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IgA is one of the most important molecules in the regulation of intestinal homeostasis.
Peyer’s patches have been traditionally recognized as sites for the induction of intestinal
IgA responses, however more recent studies demonstrate that isolated lymphoid folli-
cles (ILFs) can perform this function as well. ILF development is dynamic, changing in
response to the luminal microbial burden, suggesting that ILFs play an important role
providing an expandable reservoir of compensatory IgA inductive sites. However, in situa-
tions of immune dysfunction, ILFs can over-develop in response to uncontrollable enteric
flora, resulting in ILF hyperplasia. The ability of ILFs to expand and respond to help control
the enteric flora makes this dynamic reservoir an important arm of IgA inductive sites in
intestinal immunity.
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INTRODUCTION
IgA is the most abundantly produced antibody, representing 70%
of antibody production (Macpherson and Uhr, 2004; Macpherson
et al., 2008). The majority of IgA is secreted at mucosal surfaces,
and plays a major role in immune homeostasis by protecting these
surfaces from bacterial or viral attack. Accordingly, there is signif-
icant interest in how and where IgA production is initiated and
how this defense mechanism can be enhanced to meet ongoing
challenges. In this review we will focus on the role of isolated
lymphoid follicles (ILFs) as sites initiating IgA production, high-
lighting the dynamic nature of ILFs IgA production and the role
of environmental stimuli in this process.

MUCOSAL LYMPHOID TISSUES IN THE GASTROINTESTINAL
TRACT AS SITES FOR THE INITIATION OF IgA PRODUCTION
It has long been appreciated that the gastrointestinal tract contains
well developed lymphoid tissues with a unique environment spe-
cialized for IgA production (Fagarasan, 2006; Macpherson, 2006).
Instead of mounting a strong systemic Th1, Th2, or IgG response, a
role of these lymphoid tissues is to promote homeostatic responses
against luminal antigens by inducing IgA, which is secreted into
the lumen. Within the mucosal lymphoid tissues of the intesti-
nal tract, made up of Peyer’s patches (PPs), ILFs, and Colonic
Patches, TGFβ1 is crucial for IgA production and expressed by sev-
eral cell types promoting the majority of gut B cells to differentiate
into IgA producing plasma cells (Coffman et al., 1989). Mucosal
lymphoid tissue dendritic cells (DCs) express the TNF superfam-
ily members a proliferation inducing ligand (APRIL) and B cell
activation factor of the TNF family (BAFF) which promote IgA
production in B cells expressing the transmembrane activator and
calcium modulator and cyclophilin ligand interactor (TACI) and
the B cell maturation antigen (BCMA), the receptors for APRIL
and BAFF (Fink and Frøkiær, 2008; Massacand et al., 2008; Tsuji
et al., 2008). T cells found near the B cells follicles in the intestinal
tract express yet another TNF superfamily member, CD40L, which

promotes class-switch recombination (CSR) in B cells (Fagarasan
et al., 2010). In normal SPF housed mice, the continual induc-
tion of IgA producing B cells is evident by the presence of GL7+
germinal centers within PP follicles. Activation-induced cytidine
deaminase (AID), necessary for both CSR and somatic hypermuta-
tion (SHM), is also present in PP B cells. Currently it is thought PPs
utilize mostly T cell dependent routes for IgA production as germi-
nal center formation in PPs is dependent on both CD40–CD40L
signaling from T cells (Bergqvist et al., 2006) and the presence of
T cells (Tsuji et al., 2008). However mice lacking CD40, CD40L,
or T cells still have near normal levels of IgA. This IgA may arise
from B-1 B cells and have lower specificity and altered function-
ality. Still, it is evident there are many compensatory mechanisms
for IgA production in the intestine.

