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Abstract

Background: TNF-related apoptosis-inducing ligand (TRAIL) is an immune effector molecule that functions as a selective
anti-tumor agent. However, tumor cells, especially metastatic tumor cells often exhibit a TRAIL-resistant phenotype, which is
currently a major impediment in TRAIL therapy. The aim of this study is to investigate the synergistic effect of TNFa and IFN-
c in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis.

Methodology/Principal Findings: The efficacy and underlying molecular mechanism of cooperation between TNFa and
IFN-c in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis were examined. The functional
significance of TNFa- and IFN-c-producing T lymphocyte immunotherapy in combination with TRAIL therapy in suppression
of colon carcinoma metastasis was determined in an experimental metastasis mouse model. We observed that TNFa or IFN-
c alone exhibits minimal sensitization effects, but effectively sensitized metastatic colon carcinoma cells to TRAIL-induced
apoptosis when used in combination. TNFa and IFN-c cooperate to repress Bcl-xL expression, whereas TNFa represses
Survivin expression in the metastatic colon carcinoma cells. Silencing Bcl-xL expression significantly increased the metastatic
colon carcinoma cell sensitivity to TRAIL-induced apoptosis. Conversely, overexpression of Bcl-xL significantly decreased the
tumor cell sensitivity to TRAIL-induced apoptosis. Furthermore, TNFa and IFN-c also synergistically enhanced TRAIL-induced
caspase-8 activation. TNFa and IFN-c was up-regulated in activated primary and tumor-specific T cells. TRAIL was expressed
in tumor-infiltrating immune cells in vivo, and in tumor-specific cytotoxic T lymphocytes (CTL) ex vivo. Consequently, TRAIL
therapy in combination with TNFa/IFN-c-producing CTL adoptive transfer immunotherapy effectively suppressed colon
carcinoma metastasis in vivo.

Conclusions/Significance: TNFa and IFN-c cooperate to overcome TRAIL resistance at least partially through enhancing
caspase 8 activation and repressing Bcl-xL expression. Combined CTL immunotherapy and TRAIL therapy hold great
promise for further development for the treatment of metastatic colorectal cancer.
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Introduction

Recent advance in chemotherapeutic and biological agents for

metastatic colorectal cancer, combined with liver resection, has

dramatically increased the survival of patients with advanced

colorectal cancer [1]. However, metastasis is still the primary cause

of mortality of colorectal cancer patients and there are currently

very limited treatment options for patients with metastatic

colorectal cancer. Therefore, novel therapeutic approaches are

in urgent need. Over the past decade, accumulating experimental

data from both animal models and human patients suggest that the

host immune system functions as an extrinsic tumor suppressor [2]

that might be developed into effective therapies against metastatic

human cancer [3,4]. Molecular analysis of large cohorts of human

colorectal cancers revealed that the level of T lymphocytes and

immune effector molecules in the tumor microenvironment are

positively correlated with the growth, metastasis and recurrence of

human colorectal tumors [5,6,7,8]. Therefore, both immune cells

and immune effector molecules are potentially effective anti-tumor

biologic agents.
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TNF-related apoptosis-inducing ligand (TRAIL, also known as

TNFSF10 or APO2L) is expressed on the surface of several subsets

of immune cells. TRAIL activates the extrinsic apoptosis signaling

pathways upon binding to its death domain-containing receptors

and has been under intense study ever since its discovery because it

preferentially induces apoptosis in a wide variety of tumor cells but

not in normal cells [9,10,11]. However, TRAIL only works in

TRAIL-sensitive tumors and most tumor cells often exhibit a

TRAIL-resistance phenotype, which is currently a major obstacle

in TRAIL-based cancer therapy [12,13,14]. To overcome tumor

resistance to TRAIL, various therapeutic agents are used in

combination with recombinant TRAIL or TRAIL receptor

agonist mAbs and have shown to be effective in enhancing

TRAIL efficacy against tumor cells [15,16,17,18,19,20,21,

22,23,24,25,26,27]. In addition to therapeutic agents, immune

modulating cytokine IFN-c has been shown to induce TRAIL

expression in various tissue NK cells and IFN-c-activated TRAIL

plays a significant role in IFN-c-dependent tumor suppression

[28]. Furthermore, IFN-c also regulates the expression of

apoptosis-related genes to overcome tumor cell apoptosis resis-

tance [29,30,31,32,33], suggesting that IFN-c might modulate

both TRAIL expression in immune cells and TRAIL sensitivity in

tumor cells. Recently, it has been shown that TRAIL receptors

and caspase 8 are significantly down-regulated in high grade and

metastatic head and neck squamous cell carcinoma [34],

suggesting that the level of tumor cell resistance to TRAIL might

increase with tumor progression. Indeed, it has been shown that

metastatic human colon carcinoma cells are more resistant to

TARL than the primary colon carcinoma cells [35] and we have

observed that metastatic colon carcinoma cells become resistance

to IFN-c sensitization (Fig. 1). Therefore, IFN-c alone is

insufficient for sensitizing metastatic colon carcinoma cells to

TRAIL-mediated apoptosis (Fig. 1). Because TNFa is also an

inflammatory cytokine that regulates expression of apoptosis

mediators [26,36], we examined whether TNFa could overcome

TRAIL resistance in metastatic colon carcinoma cells. We

observed that TNFa alone exerted minimal sensitization effect

on metastatic colon carcinoma cells. However, when combined

with IFN-c, TNFa dramatically sensitized the metastatic colon

carcinoma cells to TRAIL-induced apoptosis in vitro. Furthermore,

we demonstrated that TRAIL therapy and TNFa/IFN-c-

producing T cell immunotherapy, when used in combination,

can effectively suppress colon carcinoma metastasis in vivo. Thus,

our data revealed a synergistic cooperation between TNFa and

IFN-c in sensitizing metastatic colon carcinoma cells to TRAIL-

mediated apoptosis in vitro and in suppressing colon carcinoma

metastasis in vivo.

