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Geometric deep learning has demonstrated a great potential in non-Euclidean data analysis. The incorporation 
of geometric insights into learning architecture is vital to its success. Here we propose a curvature-enhanced 
graph convolutional network (CGCN) for biomolecular interaction prediction. Our CGCN employs Ollivier-Ricci 
curvature (ORC) to characterize network local geometric properties and enhance the learning capability of 
GCNs. More specifically, ORCs are evaluated based on the local topology from node neighborhoods, and further 
incorporated into the weight function for the feature aggregation in message-passing procedure. Our CGCN 
model is extensively validated on fourteen real-world bimolecular interaction networks and analyzed in details 
using a series of well-designed simulated data. It has been found that our CGCN can achieve the state-of-the-art 
results. It outperforms all existing models, as far as we know, in thirteen out of the fourteen real-world datasets 
and ranks as the second in the rest one. The results from the simulated data show that our CGCN model is 
superior to the traditional GCN models regardless of the positive-to-negative-curvature ratios, network densities, 
and network sizes (when larger than 500).
1. Introduction

Responsible for nearly all the functional properties, including re-
producibility, sustainability, and mortality, biomolecules are of fun-
damental importance to all life forms, ranging from microorganisms 
and plants to animals. The monomers, oligomers and macromolecules 
made from amino acids, peptides, proteins, nucleobases, nucleotides, 
oligonucleotides, nucleic acids (DNA/RNA), monosaccharides, oligosac-
charides, polysaccharides, or lipids, are the major building blocks of 
life [1–3]. Biomolecular interactions can happen between two or more 
molecules, and involve single or multiple binding sites in a coopera-
tive way [4–6]. The analysis of biomolecular interactions is of great 
interests to scientists. Experimentally, the study of these interactions is 
often time-consuming and labor-intensive. This stimulated the devel-
opment of computational-based models. Mathematically, the analysis 
of biomolecular interactions can be transformed into node, edge, sub-
graph, or other graph property prediction problems, resulting in the 
development of various graph or network models. Recently, graph neu-
ral network (GNN) models have been used to learn the information from 
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the graph data. These GNN models can perform various tasks, includ-
ing node classification [7], link prediction [8,9], graph classification 
[10,11], and graph property prediction [12–14]. They have demon-
strated great potential in biomolecular graph data analysis [15–17].

The two essential components of all GNNs are node neighborhood 
and feature aggregation. For node neighborhood, its most commonly-
used definition is that for a certain node (or vertex), all the other nodes 
that directly connected (through one edge) with this specific node are 
known as its neighbors. This definition is widely used in GNNs, in-
cluding Graph Convolutional Network (GCN) [18], Graph Attention 
Network (GAT) [19], and Graph Isomorphism Network (GIN) [20]. The 
neighborhood of a node can also be defined from random walk meth-
ods, in which all the nodes in the path of a random walk are regarded 
as the neighbors of the initial starting node. This definition is used 
in GNNs, such as HetGNN [8]. Feature aggregation, which is key to 
message passing, is to systematically aggregate the node features (i.e., 
feature vectors) to update node representations. In general, there are 
two types of feature aggregation. First, features are aggregated with 
equal importance. This approach is widely used in models, including 
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GIN [20], GraphSAGE [21], and Neural FPs [22]. Second, features are 
aggregated with different weights. In GCN [18], the weights are deter-
mined by node degrees. In GAT [19], the weights are evaluated through 
an attention mechanism, in which feature vectors of the node and its 
neighbors are multiplied to calculate the weight (or importance) of the 
neighboring nodes to the specific node.

Geometric deep learning models have been proposed to incorporate 
geometric information into deep learning architectures [23–25]. As one 
of the fundamental concepts in differential geometry, Ricci curvature 
characterizes the intrinsical properties of manifold surfaces [26,27]. 
Recently, discrete Ricci curvature models, including Ollivier-Ricci cur-
vature (ORC) [28–30] and Forman Ricci curvature (FRC) [31–33], 
have been developed and used in various applications, such as inter-
net topology [34], community detection [35,36], market fragility and 
systemic risk [37], cancer networks [38], brain structural connectiv-
ity [39], and biomolecular systems [40,41]. In particular, discrete Ricci 
curvatures have been used in the characterization of “over-squashing” 
phenomenon [42], which happens at the bottleneck region of a network 
when the messages propagated from distant nodes distort significantly. 
Due to the low efficiency of information exchange in the bottleneck 
region, special attention should be paid to this part in GNN models. 
Further, ORC has been used in protein engineering, drug discovery and 
cell engineering models. For example, Wee et al. used Forman-Ricci 
curvature, Ollivier Ricci curvature, simplicial complexes and machine 
learning to predict protein-ligand interactions [40,41]. Murgas et al. 
investigated Forman-Ricci curvature, along with network entropy, to 
explore the relationship of the two quantities as they occur in gene 
networks [43]. More recently, curvature-based graph neural network 
models have been developed by the incorporation of ORCs into GNN 
models [44,45]. These models have achieved great success in various 
synthetic and real-world graphs, from social networks, coauthor net-
works, citation networks, and Amazon co-purchase graph. The curva-
ture graph network model can significantly outperform state-of-the-art 
(SOTA) when the underlying graphs are of large-sized and dense.