The best recognized of the IgA inducing lymphoid tissues are
PPs, which are scattered along the anti-mesenteric border through-
out the length of the small intestine (Schuurman et al., 1994). The
murine colon contains a PP equivalents located in the cecum, or
the cecal patch (Owen et al., 1991), and multi-follicle structures
throughout the colon, or colonic patches (O’Leary and Sweeney,
1986). Depending on the strain of mouse, there are usually 7–10
PPs in the small intestine, each with multiple follicles containing
naïve B-2 B cells (Husband and Gowans, 1978). PPs also contain
CD4+ TCRβ+ T cells in between the follicles in T cell zones and
different classes of CD11c+ DCs (Iwasaki and Kelsall, 2000). PPs
sample luminal antigens through specialized antigen transporting
cells known as Microfold cells, or M cells (Gebert et al., 1996). Fol-
licular DCs (FDCs), within the B-cell follicles present the antigen
in a T cell dependent manner to B cells, which undergo activation
and class-switch from IgM to IgA (Garside et al., 2004).

More recently it was appreciated that the small intestine and
colon contained an additional type of lymphoid tissue, the soli-
tary intestinal lymphoid tissues (SILT; Hamada et al., 2002; Lorenz
et al., 2003; Pabst et al., 2006). In contrast to PPs, which remain
fully developed throughout life, SILT are a spectrum of lymphoid
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tissues ranging from nascent cryptopatches (CPs) to fully devel-
oped mature ILFs (mILFs; Lorenz et al., 2003; Pabst et al., 2006).
CPs, aggregates of approximately 1000 cells, are composed of
RORγt+ lymphoid tissue inducer (LTi) cells and lymphoid tis-
sue organizer (LTo) cells found around the crypts of the small
intestine (Kanamori et al., 1996). By secreting lymphocyte attract-
ing chemokines, CPs are able to develop into ILFs in response to
signals originating from the commensal enteric flora (Pabst et al.,
2006). Small immature ILFs contain a mixture of T cells and B cells
and through further recruitment of B cells develop into mILFs,
which have an overlying follicle-associated epithelium (FAE) con-
taining M cells and B cell follicles with germinal centers (Lorenz
et al., 2003). Approximately 1000 SILT are scattered throughout
the murine small intestine, and in most situations CPs greatly
outnumber ILFs. Current evidence shows that de novo develop-
ment of CPs does not continually occur throughout adulthood
(Velaga et al., 2009): as needed, a CP may develop further into an
ILF (Taylor et al., 2004), a process that does continue throughout
adulthood. In mice aged 2 years, all classes of SILT except CPs,
were increased (McDonald et al., 2011), indicating the continual
development of ILFs as a site for IgA induction when needed.

Isolated lymphoid follicles were described relatively recently
in humans (Moghaddami et al., 1998) and in mice (Hamada
et al., 2002) as a small intestinal villi containing a single B cell
follicle, but were immediately suggested to be a compensatory
mechanism for humoral responses, able to support IgA responses.
Similar to PPs, ILFs contain mostly CD19+ B-2 B cells that have
yet to undergo CSR (Lorenz and Newberry, 2004). CD4+TCRβ+
T cells and MHCII+ CD11c+ antigen presenting cells make up
approximately 25% of the ILFs (Hamada et al., 2002; Lorenz and
Newberry, 2004). M cells are found on the FAE of the ILFs, indi-
cating antigen introduction to the follicle also occurs via M cells
(Lorenz et al., 2003).

The observation that mice lacking PPs could still produce and
secrete IgA in response to luminal antigen led many to believe IgA
CSR could occur outside of organized lymphoid tissues (Hamil-
ton et al., 1981; Yamamoto et al., 2000). However following the
identification of ILFs, these observations could be reinterpreted to
support a role for ILFs in IgA production.