Results

TNFa cooperates with IFN-c to sensitize metastatic
human colon carcinoma cells to TRAIL-induced apoptosis

IFN-c has been shown to modulate TRAIL-mediated apoptosis

pathways [32,33]. However, it has recently been shown that

metastatic tumor cells often develop greater degree of TRAIL

resistance [34,35] and we observed that metastatic colon

carcinoma cells are not sensitive to IFN-c sensitization

(Fig. 1A&B). TNFa has been shown to induce TRAIL expression

in breast cancer cells [34]. Therefore, we hypothesized that TNFa
might cooperate with IFN-c to modulate TRAIL-induced

apoptosis in metastatic colon carcinoma cells. To test this

hypothesis, the TRAIL-resistant metastatic human colon carcino-

ma SW620 cells were pre-treated with recombinant TNFa, IFN-c
or both TNFa and IFN-c, and tested their sensitivity to

TRAIL-induced apoptosis. SW620 cells exhibited resistance to

TRAIL treatment (Fig. 1A&B). TNFa or IFN-c pre-treatment

alone did not dramatically increase the tumor cell sensitivity to

TRAIL-induced apoptosis (Fig. 1A&B). However, combined

TNFa and IFN-c pre-treatment significantly increased the tumor

cell sensitivity to TRAIL-induced apoptosis (p,0.01, Fig. 1A&B).

It has been shown that therapeutic agents can sensitize tumor

cells to TRAIL-initiated apoptosis through mediating TRAIL

receptor expression and function [20,37,38,39,40,41,42]. We next

sought to determine whether TNFa and IFN-c regulate TRAIL

receptor expression in SW620 cells. TNFa and IFN-c treatment

exhibited no effect on DR4 and DR5 expression level (Fig. 1C&D).

The decoy receptors T-R3 and T-R4 are undetectable on SW620

cell surface. TNFa and IFN-c treatment did not alter T-R3 and T-

R4 expression (Fig. 1C&D). Therefore, TNFa and IFN-c-

mediated sensitization of colon carcinoma cells to TRAIL-induced

apoptosis does not depend on increasing DR4 and DR5

expression or decreasing T-R3 and T-R4 expression.

TNFa and IFN-c modulate survivin and Bcl-xL expression
in metastatic colon carcinoma cells

Chemotherapeutic sensitization agents have been shown to alter

the expression level of key apoptosis regulators in tumor cells

[21,43,44,45,46,47]. Next, we analyzed the effects of TNFa and

IFN-c on the expression and/or activation of apoptosis mediators.

We observed that TNFa treatment decreased survivin protein

level and combined treatment of TNFa and IFN-c decreased Bcl-

xL protein level in the metastatic SW620 cells (Fig. 2A). The

expression levels of Bcl-2, FLIP, cIAP1 and xIAP were not altered

by TNFa and IFN-c (Fig. 2B). Analysis of mRNA level of survivin

and Bcl-xL revealed that TNFa and/or IFN-c regulate survivin

and Bcl-xL in the gene expression level (Fig. 2A). To determine

whether survivin and Bcl-xL contribute to TRAIL resistance in

SW620 cells, survivin and Bcl-xL were silenced in the tumor cells

by transfection with survivin- and Bcl-xL-specific siRNAs,

respectively. RT-PCR analysis indicated that introduction of

siRNAs dramatically reduced survivin and Bcl-xL expression level

in the tumor cells (Fig. 3A). Silencing Bcl-xL significantly increased

SW620 cell sensitivity to TRAIL-induced apoptosis (Fig. 3B).

However, silencing survivin failed to overcome TRAIL resistance

in SW620 cells (Fig. 3B). To further determine the roles of Bcl-xL

and survivin in TRAIL resistance, SW620 cells were transfected

with Bcl-xL and survivin-expressing plasmid, respectively, and

analyzed their sensitivity to TRAIL-induced apoptosis. Overex-

pression of Bcl-xL significantly decreased TNFa and IFN-c-

sensitized and TRAIL-induced apoptosis in SW620 cells

(Fig. 3C&D). However, although silencing survivin did not alter

the tumor cell sensitivity to TRAIL-induced apoptosis (Fig. 3A&B),

overexpression of survivin also significantly decreased TNFa and

IFN-c-sensitized and TRAIL-induced apoptosis in SW620 cells

(Fig. 3C&D). Taken together, our observations suggest that TNFa
and IFN-c sensitize the metastatic colon carcinoma cells to

TRAIL-induced apoptosis at least partially through repressing Bcl-

xL expression.

Caspase 8 is required for TRAIL-induced apoptosis [48,49],

and it is known that chemotherapeutic agents modulate caspase 8-

dependent and mitochondrion-mediated apoptosis pathway to

sensitize tumor cells to TRAIL-initiated apoptosis [50,51,52]. It is

also known that IFN-c can regulate caspase 8 expression to

mediate apoptosis [29,53]. Therefore, we reasoned that IFN-c
and/or TNFa might also mediate the intrinsic apoptosis pathway

to sensitize colon carcinoma cells to TRAIL-induced apoptosis.