Here we propose a Curvature-enhanced Graph Convolutional Net-
work (CGCN) model for biomolecular interaction prediction. In our 
CGCN model, the ORC is calculated for edges of biomolecular interac-
tion graphs. An ORC-based multilayer perception model is trained and 
its output value is used as the weight in message-passing module. In 
this way, our CGCN model is aware of the local geometric information 
and is robust for “over-squashing”. Our model has been systematically 
compared with eight SOTA models on fourteen commonly used molec-
ular interaction datasets. It has been found that the proposed model can 
outperform all SOTA models. Further simulation tests are employed to 
explore the applicability of our CGCN model. It has been found that the 
CGCN model consistently delivers better results than traditional GCN 
model. This performance is highly robust to both network densities and 
ratios between positive ORCs and negative ORCs. Further, consistently 
with previous results, our ORC-based CGCN model has a better perfor-
mance on molecular interaction graphs of medium or large sizes (i.e., 
>500 nodes).

2. Related works

2.1. Ollivier-Ricci curvature for graph data analysis

Ollivier-Ricci curvature is a discrete Ricci curvature model that is 
developed for the analysis of graph data. ORC has been combined with 
deep learning models and demonstrated great advantages. A major rea-
son is that Ricci curvature is found to be related to “over-squashing” 
phenomenon in message aggregation process and can be used to allevi-
ate information distort in message-passing-based GNNs [42]. RicciNet 
has been developed to identify the salient computational paths with 
Ricci curvature-guided pruning [46]. A Ricci flow process, which is 
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deform the discrete space of the graph by the systematical remov-
ing of edges with negative Ricci curvatures. Curvature Graph Network 
(CurvGN) has been proposed to incorporate the Ricci curvature infor-
mation into graph convolutional network so that it can adapt to differ-
ent local structural topology [44]. An ORC-based message-passing op-
erator is developed by the aggregation of node representations with an 
ORC-related weight factor, which is obtained through a multi-layer per-
ceptron (MLP) with ORC as its input. Further, Curvature Graph Neural 
Network (CGNN) has been developed to increase topological adaptivity 
of GNNs [45]. Similar to CurvGN, ORC information is transformed into 
the weights.

Curvature has also been employed in the characterization of embed-
ding spaces. Curvature Graph Generative Adversarial Network (Curv-
GAN) has been proposed to better preserve the topological properties 
and alleviate topological distortions [47]. In CurvGAN, global topol-
ogy of the graph data is approximated by a Riemannian geometric 
space with constant curvature and local heterogeneous topology is 
characterized by ORCs. Hyperbolic Curvature Graph Neural Network 
(HCGNN) integrates discrete and continuous curvature together to en-
hance hyperbolic geometric learning [48]. Similar to CurvGAN, global 
topology is characterized by constant curvature manifold and local het-
erogeneous topology by ORCs. However, in HCGNN, the embedding 
space is modeled by a hyperbolic space with constant curvature, and 
ORCs is incorporated into message passing operator though hyperbolic 
curvature-aware message propagation and ORC-based homophily con-
straint. Other discrete curvature models have also been employed in 
learning models, including curvature-informed multi-task learning for 
graph networks [49], mixed-curvature multi-relational graph neural 
network for knowledge graph completion [50], adaptive curvature ex-
ploration hyperbolic graph neural network (ACE-HGNN) [51], etc.

2.2. Graph neural network for molecular interaction prediction

Recently, the application of graph neural networks in multifarious 
molecular interaction prediction tasks has received increasing atten-
tion. For instance, SkipGNN [52] utilizes a skip graph neural network to 
predict molecular interactions. MR-GNN [53] infers the interaction be-
tween two entities via a dual graph neural network. CSGNN [54] uses 
a contrastive self-supervised graph neural network to predict molecular 
interactions. Besides, some graph neural network models are applied on 
some specific molecular interactions. KGNN [55] is a knowledge graph 
neural network and MIRACLE [56] is a multi-view graph contrastive 
representation learning model, both used to predict drug-drug interac-
tions. KGE_NFM [57] a unified framework for drug-target interaction 
prediction by combining knowledge graph and recommendation sys-
tem. IDDkin [58] is a network-based influence deep diffusion model for 
kinase inhibitors prediction. InteractionGraphNet [59] is a novel deep 
graph representation learning framework for accurate protein-ligand in-
teraction predictions.