ILFs ARE A DYNAMIC RESERVOIR OF IgA INDUCTIVE SITES
Though CPs and ILFs require many of the same molecules nec-
essary for PP development, signals from the diet and the enteric
flora are required for the development of ILFs, but not PPs. PPs
are embryonically imprinted, developing around day 14 of ges-
tation, while SILT is only present postnatally, appearing in the
first few weeks of life (Kanamori et al., 1996; McDonald et al.,
2010). The initial aggregation of LTi cells in both PPs and CPs
require lymphotoxin signaling as neither PPs nor any SILT are
found in LTα−/− or LTβR−/− mice (DeTogni et al., 1994; Taylor
et al., 2004). However recent work has shown a requirement for
the expression of the aryl hydrocarbon receptor (AHR) in the dif-
ferentiation of LTi cells postnatally, but not during embryogenesis
(Kiss et al., 2011; Lee et al., 2011). Knocking out AHR, expressed
on RORγt+ LTi cells, unexpectedly resulted in the absence of any
CPs or ILFs, while the lymph nodes and PPs were undisturbed (Lee
et al., 2011). Keeping mice on diets free of AHR ligands reproduced

the lack of CPs and ILFs, while mice fed a diet including indole-
3-carbinol, an AHR ligand found in Brassicaceae plants (such as
broccoli or cauliflower) developed normal numbers of intestinal
lymphoid aggregates (Kiss et al., 2011). Thus diet initiates one of
the early steps in ILF development revealing an unappreciated role
for nutrition in IgA induction (Figure 1).

After the initial development of a CP, the constituent cells
secrete chemokines to recruit lymphocytes to the aggregate. As
future IgA induction sites, the recruitment of B cells to the SILT
is an important step in the development from a CP to an ILF.
LTo cells/stromal cells and CD11c+ cells within CPs and/or ILFs
express CXCL13, a B cell attractant (Gunn et al., 1998; Ansel et al.,
2000; Honda et al., 2001; Cupedo et al., 2004; van de Pavert et al.,
2009; McDonald et al., 2010). Knocking out the CXCL13 or its
receptor CXCR5 results in normal numbers of CPs, but an absence
of mILFs (Velaga et al., 2009; McDonald et al., 2010). Alterna-
tively, SILT can be pushed from CPs to ILFs by increasing the local
concentration of CXCL13 through transgenic expression by gut
epithelial cells (Marchesi et al., 2009), resulting in an increase in
ILFs, but not the absolute number of intestinal aggregates.

Mature ILFs could form as a result of the expansion of a
small number of B cells present within the SILT and/or due to
the recruitment of B cells from the systemic pool. Work with
the AID−/− mice, which have an expanded ILFs compartment,
suggested B cells within SILT expand concurrently with ILF devel-
opment (Fagarasan et al., 2002). However, analysis of individual
ILFs from wild type mice demonstrated the ILFs contained a pop-
ulation of polyclonal B cells which reflected the systemic B cell
pool (Wang et al., 2006). Further work with naïve mice revealed
diverse variable heavy chain usage in ILFs, again reflecting the
systemic population of B cells (McDonald et al., 2011). While evi-
dence exists to support both pathways, recruitment of systemic
polyclonal B cell population would give ILFs a greater potential to
respond to a wide range of antigens.

Along with changes to the cellular components of the ILFs,
changes outside the lymphoid structures must occur during the
development of the ILFs. The eventual mILF will have moved
from the crypt into a villus, displacing the original lamina pro-
pria cells. The epithelium overlying the ILF must change from
the villus epithelium to FAE, which lacks goblet cells and con-
tains M cells (Lorenz and Newberry, 2004). While this process
is not well understood, the cytokine receptor activator of NF-
κB ligand (RANKL) appears to be a strong candidate promoting
this transition. RANKL is a TNF super family cytokine that is
expressed to varying degrees in all GALT (Taylor et al., 2007).
RANKL can be found on the stromal cells throughout CPs, but
in PPs and ILFs, RANKL staining is confined to the subepithe-
lial dome, the area right beneath the FAE (Taylor et al., 2007).
Though initial development of CPs is not dependent on RANKL,
there is a significant decrease of CPs in RANKL−/− mice (Knoop
et al., 2011). Furthermore RANKL−/− mice fail to develop ILFs
due to a lack of CXCL13 expression within CPs (Knoop et al.,
2011). As the ILF develops, RANKL expression becomes restricted
to the subepithelial dome inducing the development of M cells and
FAE from what was once villus epithelium (Knoop et al., 2009)
demonstrating multiple roles for RANKL in the development
of GALT.
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FIGURE 1 | Dietary ligands drive the development of CPs, which