Analysis of SW620 cells revealed that TRAIL induced undetect-

able to weak caspase 8 activation (Fig. 2C). IFN-c or TNFa

TNFa and IFN-c Overcome TRAIL Resistance
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treatment alone exhibited some effects on caspase 8 activation. In

contrast, combined IFN-c and TNFa pre-treatment dramatically

increased TRAIL-induced caspase 8 cleavage in the SW620 cells

as compared to IFN-c or TNFa treatment alone (Fig. 2C).

Consistent with enhanced caspase 8 activation, cytochrome C

release, an activation indicator of the mitochondrion-mediated

apoptosis pathway, and PARP cleavage, a biochemical indicator of

apoptosis, were dramatically increased in IFN-c and TNFa-

pretreated cells after TRAIL treatment (Fig. 2C). Taken together,

our data suggest that IFN-c and TNFa sensitize human colon

carcinoma cells to TRAIL-induced apoptosis also through

modulating caspase 8 activation.

TNFa simultaneously induces NF-kB activation and
TRAIL-mediated apoptosis sensitization

Our above data demonstrated that TNFa, when used in

combination with IFN-c, can sensitize metastatic human colon

carcinoma cells to TRAIL-induced apoptosis. However, TNFa is

also a potent activator of NF-kB [54] and NF-kB has been shown

to play a important role in TRAIL resistance [55,56]. Thus, TNFa
may simultaneously activate apoptosis and cell survival pathways,

two conflicting biological processes, in human colon carcinoma

cells. To determine whether these two conflicting pathways co-

exist and interferes with each other, we examined TNFa-induced

NF-kB activation and the effects of blocking NF-kB activation on

TRAIL-induced apoptosis in human colon carcinoma cell line

SW480. SW480 cell line was chosen since we have a well-

established NF-kB activation model in this cell line. SW480 cells

exhibited spontaneously activated NF-kB activity, albeit at low

level. Treatment of the tumor cells with recombinant TNFa
rapidly and transiently activated NF-kB (Fig. 4A). Although IFN-c
cooperates with TNFa to enhance TRAIL-induced apoptosis,

IFN-c did not alter TNFa-mediated NF-kB activation (Fig. 4A). It

has been shown that it is IKKb that activate the canonical NF-kB

to promote tumor [57]. Next, we stably transfected SW480 cells

with empty vector (SW480.Vector) and a vector expressing IKKb
mutant IKKb-K44A (SW480.IKKb-KA) [58], and examined the

effects of inhibition of NF-kB activation on colon carcinoma cell

sensitivity to TRAIL. EMSA analysis indicated that ectopic

expression of the IKKb mutant blocked both constitutively and

TNFa-induced NF-kB activation (Fig. 4A).

SW480.IKKb-KA cells exhibited a slight increase in sensitivity

to TRAIL-induced cell death than SW480.Vector cells under our

culture conditions (approximately 1.4% more) (Fig. 4B&C).

However, the TRAIL-induced cell death in IFN-c, TNFa and

both IFN-c and TNFa treatment groups of SW480.IKKb-KA

cells is significantly higher as compared to those in of

SW480.Vector cells (Fig. 4B&C), suggesting that TNFa-activated

NF-kB does interfere with TNFa-sensitized apoptosis. Neverthe-

less, TNFa-mediated apoptosis sensitization function apparently

Figure 1. TNFa cooperates with IFN-c to sensitize human colon carcinoma cells to TRAIL-induced apoptosis. A. TRAIL-induced
apoptosis. TRAIL-resistant SW620 cells were either untreated (control), treated with IFN-c (100 U/ml), TNFa (100 U/ml), or both IFN-c and TNFa
overnight, followed by incubation with recombinant TRAIL (100 ng/ml). Cell death was analyzed by PI staining and flow cytometry analysis.
B. Percent TRAIL-induced cell death was calculated as % PI-positive cells in the presence of TRAIL (+TRAIL) - % PI positive in the absence of TRAIL
(-TRAIL). Column: mean, bar: SD. C&D. Expression level of cell surface TRAIL receptors. SW620 cells were treated with IFN-c, TNFa, or both IFN-c and
TNFa for approximately 24 h and stained with the receptor-specific antibodies, respectively. The stained cells were then analyzed with flow
cytometry. Isotype-matched IgG control staining is depicted as gray areas, and DR4-, DR5-, T-R3- and T-R4-specific staining is depicted as solid lines.
The mean fluorescent intensity (MFI) of DR4 and DR5 are quantified (D). Column: mean, bar: SD.
doi:10.1371/journal.pone.0016241.g001
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overpowers TNFa-induced and NF-kB-mediated cell survival

effect to result in an overall apoptosis sensitive phenotype in

human colon carcinoma. Our data thus suggest that blocking NF-

kB activity might increase human colon carcinoma cells to IFN-c/

TNFa-sensitized and TRAIL-induced apoptosis.

TRAIL plays a significant role in immune cell-mediated
colon carcinoma rejection

To translate the above findings to TRAIL-based therapy

against colon carcinoma metastasis, we next examine the

function of TRAIL in suppression of colon carcinoma in

preclinical mouse models. Because immune cells express TRAIL

[28,59,60], we used mouse colon carcinoma model [55] to

determine whether colon carcinoma cell-activated immune cells

express TRAIL. Mouse colon carcinoma CT26 cells were

transplanted to BALB/c mice to develop lung metastases.

Approximately 21 days after tumor transplant, tumor-bearing

lungs were excised to make single cell suspension. Infiltrating

immune cells were identified in the tumor-bearing lungs (Fig. 5A).