3. Methods

3.1. Mathematical notations

Here we used uppercase letters for matrices (e.g. 𝑊 ∈ ℝ𝑚×𝑛) and 
lowercase letters to denote vectors (e.g. ℎ ∈ℝ𝑑 ). We used an undirected 
graph  = { ,} to represent an interaction network, where  is the 
set of vertices and  is the set of edges. Here 𝑣𝑖 ∈  is 𝑖-th node and 
𝑒𝑖𝑗 ∈  is the edge between 𝑖-th node and 𝑗th node. The edge is formed 
only when there exists a certain interaction between the two nodes. 
Furthermore, 𝑐

(
𝑣𝑖, 𝑣𝑗

)
represents the Ollivier-Ricci curvature on edge 

𝑒𝑣𝑖𝑣𝑗
.

3.2. Ollivier-Ricci curvature

Ricci curvature measures the growth of volumes of distance balls, 

transportation distances between balls, divergence of geodesics, and 
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meeting probabilities of coupled random walks [32]. Ricci curvature 
equals to the classical Gauss curvature on two dimensional manifold. 
Two discrete Ricci curvature forms, i.e., Ollivier Ricci curvature (ORC) 
[60,61,29,30] and Forman Ricci curvature (FRC) [62,31], have been 
developed. Among them, the most widely used one is ORC, which was 
originally proposed on metric spaces [60,29] and further applied to 
graphs [63,64]. ORC is defined on graph edges. It measures the differ-
ence between the edge “distance” (or length of edge) and transportation 
distance of two probability distributions, which are defined respectively 
on the two neighborhoods from the-edge-related two vertices. Roughly 
speaking, positive edge ORC means that there are strong connections 
(or short “distance”) between the two respective neighborhoods, and 
negative edge ORC indicates weak connections (or long “distance”). It 
has been found that ORC is also related to various graph invariants, 
ranging from local measures, such as node degree and clustering coef-
ficient, to global measures, such as betweenness centrality and network 
connectivity [34].

Mathematically, for a node 𝑣𝑖 in a graph  = { ,}, its neighbors 
can be expressed as  (𝑣𝑖) =

{
𝑣𝑖1

, 𝑣𝑖2
,⋯ , 𝑣𝑘𝑣𝑖

}
, and the total number 

of neighbors is 𝑘𝑣𝑖 , which is the degree of node 𝑣𝑖. A probability distri-
bution 𝑚𝑣𝑖

is defined as,

𝑚𝑣𝑖

(
𝑣𝑗
)
=
⎧⎪⎨⎪⎩

𝛼 if 𝑣𝑗 = 𝑣𝑖
(1 − 𝛼)∕𝑘𝑣𝑖 if 𝑣𝑗 ∈ (𝑣𝑖)
0 otherwise ,

(1)

where parameter 𝛼 ∈ [0, 1]. Here we use 𝛼 = 0.5, which is the most 
commonly used value [63,64]. Note that 𝑚𝑣𝑖

is a discrete probability 
distribution function. On the center node 𝑣𝑖, it is defined to be 𝛼, and 
on the neighboring nodes 𝑣𝑗 , it is defined to be (1 − 𝛼)∕𝑘𝑣𝑖 .

If there is an edge 𝑒𝑣1𝑣2 between node 𝑣1 and 𝑣2, a measure 

𝜉 ∈
∏(

𝑚𝑣1
,𝑚𝑣2

)
between two probability distributions 𝑚𝑣1

and 𝑚𝑣2

defines a transportation plan from 𝑚𝑣1
to 𝑚𝑣2

. This measure is mass-

preserving, i.e., 
∑

𝑣𝑗∈𝑉 𝜉
(
𝑣1, 𝑣𝑗

)
=𝑚𝑣1

and 
∑

𝑣𝑖∈𝑉 𝜉
(
𝑣𝑖, 𝑣2

)
=𝑚𝑣2

. The 
amount of mass moved from 𝑣𝑖 to 𝑣𝑗 is 𝜉

(
𝑣𝑖, 𝑣𝑗

)
, and 𝑑(𝑣1, 𝑣2) is the 

distance between node 𝑣1 and node 𝑣2. The 𝐿1-Wasserstein distance be-
tween 𝑚𝑣1

and 𝑚𝑣2
, which is minimum average traveling distance and 

represented by 𝑤𝐿1

(
𝑚𝑣1

,𝑚𝑣2

)
can be computed,

𝑤𝐿1

(
𝑚𝑣1

,𝑚𝑣2

)
= inf

𝜉

∑
𝑣𝑖∈𝑉

∑
𝑣𝑗∈𝑉

𝑑
(
𝑣𝑖, 𝑣𝑗

)
𝜉
(
𝑣𝑖, 𝑣𝑗

)
. (2)

The Ollivier-Ricci curvature on edge 𝑒𝑣1𝑣2 , denoted as 𝑐
(
𝑣1, 𝑣2

)
, is de-

fined as follows,

𝑐
(
𝑣1, 𝑣2

)
= 1 −

𝑤𝐿1

(
𝑚𝑣1

,𝑚𝑣2

)
𝑑(𝑣1, 𝑣2)

. (3)

Computationally, linear programming (LP) is utilized to calculate 
Wasserstein distance. Let 𝜌 