expand into mature ILFs in response to bacterial stimuli. The
development of CPs requires dietary signals delivered through the aryl
hydrocarbon receptor (AHR) expressed by RORγt+ LTi cells. LTi cells in
turn express lymphotoxin (LTα1β2) and transmit a signal to lymphotoxin
beta receptor (LTβR) expressing LTo (stromal) cells inducing the production
of a chemokines resulting in cryptopatch formation. In response to further
lymphotoxin signals and enteric flora, chemokines, including CXCL13,
recruit lymphocytes to transform CPs into immature ILFs and
subsequently mature ILFs. The transition of an immature ILF to a mature

ILF is dependent upon further lymphotoxin and RANKL signals driving the
development of germinal centers and the development of an FAE. Mature
ILFs promote naïve B cells to become IgA plasmablasts responding to
luminal antigens delivered via the FAE. These plasmablasts are believed to
migrate to the lamina propria by yet undescribed mechanisms to become
plasma cells producing IgA specific for luminal antigens and by extension
regulating the enteric flora. When challenges from the enteric flora are
controlled, mature ILFs can regress to their precursor stages. The
pathways presented in this figure are restricted to those discussed in this
review.

The transition of CP to mILFs can be driven by changes in
the enteric flora. While CPs, immature ILFs, and PPs are found in
germfree mice (Kanamori et al., 1996), mILFs are rare and increase
in response to conventionalization with normal flora (Lorenz et al.,
2003). One mechanism appears to be bacterial stimulation of
NOD1, an intracellular pattern recognition receptor found in the
epithelium, which has been shown to lead to ILF development
(Bouskra et al., 2008). Thus two key signals for ILF development
are enteric flora and diet, neither of which are required for the
development of PPs. It seems likely the purpose of SILT is to
adapt to the ever-changing enteric flora and diet of an individual,
producing IgA in response to new environmental cues (Figure 1).

Evidence of the adaptability of SILT can be seen in mouse mod-
els where PP development is blocked by disrupting lymphotoxin
signaling during the embryonic stage; development of PPs is com-
pletely blocked and cannot be rescued during adulthood (Rennert
et al., 1996; Lorenz et al., 2003). In this model, ILF development
still occurs unperturbed throughout adulthood. Furthermore ILF
development is increased 10-fold, expanding in response to the
lack of PPs (Lorenz et al., 2003). The plasticity of ILF development,
seen in the ability of ILFs to expand as needed, aptly compensates
for PPs, which are fixed in number and position.

ILF’s ROLE IN IgA PRODUCTION
There is little doubt that ILFs are able to induce IgA responses.
Early studies on ILFs showed the B cells within the follicles are
mostly B220+ CD19+CD23+IgMlowIgDhigh cells and relatively
few are IgA+ (Hamada et al., 2002), representing a population

of B cells poised to undergo activation, CSR, and SHM. Most
work showing ILFs contribute to IgA production was completed
in mouse models, which lack PPs, yet are still able to develop
ILFs. Indeed, LTα−/− mice, which lack any organized lymphoid
structures, including PPs and ILFs, make only a small amount of
IgA, presumably by B-1 B cells (Thurnheer et al., 2003). LTα−/−
mice reconstituted with C57Bl/6 bone marrow develop ILFs,which
restore IgA production in the intestine (Lorenz and Newberry,
2004; Hashizume et al., 2007). Similar results were seen with
RORγt−/− mice, which lack PPs and ILFs: when reconstituted with
RORγt+ bone marrow ILFs develop and IgA production becomes
restored (Tsuji et al., 2008).