Macrophage consists of the largest population of tumor

infiltrating immune cells (3.45%), followed by NK cells

Figure 2. TNFa and IFN-c repress survivin and Bcl-xL expres-
sion in metastatic colon carcinoma cells. A. Analysis of survivin
and Bcl-xL protein and mRNA level. SW620 cells were treated with
IFN-c, TNFa or both IFN-c and TNFa for 24 h. Cells were then
analyzed by Western blotting analysis (top panel) for the level of the
indicated proteins and by RT-PCR analysis (bottom panel) for mRNA
level of the indicated genes. B. Analysis of protein levels of anti-
apoptotic genes. Cells were treated as described in A and analyzed
by Western blotting analysis for the indicated proteins. C. Caspase
activation and apoptosis. SW620 cells were treated with IFN-c, TNFa
or both IFN-c and TNFa overnight, followed by incubation with
recombinant TRAIL protein (100 ng/ml) for the indicated time. Total
cell lysates were then prepared and analyzed by Western blotting for
activated caspase 8. Cytosol fractions were also prepared from cells
as treated above and analyzed for cytochrome C release and PARP
cleavage.
doi:10.1371/journal.pone.0016241.g002

Figure 3. Bcl-xL mediates TRAIL resistance in the metastatic
colon carcinoma cells. A. Silencing Bcl-xL and survivin expression by
siRNAs. SW620 cells were transiently transfected with scramble or gene-
specific siRNAs for approximately 20 h and analyzed for Bcl-xL and
Survivin mRNA level by RT-PCR. B. Silencing Bcl-xL but not survivin
expression significantly increased the tumor cell sensitivity to TRAIL-
induced apoptosis. The scramble and gene-specific siRNA-transfected
cells were cultured in the absence or presence of TRAIL protein for
approximately 24 h and analyzed for apoptosis. ** p,0.01.
C. Overexpression of Bcl-xL and Survivin decreased the tumor cell
sensitivity to TRAIL-induced apoptosis. SW620 cells were transiently
transfected with Vector control (Vector), Bcl-xL-expressing (Bcl-xL) or
Survivin-expressing (Survivin) plasmids for approximately 20 h. The cells
were then analyzed for Bcl-xL and Survivin mRNA level by RT-PCR (left
panel). The cells were also treated with IFN-c and TNFa for 4 h, followed
by incubation with TRAIL protein for approximately 24 h and analysis
for apoptosis by PI staining and flow cytometry analysis (right panel).
** p,0.01.
doi:10.1371/journal.pone.0016241.g003
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(1.44%), CD8+ T cells (1.08%) and CD4+ T cells (0.23%). Flow

cytometry analysis revealed that 79-96% of these infiltrating

immune cells express TRAIL protein on their surface (Fig. 5A).

RT-PCR analysis confirmed that TRAIL is expressed in these

four subsets of tumor-infiltrating immune cells (Fig. 5B). To

validate TRAIL expression in immune cells in a more defined

system, we then stained TRAIL protein in a CT26 tumor-

specific cytotoxic T lymphocyte (CTL) line. The CTLs were

stimulated with irradiated tumor cells and analyzed for TRAIL

protein level on the cell surface. It is clear that these tumor-

specific CTLs express high level of TRAIL (Fig. 5C).

To determine whether TRAIL plays a significant role in tumor

rejection, CT26 cells were mixed with IgG control mAb and

TRAIL neutralizing mAb, respectively, and injected to syngeneic

mice. Analysis of lung metastasis revealed that blocking TRAIL

function significantly increased CT26 tumor cell metastasis rate

(p,0.001)(Fig. 5D). In summary, our data suggest that TRAIL

protein is expressed in tumor-infiltrating immune cells and plays a

Figure 4. TNFa-mediated NF-kB activation on TRAIL-induced apoptosis. A. Analysis of IKKb-KA-mediated inhibition of NF-kB activation.
Left panel: TNFa-induced NF-kB activation kinetics. SW480 cells were treated with TNFa for the indicated time. Nuclear extracts were prepared
and used in the EMSA using a double-stranded oligo nucleotide probe containing NF-kB consensus sequence. Middle panel: specificity of NF-kB
EMSA. SW480 cells were treated with IFN-c, TNFa or both IFN-c and TNFa for 60 min and analyzed for NF-kB activation by EMSA. IgG (lane 4),
anti-p50 subunit of NF-kB antibody (lane 5), and excess molar ratio of cold probe (lane 6) were used for the specificity assay. Right panel:
inhibition of NF-kB activation by IKKb-KA mutant. SW480.Vector and SW480.IKKb-KA cells were treated with IFN-c, TNFa or both IFN-c and TNFa
for 60 min and used in the EMSA assay as shown above. B. Sensitivity of SW480.Vector and SW480.IKKb-KA cells to TRAIL-induced apoptosis.
Tumor cells were treated with IFN-c, TNFa, or both IFN-c and TNFa overnight, followed by incubation with recombinant TRAIL for approximately
24 h. Cells were then stained with PI and analyzed for cell death. C. Quantification of TRAIL-induced cell death. Cell death as shown in B was
quantified.
doi:10.1371/journal.pone.0016241.g004
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significant role in immune cell-mediated suppression of colon

carcinoma metastasis.