(
𝑣𝑖, 𝑣𝑗

)
≥ 0 represent the fraction of “mass” 

transported for node 𝑣𝑖 to 𝑣𝑗 , the LP formulation can be expressed as 
follows,

min
∑
𝑣𝑖∈𝑉

∑
𝑣𝑗∈𝑉

𝑑
(
𝑣𝑖, 𝑣𝑗

)
𝜌
(
𝑣𝑖, 𝑣𝑗

)
𝑚𝑣1

(
𝑣𝑖
)

(4)

𝑠.𝑡. ∶
∑
𝑣𝑗∈𝑉

𝜌
(
𝑣𝑖, 𝑣𝑗

)
= 1, 0 ≤ 𝜌

(
𝑣𝑖, 𝑣𝑗

)
≤ 1

∑
𝑣𝑖∈𝑉

𝜌
(
𝑣𝑖, 𝑣𝑗

)
𝑚𝑣1

(
𝑣𝑖
)
=𝑚𝑣2

(
𝑣𝑗
)
.

Note that ORCs are calculated on edges of graphs. The node ORCs are 
usually defined as the average of edges ORCs. That is for a node 𝑣𝑖, its 
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Fig. 1. The illustration of Ollivier-Ricci curvature on a biomolecular structure 
network. The colors represent the ORC values on the nodes. The red color in-
dicates positive ORC values, while the blue color represents negative values. It 
can be seen that the negative ORC values all concentrated in the bottleneck or 
linkage regions. In the well-connected clusters or communities, ORC values are 
all positive.

𝑐(𝑣𝑖) =
1

deg(𝑣𝑖)
∑

𝑣𝑗∈ (𝑣𝑖)
𝑐(𝑣𝑖, 𝑣𝑗 ), (5)

where  (𝑣𝑖) is the neighbors of node 𝑣𝑖, deg(𝑣𝑖) is the node degree of 
𝑣𝑖.

Fig. 1 illustrates Ollivier-Ricci curvature (for nodes) for molecular 
structure analysis. It can be seen that positive ORCs appear in densely-
connection regions, while negative ORCs are found in link or bottleneck 
regions. The “over-squashing” issue tends to happen at these narrow 
bottleneck regions, where the transportation of information tends to be 
distorted.

3.3. Curvature graph convolutional network

In our CGCN model, the ORC information is incorporated into mes-
sage passing process by using ORC-related edge weights. To alleviate 
the “over-squashing” effects that usually happen at regions with nega-
tive ORC values, we propose an edge weight function that is inversely 
related to edge ORC values. More specifically, for edge 𝑒𝑣𝑖𝑣𝑗 with ORC 
𝑐(𝑣𝑖, 𝑣𝑗 ), we define an ORC-related vector,

𝑔𝑐(𝑣𝑖, 𝑣𝑗 ) =
(
1 + 𝑒−𝑐(𝑣𝑖,𝑣𝑗 )

2
,
1 + 𝑒−2∗𝑐(𝑣𝑖,𝑣𝑗 )

2
, ...,

1 + 𝑒−𝑛𝑐∗𝑐(𝑣𝑖,𝑣𝑗 )

2

)𝑇

, (6)

here 𝑛𝑐 is a positive integer and represents the dimension of 𝑔𝑐(𝑣𝑖, 𝑣𝑗 ). 
The edge weight function is defined as follows,

𝑓𝑐(𝑣𝑖, 𝑣𝑗 ) = 𝜎
(
𝑤MLP ⋅ 𝑔𝑐(𝑣𝑖, 𝑣𝑗 ) + 𝑏

)
(7)

here 𝜎(⋅) represents activate function, 𝑤MLP is an weight vector with 
size 𝑛𝑐 × 1, and 𝑏 is the bias. Essentially, we use an MLP to learn the 
edge weight function from the ORC-related vector.

The weight function is then incorporated into the message-passing 
process, in which node representation is updated by the aggregation of 
node features from all its neighbors. In our CGCN, the contribution from 
neighboring node features is not aggregated with equal weight, instead 
it is scaled by the edge weighted function as follows,

ℎ(𝑙+1)
𝑣

= 𝜎

⎛⎜⎜⎝
∑

𝑣𝑗∈ (𝑣)∪{𝑣}

1√
deg(𝑣)

√
deg(𝑣𝑗 )

𝑓𝑐(𝑣, 𝑣𝑗 )𝑊GCNℎ
(𝑙)
𝑣𝑗

⎞⎟⎟⎠ (8)

where  (𝑣) is the neighbors of node 𝑣, 𝑑𝑒𝑔(𝑣) represents the degree of 
node 𝑣, ℎ(𝑙+1)𝑣 and ℎ(𝑙)𝑣𝑗 are the node features of 𝑣 and 𝑣𝑗 after 𝑙+1 and 𝑙
message-passing iterations respectively. Fig. 2 illustrates the ORC-based 
message-passing process in our CGCN model.

