expressed at a
low level, but also the expression of Zta by the cells was
undetected by immunoblot analysis (Figure 9B, lane 2).

20 This low level of Rta expression did not cause the expression
of EA-D (data not shown). Additionally, maxi-EBV in 293
cells released only few virions except when the cells were
treated with TPA and sodium butyrate, or transfected with
a plasmid that expressed Zta (Y.-F. Chiu and S.-T. Liu, unpub-

25 lished data). These results suggest that a low level of Rta
expression in 293 cells may not activate the EBV lytic
cycle. This continuously low level of Rta expression may
influence the physiology of cells and importantly determine
the pathogenicity of the virus.
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