Level of tumor infiltrating CD8+ T cells inversely
correlates with tumor progression stage

Our above observations suggest that both tumor-infiltrating

CD8+ T cells and in vitro activated CD8+ T cells express TRAIL

(Fig. 5). We next analyzed T cell infiltration in human colorectal

cancer specimens using a colorectal cancer progression tissue

microarray (TMA) and observed that CD8+ T cells are present in

all 14 adenoma specimens examined with an average of 79 cells

per section (Fig. 6A, a&b). The average CD8+ T cell number is 37

per section in the adenocarcinoma (Fig. 6A, c&d). Six of the 7

distal metastases specimens (4 liver metastases and 3 lung

metastases) exhibited few than 22 CD8+ T cells per section

(Fig. 6A, e), whereas one of the 7 metastases specimens (lung

metastases) has 125 CD8+ T cells per section (Fig. 6B). Post hoc

pair-wise comparisons showed that the adenoma has significantly

higher mean CD8+ T cells than adenocarcinoma (p = 0.0051) and

Liver/Lung metastases (p = 0.0036). Although most of the

adenocarcinoma specimens have more CD8+ T cells than the

liver/lung metastases (37 vs 26), no statistically significant

difference was found between adenocarcinoma and the liver/lung

metastases (p = 0.4957), probably due to the higher CD8+ T cell

number in one of the lung metastases specimen (Fig. 6B).

CTL adoptive immunotherapy in combination of TRAIL
therapy effectively suppresses colon carcinoma
metastasis

Our data suggest that IFN-c and TNFa when used in

combination, are effective sensitizers for TRAIL-induced apoptosis

in metastatic colon carcinoma cells (Fig. 1), however, system

infusion of exogenous IFN-c or TNFa are often highly toxic to the

host [36], thereby limiting their clinical use. CD8+ T cells rapidly

up-regulate IFN-c and TNFa expression upon activation (Fig. 7A),

therefore, the locally produced IFN-c and TNFa in the tumor

microenvironment by tumor-infiltrating T cells should be non-toxic

and yet effective sensitizers in TRAIL therapy. Because CD8+ T

cells also express TRAIL (Fig. 5C), the function of tumor-specific

CD8+ T cells can be two folds: first, CD8+ T cells may infiltrate

inside tumor (Fig. 6Aa b&d) and utilize IFN-c, TNFa and TRAIL

to induce tumor cell apoptosis; second, CD8+ T cells may not

effectively infiltrate the advanced tumor, especially the metastatic

tumor (Fig. 6A, c&e), however, the activated CD8+ T cells can still

secrete IFN-c and TNFa. IFN-c and TNFa may move inside the

tumor through peripheral blood circulation to sensitize the tumor

cells. In that case, exogenous TRAIL may be applied to treat the

TRAIL-resistant cancer. To test this hypothesis, we first sought to

determine whether TRAIL plays a significant role in CTL-

mediated suppression of colon carcinoma metastasis. CT26 cells

were transplanted to syngeneic mice to establish lung metastases.

Five days later, tumor-specific and perforin-deficient pfpCTLs were

incubated with IgG control mAb and TRAIL neutralizing mAb,

respectively, and adoptively transferred to the tumor-bearing mice.

The CT26 cells are Fas-resistant. Use of perforin-deficient pfpCTLs

and Fas-resistant CT26 tumor cells will eliminate the function of

perforin and Fas/FasL effector mechanisms of the CTLs, thus

reducing the CTL cytotoxicity background for optimal TRAIL

function evaluation. It is clear that blocking TRAIL function

significantly decreased CTL-mediated tumor rejection efficacy

(p = 0.03)(Fig. 7B), suggesting that tumor-specific CTLs at least

partially use TRAIL to suppress colon carcinoma development in

vivo.

Figure 5. TRAIL expression and function in tumor-infiltrating immune cells. A. Tumor-bearing lungs were excised approximately 21 days
after tumor cell injection and analyzed by flow cytometry. The percentage of CD4+ T cells, CD8+ T cells, CD11b+ macrophages and NK cells in the tumor
population were gated for TRAIL expression analysis. The percentage of TRAIL-positive cells in each subset of immune cells as shown in A were quantified
and expressed as mean 6 SD. B. TRAIL mRNA level in tumor-infiltrating immune cells. CD4+ T cells, CD8+ T cells, CD11b+ macrophage and NK cells were
purified from the single cell suspension using cell type-specific mAb and magnet beads and analyzed for TRAIL transcript level by RT-PCR. Data from three
mice are shown. C. Cell surface TRAIL protein level in tumor-specific CTLs. CTLs were stained with fluorescent dye-conjugated anti-TRAIL mAb and
analyzed by flow cytometry. Isotype-matched IgG control staining is depicted as gray area, and TRAIL-specific staining is depicted as solid line. D. Function
of TRAIL in suppression of colon carcinoma. CT26 cells (56104 cells/mouse) were mixed with IgG and anti-TRAIL neutralizing mAbs (50 mg/mouse),
respectively, and injected into mice i.v. Two days later, IgG or anti-TRAIL mAb (100 mg/mouse) were injected into mice again. Mice were sacrificed 14 days
after tumor transplantation and analyzed for lung metastasis. Images of lungs from representative mice are shown (top panel). The number of lung tumor
nodules was enumerated in a single-blinded fashion. Each dot represents total counts from independent mice (bottom panel). Counts greater than 250
are expressed as $250. The difference between the IgG control and the anti-TRAIL mAb treatment group is statistically significant (p,0.01).
doi:10.1371/journal.pone.0016241.g005