After the message-passing process, node representations ℎ𝑣𝑖 and ℎ𝑣𝑗
are obtained for nodes 𝑣𝑖 and 𝑣𝑗 . The probability that there is an inter-
action between two nodes 𝑣𝑖 and 𝑣𝑗 can be evaluated through a MLP 

and a hidden layer based score function as follows,
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Fig. 2. An illustration of the ORC-based feature aggregation in message-passing procedure. A A normal message-passing procedure, in which node feature 
representation is updated by using all feature vectors from its neighboring nodes with the same weight. B ORC-based message-passing procedure in our CGCN model. 
The neighboring feature vectors are aggregated with ORC-related weights. C The calculation of ORCs and ORC-related weights. The edge ORC is calculated by using 
the Wasserstein distance between two probability distributions defined on neighboring nodes. The neighbors of the centering green node (enclosed by a black circle) 
are the other green nodes together with the centering red node (enclosed by a black circle), while the neighbors of the centering red node are the other red nodes 
together with the green centering node. The ORC-related weight is calculated through a MLP.
�̂�𝑣𝑖𝑣𝑗
=MLP

(‖‖‖‖
(
ℎ𝑣𝑖

+ ℎ𝑣𝑗
, ℎ𝑣𝑖

⊙ ℎ𝑣𝑗
, ℎ𝑣𝑖

, ℎ𝑣𝑗

))
, (9)

where ⊙ is element-wise product, ‖(⋅) means the concatenation and 
the output is a vector, MLP is a multi-layer perceptron, and �̂�𝑣𝑖𝑣𝑗 is the 
prediction of the relationship between two nodes 𝑣𝑖 and 𝑣𝑗 .

4. Results and discussions

4.1. Datasets and model setup

Datasets In this study, two types of graph datasets, i.e., 14 real-
world graph datasets and 77 simulated graph datasets, are employed. 
The 14 datasets include ChCh-Miner, ChG-Miner, DCh-Miner, PPT-
Ohmnet, DG-AssocMiner, HuRI-PPI, PP-Decagon, PP-Pathways, CPI_hu-
man, CPI_celegans, Drugbank_DTI, Drugbank_DDI, AdverseDDI, and 
DisGeNET. These datasets cover various types of biomolecular interac-
tion, including drug-drug interaction networks (ChCh-Miner and Drug-
bank_DDI, AdverseDDI), drug-gene interaction networks (ChG-Miner), 
disease-drug interaction networks (DCh-Miner), protein-protein interac-
tion networks (PPT-Ohmnet, HuRI-PPI, PP-Decagon, and PP-Pathways), 
disease-gene interaction networks (DG-AssocMiner and DisGeNET), 
compound-protein interaction network (CPI_human and CPI_celegans), 
and drug-target interaction network (Drugbank_DTI). Among them, 
ChCh-Miner, ChG-Miner, DCh-Miner, PPT-Ohmnet, DG-AssocMiner, 
and HuRI-PPI are obtained from Ref [65]. PP-Decagon and PP-Pathways 
are from Ref [66]. CPI_human and CPI_celegans are from Ref [67]. 
Drugbank_DTI, Drugbank_DDI, and AdverseDDI are from Ref [68]. Ad-
verseDDI is taken from Ref [69] and DisGeNET is from Ref [70]. The 
details of these 14 networks are shown in Table 1, including the num-
ber of nodes and edges, average degree, density, and ratio of positive 
and negative curvature.

Baselines. We compare our CGCN model with 8 state-of-the-art 
methods, which can be categorized into two classes, i.e., GNN mod-
els and network embedding models. Four GNN models are considered, 
including Graph Convolutional Network (GCN) [18], Graph Attention 
Network (GAT) [19], CSGNN [54] and SkipGNN [52]. Network embed-
ding models are to represent a high-dimensional, sparse vector space 
with a low-dimensional, dense vector space. They are widely used 
1019

for network representation learning. Four classical network embedding 
Table 1

Statistics for 14 biomolecular interaction networks.

Datasets Nodes Edges Degree Density Ratioa

ChCh-Miner [65] 1514 48514 64.09 4.24% 1.66
ChG-Miner [65] 7341 15138 4.12 0.06% 0.61
DCh-Miner [65] 7197 466656 129.65 1.80% 2.33
PPT-Ohmnet [65] 4510 70338 31.19 0.69% 0.20
DG-AssocMiner [65] 7813 21357 5.47 0.07% 0.24
PP-Decagon [66] 19081 715612 75.01 0.39% 0.50
PP-Pathways [66] 21557 342353 31.76 0.15% 0.19
HuRI-PPI [65] 5604 23322 8.32 0.15% 0.18
CPI_human [67] 2013 2633 2.62 0.13% 1.21
CPI_celegans [67] 1782 2659 2.98 0.17% 0.94
Drugbank_DTI [68] 12566 18866 3.00 0.02% 0.98
Drugbank_DDI [68] 1977 563438 569.99 28.85% 383.79
AdverseDDI [69] 393 12480 63.51 16.20% 87.24
DisGeNET [70] 19783 81746 8.26 0.04% 0.20

a The ratios between positive ORCs and negative ORCs.

models are selected, including DeepWalk [71], LINE [72], Node2Vec 
[73] and SDNE [74]. For the graph neural network methods GSGNN 
and SkipGNN, we use the default parameter settings of the original pa-
per. We use a two-layer neural network to run GCN and GAT methods. 
The codes of the other four network embedding models (DeepWalk, 
LINE, Node2Vec and SDNE) are also adopted from the original paper, 
and we use the default parameters. The number of layers in our CGCN 
is two.