LTβR blockade by the injection LTβR-Ig fusion protein on or
before day 17 of gestation prevents PP development (Rennert et al.,
1996) and has been used as a model to infer the role of MLNs
in IgA production (Yamamoto et al., 2000). Following in utero
LTβR blockade, these mice produce normal levels of IgA and
make specific IgA against OVA and cholera toxin (Yamamoto et al.,
2000). While these studies attributed this IgA production to the
MLN, subsequent work revealed that gestational LTβR-Ig treat-
ment resulted in enhanced ILFs development (Lorenz et al., 2003),
and in retrospect ILFs could also contribute to the IgA production
in these mice.

To be a useful compensatory mechanism for IgA, an ILF should
induce high-affinity IgA specific against antigen epitopes. The
specificity of IgA produced in ILFs was called into question when
specific IgA was not seen in ILFs against tetanus toxoid fol-
lowing immunization (Hashizume et al., 2008). However other
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studies provide evidence for ILF generated antigen-specific IgA
in response to multiple antigens. Upon oral immunization with
the T cell dependent antigen sheep red blood cells, ILFs pro-
duced antigen-specific IgA at levels equivalent to PPs (Lorenz and
Newberry, 2004). Moreover mice possessing mILFs, but lacking
PPs and other secondary lymphoid tissues were found to have
antigen-specific IgA in their feces following infection with Salmo-
nella typhimurium (Lorenz and Newberry, 2004). Furthermore,
analysis of the B cell repertoire in ILFs demonstrated ILFs con-
tain a pool of B cells similar to the repertoire seen in PPs and
spleen (McDonald et al., 2011). Collectively, the literature suggests
ILFs have the potential to respond to a wide array of antigens and
mount specific responses against enteric bacteria.

Some findings suggest that while PPs are the major source
of T cell dependent responses, ILFs contribute a compensatory
mechanism by housing T cell independent responses (Tsuji et al.,
2008). A T cell independent mechanism for IgA production has
been described in TCRβ−/−δ−/−mice, which produce IgA specific
for commensal bacteria, and can respond to changes in the gut
flora (Macpherson et al., 2000). The T cell independent pathway
for IgA has been shown to be dependent on APRIL and sug-
gested to be quite important for the production of IgA specific
for commensal bacteria (Castigli et al., 2004). Further work with
the TCRβ−/−δ−/− mice suggested ILFs, but not PP, can house T
cell independent IgA responses (Tsuji et al., 2008). PPs from these
mice formed defective GC and failed to activate AID, while ILFs
contained AID+ B cells undergoing CSR to IgA (Tsuji et al., 2008).

During T cell dependent IgA production, B cells become acti-
vated by the presentation of antigen from FDCs and by CD40
signals from T cells (MacLennan, 1994). This leads to upregulation
of AID, which is responsible for both SHM and CSR (Longerich
et al., 2006). TGFβ1, expressed by several cell types in the gut, pro-
motes CSR to IgA (Fagarasan et al., 2010). In the absence of T cells,
DCs from ILFs, but not PPs appear to be sufficient for IgA produc-
tion from B cells (Fagarasan et al., 2010). The DCs are thought to
use APRIL, BAFF, and TGFβ1 to promote IgA production. Inter-
estingly, it was found RORγt+ LTi cells are indispensible for the
T cell independent production of IgA in this model (Tsuji et al.,
2008). The combination of LTi cells, DCs, and naïve B cells are
rarely found in the LP outside of ILFs, suggesting this model of T
cell independent IgA production can only be induced in organized
lymphoid tissue.