TNFa and IFN-c Overcome TRAIL Resistance
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Next, we used CT26 lung metastasis mouse model to determine

whether combined therapy of TRAIL and CTL adoptive transfer

is more effective in suppressing established lung metastases than

single agent therapy. CT26 cells were transplanted to syngeneic

mice for 5 days to establish extensive lung metastases. pfpCTL and

TRAIL protein were then injected to the tumor-bearing mice

either alone or in combination. The prediction is that if CTLs

indeed can secrete IFN-c and TNFa to sensitize the tumor cells,

then combinational therapy of CTL adoptive transfer and TRAIL

therapy should exhibit greater anti-tumor efficacy than CTL or

TRAIL alone. Indeed, TRAIL therapy alone exhibit no significant

efficacy against the TRAIL-resistant CT26 colon carcinoma

(p = 0.15). Although pfpCTL alone showed a significantly anti-

tumor cytotoxicity (p,0.001), combinational therapy of CTLs and

TRAIL exhibits significantly greater tumor rejection efficacy

against the established colon carcinoma lung metastases than CTL

alone (p,0.001)(Fig. 7C). In summary, our data suggest that

TRAIL therapy alone is ineffective in suppressing TRAIL-resistant

colon carcinoma in vivo. Combined TRAIL therapy and CTL

adoptive transfer immunotherapy is significantly more effective

than CTL adoptive immunotherapy alone for the treatment of

metastatic colon cancer.

Discussion

We demonstrated here that combined treatment of TNFa and

IFN-c, two physiologic cytokines of the host immune system,

effectively sensitized metastatic human colon carcinoma cells to

TRAIL-induced apoptosis (Fig. 1). Therefore, TNFa and IFN-c is

a pair of sensitizers that can effectively overcome TRAIL

resistance in metastatic colon carcinoma cells.

The molecular mechanisms underlying TRAIL resistance in

tumor cells have been an active research area. It has been shown

that decreased TRAIL receptor level or increased decoy TRAIL

receptor level can lead to enhanced TRAIL resistance [12].

Similarly, the altered expression of anti-apoptotic Bcl-2 family

proteins can confer the tumor cells with TRAIL resistance

[12,21,24,44,45,46,61,62,63]. It has also been shown that anti-

apoptotic protein survivin is highly expressed in colon carcinoma

cells [64,65]. These observations suggest that TRAIL resistance

mechanisms might be tumor type and stage-dependent. In this

study, we found that TNFa decreased the expression level of

survivin (Fig. 2A). However, although survivin is a protein that

inhibits apoptosis and promote cell survival [66], silencing survivin

failed to overcome TRAIL resistance in metastatic colon

Figure 6. Tumor-infiltrating CD8+ T cells in human colon carcinoma. A. Immunohistochemical staining of CD8+ T cells in human colon cancer
specimens. CD8 immunoreactivity is shown as the brown-stained cells, whereas cells that are unreactive are indicated by the blue counterstain.
Shown are representative images. a&b: adenoma; c&d: adenocarcinoma; e: liver metastases. B. Quantification of the number of CD8+ T cells in the
colon cancer specimens. The number of CD8+ T cells in each specimen printed on the TMA as shown in A was counted. Each dot represents the
average number of CD8+ T cells of three sections of the same tumor specimen (left panel). The mean CD8+ T cell number are: adenoma: 79.4,
adenocarcinoma: 37.45, and liver/lung metastases: 25.69. Right panel: Statistical analysis of CD8+ T cells between different stages of tumors. One-way
analysis of variance was used with a Bonferroni multiple comparison procedure to test for pair-wise post hoc differences between the three types of
tumor specimens. Adenoma has a significantly higher mean CD8+ T cells than adenocarcinoma (p = 0.0051) and liver/lung metastases (p = 0.0036).
Adenocarcinoma was not significantly different than liver/lung metastases in mean CD8+ T cells (p = 0.4957).
doi:10.1371/journal.pone.0016241.g006
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carcinoma cells, suggesting that Bcl-xL might be a limiting

determinant of TRAIL resistance in the metastatic colon

carcinoma cells. Indeed, silencing Bcl-xL expression significantly

increased the tumor cell sensitivity to TRAIL-induced apoptosis

and overexpression of Bcl-xL significantly decreased the tumor cell

sensitivity to TNFa and IFN-c-sensitized and TRAIL-induced

apoptosis. Therefore, it seems that Bcl-xL is at least partially

responsible for TRAIL resistance in the metastatic colon

carcinoma cells. In addition, we observed that TNFa and IFN-c
cooperatively enhance TRAIL-induced caspase 8 activation

(Fig. 2C). It is known that enhanced caspase 8 recruitment to

the DISC is essential for overcoming TRAIL resistance in human

hepatocellular carcinoma cells [49], therefore it is possible that

TNFa and IFN-c may enhance caspase 8 association with the

DISC or mediate DISC conformation to alter the caspase 8

cleavage kinetics in human colon carcinoma cells, which remains

to be determined.

TNFa is a potent inducer of NF-kB activation [55,67].

Exposure of human colon carcinoma cells to TNFa rapidly

activated NF-kB (Fig. 4A), and blocking NF-kB activation

significantly increased human colon carcinoma cells to TRAIL-

induced apoptosis (Fig. 4B), suggesting that NF-kB does

counteract with TRAIL-induced apoptosis. However, even though

TNFa induces NF-kB activation, TNFa functions primarily as a

sensitizer of TRAIL-induced apoptosis and it seems that TNFa-

mediated apoptosis sensitization function apparently overpowers

the TNFa-induced and NF-kB-mediated tumor cell survival

effects. In the literature, it has been shown that NF-kB activation

promotes inflammation-mediated tumor cell survival and progres-

sion [54] and blocking NF-kB activation can convert inflamma-

tion-induced tumor progression mediated by TNFa to TRAIL-

mediated tumor regression in an experimental metastasis mouse

model [55]. It is very likely that blocking NF-kB activation might

enhance tumor cell sensitivity to TRAIL-induced apoptosis [56]

and inhibit inflammation-mediated tumor promotion in the tumor

microenvironment, thus enhancing TNFa function in sensitization

of metastatic colon carcinoma cells in TRAIL therapy, which

requires further study.