Implementation details. In this study, we randomly select as many 
negative samples as there are positive samples, and the whole data set 
was divided into training set, validation set and test set according to 
the ratio of 7:1:2. The area under the receiver operating characteris-
tic curve (AUC) and the area under the precision-recall curve (AUPR) 
are used to evaluate the performance of model. The initial vector of 
each node of the CGCN model is one-hot encoding. We run each test 
10 times, and use the average values as final results. For the simulated 
network, in order to have a more reasonable topological structure, five 
disjoint communities are created. The probability of node connection 
within the community is 𝑝, and the probability of node connection be-
tween communities is 𝑞. Three types of tests are conducted. First, we 
fix the node number to be 1000 and systematically change 𝑝 and 𝑞 to 

generate a series of networks with various ratios of positive to negative 
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Table 2

The comparison between CGCN and four GNN methods.

Datasets GCN GAT CSGNN SkipGNN CGCN

AUC AUPR AUC AUPR AUC AUPR AUC AUPR AUC AUPR

ChCh-Miner [65] 0.8984 0.8791 0.8786 0.8502 0.9350 0.9210 0.8819 0.8594 0.9426 0.9329

ChG-Miner [65] 0.9352 0.9409 0.9514 0.9499 0.9258 0.9307 0.9526 0.9524 0.9644 0.9627

DCh-Miner [65] 0.9966 0.9961 0.9966 0.9959 0.9914 0.9903 0.8446 0.8606 0.9972 0.9967

PPT-Ohmnet [65] 0.8937 0.8988 0.8798 0.8806 0.9031 0.9055 0.8091 0.7896 0.9143 0.9174

DG-AssocMiner [65] 0.9930 0.9906 0.9936 0.9916 0.9919 0.9896 0.8585 0.6679 0.9945 0.9925

PP-Decagon [66] 0.9138 0.9126 0.8836 0.8740 NAa NAa 0.8892 0.8819 0.9397 0.9402

PP-Pathways [66] 0.9394 0.9370 0.9225 0.9177 NAa NAa 0.9263 0.9228 0.9487 0.9453

HuRI-PPI [65] 0.9164 0.9189 0.8994 0.8965 0.9228 0.9269 0.9119 0.9182 0.9327 0.9333

CPI_human [67] 0.9423 0.9554 0.9578 0.9653 0.9696 0.9708 0.6232 0.6245 0.9738 0.9770

CPI_celegans [67] 0.9552 0.9661 0.9722 0.9774 0.9839 0.9852 0.7217 0.6995 0.9886 0.9891

Drugbank_DTI [68] 0.9234 0.9371 0.9476 0.9533 0.9737 0.9730 0.8946 0.6764 0.9750 0.9730

Drugbank_DDI [68] 0.9009 0.8949 0.9448 0.9514 0.9537 0.9495 0.8144 0.7772 0.9655 0.9678

AdverseDDI [69] 0.9492 0.9445 0.9381 0.9325 0.9540 0.9508 0.8450 0.7610 0.9466 0.9411
DisGeNET [70] 0.9723 0.9785 0.9829 0.9849 0.9869 0.9880 0.9145 0.9271 0.9895 0.9901

a NA indicates that the CSGCN model requires too much memory on the PP-Decagon and PP-Pathways datasets.

Table 3

The comparison between CGCN and four network embedding methods.

Datasets CGCN SDNE Node2Vec LINE DeepWalk

AUC AUPR AUC AUPR AUC AUPR AUC AUPR AUC AUPR

ChCh-Miner [65] 0.8560 0.8375 0.8668 0.8431 0.8436 0.8424 0.6881 0.6736 0.9426 0.9329

ChG-Miner [65] 0.6108 0.6114 0.9144 0.8943 0.7312 0.7354 0.7623 0.8159 0.9644 0.9627

DCh-Miner [65] 0.7769 0.7889 0.8020 0.8077 0.7494 0.7461 0.6279 0.6243 0.9972 0.9967

PPT-Ohmnet [65] 0.8652 0.8694 0.7608 0.7675 0.7118 0.7411 0.6274 0.6409 0.9143 0.9174

DG-AssocMiner [65] 0.5831 0.5797 0.8461 0.8272 0.6277 0.6323 0.7011 0.7201 0.9945 0.9925

PP-Decagon [66] 0.8812 0.8810 0.8309 0.8306 0.8159 0.8258 0.6279 0.6216 0.9397 0.9402