Other mouse models indicate that in addition to ILFs, PPs can
support T cell independent means of IgA induction. CD40−/−
mice were shown to have only rare IgA CSR events in small
intestine PPs, though AID was activated (Bergqvist et al., 2006).
CD40−/− mice still maintained high levels of IgA, and it was
later shown IgA CSR can occur in PPs, ILFs, and colonic patches
(Bergqvist et al., 2010). This work concluded though CSR was
found in some ILFs, the majority of IgA CSR in the absence of T
cells occurs in the PPs. The role for T cells seems to be more impor-
tant for SHM as the IgA in CD40−/− mice showed few mutations
in the variable regions (Bergqvist et al., 2010).

Technology has moved past merely looking for the presence or
absence of specific IgA using ELISAs. Now with the genetic analysis
options available, the ability to track specific clones of B cells and
closely watch the variation in the IgA repertoire during infections

can better answer how the majority of IgA is produced in the gut
(Spencer et al., 2009). Indeed such genetic analysis of the clonal
relationship between B cells and IgA Plasma cells is already being
incorporated into reports (Bergqvist et al., 2010) better showing
when SHM and CSR has occurred. Not only will this help clarify
the field, but also help focus mucosal vaccine work in the attempts
to target better IgA responses for protection against gut pathogens.

ILF HYPERPLASIA AS A SIGN OF IMMUNE DYSFUNCTION
As described in the above sections, multiple studies support that
ILFs develop in response to changes or imbalances in the luminal
microbial community and function to promote IgA production.
Furthermore IgA produced at mucosal surfaces can in turn alter or
control the luminal microbial community returning it to home-
ostasis (Cerutti and Rescigno, 2008). Together these observations
suggest that ineffective IgA production would be unable to con-
trol the luminal microbiota and result in expansion of ILFs, and
thus prolonged ILF hyperplasia could be viewed as a sign of IgA
dysfunction.

Though ILF hyperplasia has been known to occur in humans
for some time (Webster, 1973), the first mouse model that included
ILF hyperplasia was the AID−/− mice (Fagarasan et al., 2002).
Since AID is required for both CSR and SHM, these mice can
only produce low-affinity IgM. In the absence of high-affinity IgA,
the enteric flora quickly becomes altered, with a 100-fold expan-
sion in anaerobic bacteria (Fagarasan et al., 2002). Anaerobes are
notable for their opportunistic tendencies to quickly expand with-
out proper IgA control (Suzuki et al., 2004; Ohashi et al., 2010).
Intriguingly, AID−/− mice develop massive ILF hyperplasia in
response to the increases in the enteric flora (Fagarasan et al.,
2002). Similarly, mice with a mutated form of AID that allows for
CSR but not SHM still have expanded flora due to low-affinity IgA
that is unable to control bacterial growth (Wei et al., 2011) and
with the expanded flora, these mice also develop ILF hyperplasia.

The ability for ILFs to rescue an inferior IgA response was seen
in recent studies investigating chemokine receptor 10 (CCR10)
expression by plasma cells (Hu et al., 2011). IgA+ plasma cells are
unable to migrate to the intestine in CCR10-KO/EGFP-knock-in
mice, yet the mice maintain normal levels of fecal IgA and have
no significant increase in luminal flora due to an increase in IgA
producing plasma cells in ILFs. While evidence to support that a
large population of IgA producing plasma cells resides in the ILFs
in the setting of CCR10 sufficiency is lacking and the migration
and fate of ILF generated IgA+ plasmablasts is largely unknown, it
is clear in this model that ILF development is increased in response
to the commensals, and that IgA is induced within ILFs to con-
trol the enteric flora. Furthermore, the number of ILFs decreased
upon antibiotic treatment (Hu et al., 2011), illustrating how ILF
may devolve once they are no longer needed.