The major subsets of immune cells, including T cells, NK cells

and myeloid cells, all express TRAIL (Fig. 5) and activated T cells

produce IFN-c and TNFa (Fig. 7). Therefore, IFN-c, TNFa and

TRAIL of these immune cells may cooperate to effectively induce

tumor cell apoptosis when infiltrated into tumor. However, as

demonstrated in this study and reported in the literature, the

Figure 7. Combined TRAIL therapy and CTL adoptive immunotherapy effectively suppressed colon carcinoma metastasis. A. IFN-c
and TNFa expression in activated CD8+ T cells. Primary CD8+ T cells were purified from spleens of naı̈ve mice and stimulated with anti-CD3 and CD28
mAbs for 3 and 24 h, respectively. The tumor-specific CD8+ T cells were stimulated with irradiated tumor cells for 3 and 24 h, respectively. The un-
stimulated and stimulated cells were then analyzed for IFN-c and TNFa mRNA level by RT-PCR. B. Function of TRAIL in CTL-mediated tumor rejection.
CT26 cells (16105 cells/mouse) were injected into mice. Five days later, perforin-deficient CTLs (pfp CTL, 16106 cells/mouse) were mixed with IgG or
TRAIL neutralizing mAb (50 mg/mouse) and injected into the tumor-bearing mice. IgG and TRAIL neutralizing mAb (100 mg/mouse) were injected
again into the tumor-bearing mice 2 days later. Mice were sacrificed 14 days after CTL treatment and analyzed for lung metastasis. Images of lungs
from representative mice are shown. The number of lung tumor nodules was enumerated in a single-blinded fashion. Each dot represents total tumor
counts from a single mouse. The difference between CTL+IgG control group and CTL+Anti-TRAIL mAb group is statistically significant (p = 0.03). C.
Combined TRAIL and CTL adoptive immunotherapy effectively suppressed colon carcinoma metastasis. CT26 cells (16105 cells/mouse) were injected
into mice. Five days later, pfp CTLs (16106 cells/mouse), TRAIL (200 mg/mouse), or both pfpCTL and TRAIL were injected into the tumor-bearing mice.
Mice groups that received TRAIL or both pfpCTL and TRAIL were injected with TRAIL (200 mg/mouse) again every 2 days for 4 more times. Mice were
sacrificed 16 days after tumor transplantation and analyzed for lung metastasis. The number of lung tumor nodules was enumerated in a single-
blinded fashion. Each dot represents total counts from a single mouse. Counts greater than 250 are expressed as $250. The difference between
control and TRAIL treatment group is not statistically significant (p = 0.15). The differences between control and pfpCTL treatment alone group and
between control and pfpCTL+TRAIL treatment group are both statistically significant (p,0.001).
doi:10.1371/journal.pone.0016241.g007
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tumor-reactive immune cells (i.e. CD8+ T cells) are frequently

unable to infiltrate the colorectal tumor, especially metastatic

colorectal carcinoma (Fig. 6). Because TRAIL needs to directly

contact the TRAIL receptors on the tumor cell surface to induce

apoptosis, lack of infiltration of immune cells into the tumor may

result in lack of TRAIL-induced apoptosis of the tumor cells. IFN-

c, TNFa and TRAIL are soluble molecules and thus should be

able to penetrate into the tumor through the blood circulation.

However, systemic use of IFN-c and TNFa is highly toxic.

Therefore, we reasoned that use of adoptive transfer of tumor-

specific CTLs to produce IFN-c and TNFa locally in the tumor

microenvironment in combination with TRAIL protein/mAb

therapy should effectively induce colon carcinoma cell apoptosis,

and thereby suppressing colon cancer metastasis. In our prove of

concept study, we demonstrated that tumor-specific CTL adoptive

transfer immunotherapy, when combined with TRAIL therapy,

achieved significantly greater metastasis suppression efficacy

against the TRAIL-resistant colon carcinoma than either therapy

alone (Fig. 7C). Taken together, our results suggest that combined

CTL immunotherapy and TRAIL therapy hold great promise for

further development for the treatment of metastatic colon cancer.

Materials and Methods

Mice
Mice were purchased from the National Cancer Institute

(Frederick, MD) and housed in the Medical College of Georgia

animal facility. All Experiments with mice and care/welfare for

mice used in this study were in agreement with National Institutes

of Health regulations and were carried out with a protocol

(Protocol # 05-12-728*B) approved by the Medical College of

Georgia Institute Animal Care and Use Committee.

Tumor cells and specimens
All colon carcinoma cell lines were obtained from ATCC

(Manassas, VA). De-identified human colon carcinoma specimens

were provided by the Cooperative Human Tissue Network

(CHTN) sponsored by the National Cancer Institute. All studies

with human tumor specimens were carried out in accordance with

NIH and MCG guidelines.

Measurement of TRAIL-induced apoptosis
Recombinant TRAIL protein was expressed and purified as

described [68]. Cell death was measured by Propidium Iodide (PI,

Trevigen Inc. Gaithersburg, MD) staining and flow cytometry

analysis as described [68]. IFN-c and TNFa were obtained from

R&D System (R&D Systems, Minneapolis, MN).