PP-Pathways [66] 0.9115 0.9116 0.7678 0.7786 0.8253 0.8283 0.6300 0.6280 0.9487 0.9453

HuRI-PPI [65] 0.9243 0.9324 0.8286 0.8300 0.7179 0.7400 0.6707 0.6866 0.9327 0.9333

CPI_human [67] 0.9613 0.9714 0.9523 0.9441 0.7600 0.7798 0.8620 0.8876 0.9738 0.9770

CPI_celegans [67] 0.9793 0.9826 0.9706 0.9697 0.8331 0.8558 0.8388 0.8303 0.9886 0.9891

Drugbank_DTI [68] 0.7109 0.6988 0.9634 0.9481 0.5725 0.6037 0.8351 0.8819 0.9750 0.9730

Drugbank_DDI [68] 0.8048 0.7776 0.8085 0.7804 0.7785 0.7523 0.7265 0.6926 0.9655 0.9678

AdverseDDI [69] 0.8945 0.8630 0.8954 0.8810 0.8758 0.8482 0.7829 0.7460 0.9466 0.9411

DisGeNET [70] 0.6831 0.6520 0.8821 0.8725 0.6801 0.6688 0.6995 0.7210 0.9895 0.9901
ORCs. Second, we systematically change the number of nodes from 200 
to 20,000 (while keeping 𝑝 and 𝑞 to be 0.1 and 0.0001, respectively). 
Third, we fix the number of nodes to be 400 and 4000, and systemati-
cally change the network density, i.e., the ratio of edge number to the 
number of all possible edges (in a complete graph).

We use batch size 128 with Adam optimizer of learning rate 5e-4 and 
run CGCN model in PyTorch. For training, we use a server with 2 In-
tel(R) Core (TM) I9-10900X 3.70 GHz CPUs, 64 GB RAM and 2 NVIDIA 
GeForce RTX 2070 GPUs. For more detailed parameter introduction of 
the model, please refer to the source code.1

4.2. CGCN for biomedical network analysis

In this section, we conduct tests to compare CGCN with all the 
baselines on 14 real-world biomedical datasets. The AUC and AUPR 
of various methods in link prediction tasks are shown in Table 2 and 
Table 3. Table 2 lists the results of graph neural network methods and 
Table 3 lists the results of network embedding methods. Our CGCN 
model performs well on most datasets, achieving the best predictive 
performance on 13 of 14 datasets. Although these 14 datasets differ 
greatly in terms of network size, average node degree, density, and 
ratio of positive to negative curvature, our CGCN shows a consistent 
good performance. In particular, our CGCN model demonstrates great 
superiority on datasets of ChCh-Miner, ChG-Miner, Drugbank_DTI and 
Drugbank_DDI, in which the results of CGCN are better than GCN model 

1 A reference implementation of CGCN may be found at https://github .com /
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CS -BIO /CGCN.
by 4.9%, 3.1%, 4.8% and 7.2% respectively. Although on AdverseDDI 
dataset, the performance of our CGCN is not the best, it is only inferior 
to CSGCN and better than all other models. In general, CGCN shows 
strong superiority in comparison with both graph neural network mod-
els and network embedding methods.

4.3. CGCN performance analysis

In order to further verify the performance of CGCN under vari-
ous datasets and analyze the limitations of CGCN, we design multiple 
test cases based on three types of graph properties, including the ra-
tio between positive and negative curvature, network size, and network 
density. The networks are generated by using the probability of node 
connection within the community (𝑝) and the probability of node con-
nection between communities (𝑞). AUC is used as the metric for the 
evaluation of the performance. We systematically compare our CGCN 
model with GCN model [18]. The difference between the AUCs in three 
types of graph property tests is calculated and the results are illustrated 
in Fig. 3. Note that y-axis represents the difference between the AUCs 
of CGCN and GCN in all four subfigures, i.e., AUCCGCN −AUCGCN.

First, we analyze the effect of ratios between positive and negative 
curvature. We generated 34 random networks with a relatively contin-
uous distribution of positive-to-negative-curvature ratios ranging from 
0.004 to more than 600. The results are shown in Fig. 3A. It can be 
seen that no matter what the positive-to-negative ratios are, our CGCN 
performance is always better than that of GCN model, which shows 
that the performance of CGCN is robust to positive-to-negative ratios. 
In particular, graphs with small positive-to-negative ratios usually have 

a network topology close to a tree, while large positive-to-negative ra-

https://github.com/CS-BIO/CGCN
https://github.com/CS-BIO/CGCN
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Fig. 3. The comparison of the results from CGCN and traditional GCN on simulated datasets. A Performance comparison between CGCN and GCN on different 
ratios of positive to negative curvatures. B Performance comparison between CGCN and GCN on different network sizes. C Performance comparison between CGCN 
and GCN on small-size (400) networks with different network densities. D Performance comparison between CGCN and GCN on large-size (4000) networks with 

different network densities.

tios are associated with complete graphs. The better performance of our 
CGCN indicates that it is suitable for all kinds of network topologies.