Immune dysfunction does not have to be caused by a genetic
mutation; immunosenescence in aged individuals is seen as a dys-
function in protective immunity and can affect gastrointestinal
immunity as well as systemic immunity (Schmucker and Daniels,
1986; Schmucker et al., 1996). Mice aged 2 years show many signs
of immune dysfunction in the gut (McDonald et al., 2011). There
is a threefold increase in all classes of ILFs and these ILFs contain an
aberrant cellular population with decreased numbers of B cells and
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increased numbers of T cells, specifically CD4+ CD8αα+ T cells
(McDonald et al., 2011). Along with the greatly elevated amounts
of IgA, purportedly from the ILFs, these signs all point to immune
dysfunction. Since aged rats have been shown to have increased
numbers of anaerobic bacteria (Maczulak et al., 1989). A similar
expansion could occur in aged mice when immune dysfunction
prevents proper control of the bacteria and drive the development
of the ILFs in aged mice.

Clinically an increase of ILFs in the small intestine has long
been seen as a symptom of immune dysfunction (Bastlein et al.,
1988). In children, a common endoscopic finding is the large num-
ber of tiny lymphoid nodules located in the terminal ileum and
colon referred to as lymphonodular hyperplasia (LNH), or nodu-
lar lymphoid hyperplasia (Laufer and deSa, 1978). It was first
described as an age-related finding in children of minimal signif-
icance, but further work noted a close association between LNH
and the development of food allergies. It was shown that children
with LNH were two to three times more likely to have non-IgE
mediated allergies to food such as milk or cereal (Kokkonen et al.,
1999) including high levels of IgG and IgA against milk proteins
(Kokkonen et al., 2002), increased numbers of γδ T cells asso-
ciated with the lymphoid follicles (Kokkonen et al., 2000), and
increased CD4+ T cells with decreased Th1 cytokines (Bellanti
et al., 2003). LNH was not found to be associated with Crohn’s dis-
ease or NOD2/CARD15 mutations raising speculation that LNH
is not related to inflammatory disease, but may be a response to
the microbial environment (Shaoul et al., 2006) as children with
LNH showed a significant increase in number of bacteria adher-
ent to the intestinal mucosa layer (Conte et al., 2006). Collectively,
LNH appears not to be the cause of the food allergies, but rather a
symptom of an expanded flora during immune dysfunction.

Lymphoid hyperplasia can also be found in adults, though
more rarely than in children (Misra et al., 1998; Carroccio et al.,

2009). It is also found alongside food allergies in adults (Krauss
et al., 2010) but is generally associated with genetic immune
disorders such as common variable immune deficiency (CVID;
Webster, 1973; Scharenberg et al., 1993). CVID patients have
reduced ability to undergo SHM and as a result have low con-
centrations of IgG and IgA. LHN develops in about 20% of
CVID (Bastlein et al., 1988) and those patients have increased
intestinal IgM compared to CVID patients without LHN, con-
sistent with ILFs contributing to the antibody response in these
individuals (Webster et al., 1977). Treatment is rarely recom-
mended to stop the development of the follicles, differentiating
these lymphoid follicles from more problematic follicles that
develop in other intestinal inflammatory diseases. The LHN asso-
ciated with CVID likely develops in a manner similar to the
ILF hyperplasia seen in the AID−/− mice; the lymphoid fol-
licles develop not because of the CVID but due to continual
signals from the expanded microflora able to grow uncontrol-
lably without the reins of IgA. Until the flora is controlled, usu-
ally by means of antibiotic treatment, the follicles will continue
to develop in an attempt to fight the perceived threat to the
intestines.

CONCLUSION
In this review we have illustrated how ILFs develop in response
to diet and commensals and how ILFs can compensate for inad-
equate IgA responses. Though their relative contribution to IgA
production has yet to be enumerated compared to PPs, it is clear
that induction of IgA responses is a function of an ILF. Further
work still needs to examine the specific antigenic targets of the
IgA that comes from ILFs, but one would expect most of the tar-
gets come from the enteric flora since the development of ILFs is
highly responsive to the billions to bacteria that reside in the gut
lumen.
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