Cell surface marker analysis
Tumor cells were stained with anti-TRAIL receptor DR4, DR5,

T-R3 and T-R4 mAb or an isotype-matched control IgG (Alexis

Biochemicals, San Diego, CA). Immune cell were stained with

CD4-, CD8-, CD11b-, and NK1.1-specific mAbs (Pharmingen)

and PE-TRAIL mAb (Biolegend. San Diego, CA). The stained

cells were analyzed with flow cytometry.

Western Blot Analysis
Total cell lysates and cytosol fractions were prepared and

analyzed by Western blotting analysis as previously described [68].

The antibodies used in this study are as follows: Bcl-x (BD

Biosciences. Cat #610747) at 1:250, Bcl-2 (BD Biosciences. Cat#
610539) at 1:250, Caspase 8 (R&D System. Cat#AF1650) at

0.5 mg/ml. cIAP1 (Santa Cruz. Cat# sc-7943) at 1:100,

Cytochrome C (BD Biosciences. Cat# 556433) at 1:1000, FLIP

(Cell Signaling. Cat# 3210) at 1:200, PARP (Cell Signaling. Cat#
9544) at 1:1000, Survivin (Santa Cruz Biotech. Cat# sc-17779) at

1:100, xIAP (Cell Signaling. Cat# 2042) at 1:500, and b-actin

(Sigma. Cat# A5441) at 1:8000.

Electrophoresis Mobility Shift Assay (EMSA) of NF-kB
activation

NF-kB activation was analyzed using EMSA with NF-kB probe

(AGT TGA GGG GAC TTT CCC AGG C, Santa Cruz Biotech)

as previously described [69]. Briefly, the end-labeled probes were

incubated with nuclear extracts for 20 min at room temperature.

For specificity controls, unlabeled probe was added to the reaction

at a 1:100 molar excess. Anti-p50 subunit antibody (Santa Cruz

Biotech) was also included to identify NF-kB-specific DNA

binding. DNA-protein complexes were separated by electropho-

resis in 6% polyacrylamide gels and identified using a phospho-

image screen (Molecular Dynamics) and the images were acquired

using a Strom 860 imager (Molecular Dynamics).

RT-PCR analysis
Total RNA was isolated from cells or tissues using Trizol

(Invitrogen, San Diego, CA) and used for RT-PCR analysis of

gene expression as described [70]. The primer sequences are as

follows: Mouse IFN-c: forward: 59-ATGGCTGTTTCTGG-

CTGTTACTG-39, reverse: 59-GCTTCCTGAGGCTGGATTC-

C-39. Mouse TNFa: forward: 59-TGACAAGCCTGTAGCCC-

ACG-39, reverse: 59-GACTCCAAAGTAGACCTGCCCG-39.

Mouse Bcl-xL: forward: 59-CATGGCAGCAGTAAAGCAAGC-

39, reverse: 59-GCATTGTTCCCATAGAGTTCC-39. Survivin:

forward: 59-AGGACCACCGCATCTCTAC-39, reverse: 59-AC-

TTTCTTCGCAGTTTCCTC-39. b-actin: forward: 59-ATTGT-

TACCAACTGGGACGACATG-39, reverse: 59-CTTCATGAG-

GTAGTCTGTCAGGTC-39.

Gene silencing
Scramble siRNA (UAGCGACUAAACACAUCAAUU) was

obtained from Dharmacon Inc. Bcl-xL-specific siRNA (Cat #
sc-43630) and Survivin-specific siRNA (Cat# sc-29499) were

obtained from Santa Cruz Biotech. Tumor cells were transfected

with the scramble and gene-specific siRNAs, respectively, using

lipofectamine 2000 (Invitrogen Inc.) according to the manufac-

turer’s instructions.

Tumor cell transfection
Bcl-xL plasmid (pSFFV-neo.Bcl-xL) [71] was obtained from

Addgene. Survivin plasmid [64] was kindly provided by Dr.

Michael Brattain (University of Nebraska Medical Center). Tumor

cells were transient transfected with the vector control plasmid,

Bcl-xL- or Survivin-expressing plasmid, respectively, using Lipo-

fectamine 2000 (Invitrogen) according to the manufacturer’s

instructions. Tumor cells were harvested approximately 20 h after

transfection and used for the indicated studies.

Immunohistochemistry
Immunohistochemical staining was as previously described [72]

using CD8 antibody (DAKO Corp) at 1:250 dilution. Slides were

counterstained with hematoxylin (Richard-Allan Scientific, Kala-

mazoo, MI).

Analysis of tumor-infiltrating immune cells
To purify subsets of tumor-infiltrating immune cells, tumor cell

digests were incubated with CD8-conjugated Dynal bead

(Invitrogen), CD4, CD11b and NK1.1 mAbs (Biolegend) respec-
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tively. The CD4, CD11b and NK1.1 mAb cell suspension was

then incubated with BioMag anti-mouse/rat IgG (Polysciences

Inc. Warrington, PA). The bead-bound cells were then separated

by magnetic separation and lysed immediately in Trizol buffer

(Invitrogen) for RNA isolation.

Experimental lung metastasis mouse model and CTL
immunotherapy

Tumor-specific CTLs were generated from perforin-deficient

BALB/c mice as previously described [73]. The experimental lung

metastasis mouse model and CTL adoptive transfer immunother-

apy was carried out as previously described [73].

Statistical Analysis
All statistical analyses for T cell infiltration in the tumor

specimens were performed using SAS 9.2. A one-way analysis of

variance (ANOVA) and a Tukey-Kramer multiple comparison

procedure was performed to analyze correlation between receptor

level and apoptosis rate.
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