Second, we explore the impact of network sizes on model perfor-
mance. We set the number of nodes in the simulated network to increase 
from 200 to 20,000 sequentially. The performance of CGCN and GCN 
models is shown in Fig. 3B. It can be seen that when the number of 
nodes in the network is greater than 500, the performance of CGCN is 
better than that of GCN. When the number of nodes is less than 500, 
CGCN cannot show obvious superiority, as indicated by the red bars. 
This indicates that our CGCN model is more suitable for large-sized net-
works, i.e., nodes larger than 500. These results are consistent with the 
ones from 14 real-world biomolecular datasets. In fact, our CGCN model 
is only inferior to traditional GCN model on the AdverseDDI dataset, 
whose number of nodes is 393 (<500).

Third, we analyze the impact of network densities on model perfor-
mance. Fig. 3C and 3D show the prediction performance of the CGCN 
model under different network densities when the number of network 
nodes is 400 and 4000, respectively. It can be seen that the AUC value 
of the CGCN model is consistently smaller than that of the GCN in the 
network with 400 nodes and consistently larger than that of the GCN in 
the network with 4000 nodes. The results show that our CGCN model is 
relatively stable under different network densities, and the performance 
of our CGCN is more related to graph sizes.

Fourth, we analyze the impact of the ORC-based vector in Eq. (6)
on the performance of CGCN. In particular, we systematically change 
parameter 𝑛𝑐 from 1 to 10 and study the performance of our CGCN 
models. The results for the 14 biomolecular interaction datasets under 
different 𝑛𝑐 values are displayed in Fig. 4 A. The average values of 
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AUC for all 14 systems are illustrated in Fig. 4 B. It can be seen that 
even though for some cases, there are fluctuations of AUC values, in 
general, with the increase of parameter 𝑛𝑐 , the performance will slightly 
increase.

4.4. CGCN for representation learning

In this section, we explore the capabilities of the CGCN model in 
terms of representation learning. We extract the representation vectors 
of each node in the test datasets and use t-SNE [75] to project the high-
dimensional representation vectors into 2D space. The whole datasets 
are considered. Our CGCN model is compared with four network em-
bedding models (DeepWalk, LINE, Node2Vec and SDNE), which usually 
are used to network representation learning in various tasks. The results 
are shown in Fig. 5 and 6, in which the red and blue points represent 
node pairs without link relationship and node pairs with link relation-
ship, respectively. It can be seen from the results that the proposed 
CGCN model is significantly better than the other four network em-
bedding methods in distinguishing node pairs with links and node pairs 
without links. Quantitatively, in terms of the Davies Bouldin index (DBI) 
[76] (the smaller, the better), which is a metric to evaluate the cluster-
ing results, CGCN clearly outperforms other models. These result shows 
that the CGCN model has a good capability in representation learn-
ing.

5. Conclusions

The proper incorporation of geometric information into deep learn-
ing architectures plays a key role in geometric deep learning models. 
As one of the fundamental concepts in different geometry, Ricci cur-

vature characterizes the intrinsical properties of manifold surfaces. The 
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Fig. 4. Effect of hyperparameter 𝑛𝑐 . A Effect of hyperparameter 𝑛𝑐 on different systems. B Average performance of the 14 datasets under different 𝑛𝑐 values.

Fig. 5. The performance of representation learning on ChCh-Miner, ChG-Miner, DCh-Miner, PPT-Ohmnet, DG-AssocMiner, PP-Decagon and PP-Pathways 
network datasets. The representation vectors of each node in the test datasets are projected into 2D spaces by t-SNE. The red and blue points represent node pairs 
1022

without link relationship and node pairs with link relationship, respectively. Four network embedding methods are considered in our comparison.
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Fig. 6. The performance of representation learning on HuRI-PPI, CPI_human, CPI_celegans, Drugbank_DTI, Drugbank_DDI, AdverseDDI and DisGeNET 
network datasets. The representation vectors of each node in the test datasets are projected into 2D spaces by t-SNE. The red and blue points represent node pairs 
without link relationship and node pairs with link relationship, respectively. Four network embedding methods are considered in our comparison.
discrete Ricci curvatures have found various applications in network 
and graph data analysis. In particular, they have been used in the char-
acterization of “over-squashing” phenomenon. In this paper, we propose 
a curvature-enhanced graph convolutional network (CGCN) to incorpo-
rate the Ollivier-Ricci curvature (ORC) information into node feature 
aggregation process. With a better characterization of local topolog-
ical structures through ORCs, our CGCN model has a more efficient 
message-passing operator. Experimental results show that the proposed 
model outperforms the competitive methods in 13 our of 14 real-world 
biomedical datasets and ranks as second in the rest one. In the simulated 
tests, our CGCN model is superior to the traditional GCN model regard-
less of the positive-to-negative-curvature ratios, network densities, and 
network sizes (when larger than 500).
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