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Abstract

Heart failure with preserved ejection fraction (HFpEF) is a complex disease associated with

multiple co-morbidities, where impaired cardiac mechanics are often the end effect. At the

cellular level, cardiac mechanics can be pharmacologically manipulated by altering calcium

signalling and the sarcomere. However, the link between cellular level modulations and

whole organ pump function is incompletely understood. Our goal is to develop and use a

multi-scale computational cardiac mechanics model of the obese ZSF1 HFpEF rat to iden-

tify important biomechanical mechanisms that underpin impaired cardiac function and to

predict how whole-heart mechanical function can be recovered through altering cellular cal-

cium dynamics and/or cellular contraction. The rat heart was modelled using a 3D biventri-

cular biomechanics model. Biomechanics were described by 16 parameters, corresponding

to intracellular calcium transient, sarcomere dynamics, cardiac tissue and hemodynamics

properties. The model simulated left ventricular (LV) pressure-volume loops that were

described by 14 scalar features. We trained a Gaussian process emulator to map the 16

input parameters to each of the 14 outputs. A global sensitivity analysis was performed, and

identified calcium dynamics and thin and thick filament kinetics as key determinants of the

organ scale pump function. We employed Bayesian history matching to build a model of the

ZSF1 rat heart. Next, we recovered the LV function, described by ejection fraction, peak

pressure, maximum rate of pressure rise and isovolumetric relaxation time constant. We

found that by manipulating calcium, thin and thick filament properties we can recover 34%,

28% and 24% of the LV function in the ZSF1 rat heart, respectively, and 39% if we manipu-

late all of them together. We demonstrated how a combination of biophysically based mod-

els and their derived emulators can be used to identify potential pharmacological targets.

We predicted that cardiac function can be best recovered in ZSF1 rats by desensitising the

myofilament and reducing the affinity to intracellular calcium concentration and overall pro-

longing the sarcomere staying in the active force generating state.
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Author summary

We developed a computational model of the ZSF1 rat model of heart failure with preserved

ejection fraction. We validated that the model can link simulated pharmacological inter-

ventions from cellular to whole heart pump function. Our computational model identified

calcium dynamics as the main determinant of left ventricular contractile behaviour. We

demonstrated that the highest degree of LV function recovery could be achieved when cal-

cium dynamics is manipulated in conjunction with both thin and thick filament kinetics.

1 Introduction

Heart failure (HF) is a progressive and prevalent disease. Approximately 50% of patients have

heart failure with preserved ejection fraction (HFpEF), characterised by impaired myocardial

relaxation and often secondary to hypertension and obesity. There are limited evidence-based

pharmacotherapies for HFpEF and thus HFpEF represents an unmet clinical need. Patients

currently receive either angiotensin-converting enzyme inhibitors/aldosterone receptor block-

ers, calcium channel blockers or beta-blockers, but the mortality and the morbidity associated

with the disease have so far remained high [1].

Animal models constitute a valuable research tools to investigate HFpEF, as comorbidities

and other confounding factors can be more precisely controlled than in the clinical setting.

However, there are no perfect animal models for HFpEF, and this is in part because it is diffi-

cult to fulfil all the features observed in human disease at the same time in animals. The cur-

rently available animal models of HFpEF have attempted to reproduce the dominant factors

typically documented to cause diastolic dysfunction and HFpEF. They fall across the following

macro-categories: aortic banding and systemic hypertension, diabetes mellitus and obesity,

cardiometabolic syndrome and ageing. All of these animal models have been successfully

established in rodents [2]. Regardless of the animal model used in the process of drug discov-

ery and development at preclinical stages, identifying pharmacological interventions that

recover physiological function in the HFpEF diseased animal still remains a challenge.

In this study we aim to predict changes in myocyte function that recovers whole heart func-

tion. First, we propose a multi-scale mathematical model that maps ion channel and sarcomere

function through to whole organ pump function in a HFpEF rat heart. Specifically, we want to

build an in silico representation of the 20-week old obese ZSF1 rat, a recently proposed HFpEF

animal model. This model can then be used to identify cellular function that can be manipu-

lated to recovered whole heart function. We propose to use this animal model to provide indi-

cations of pharmacological targets by simulating and testing their different mechanisms of

action. The 20-week old obese ZSF1 rat presents many features of a cardiometabolic syndrome

such as hypertension, obesity, type 2 mellitus, insulin resistance and HF, developing a diastolic

dysfunction in parallel with left ventricular (LV) hypertrophy and left atrial dilation. As this

animal model also presents exercise intolerance, an important feature diagnosed in humans, it

currently constitutes a well-established [2] animal model of HFpEF. From now on, we will

refer to the “20-weeks old obese ZSF1 rat” as the “ZSF1 rat” for brevity.

2 Materials and methods

2.1 Rat heart contraction model

We modelled the healthy rat heart using a 3D biventricular contraction model previously [3]

fitted to anatomic, structural, and hemodynamic and volumetric functional data from
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sham-operated controls [4]. This rat model will be referred to as “SHAM” throughout the

entire work. At the cellular level, ion fluxes and calcium dynamics were simulated using the

Gattoni et al. [5] model of rat left ventricular myocyte electrophysiology at 37˚ and 6 HZ pac-

ing frequency. Active tension generation was described using the Land et al. [6] model of sar-

comere contraction, comprising thin and thick filament dynamics, and accounting for

sarcomere-length and -velocity dependencies. Left and right ventricular (RV) anatomy was

represented by a cubic Hermite finite element mesh [7] fitted to manually segmented MRI

images related to a time point of the cardiac cycle which was half-way through diastole to

approximate the stress-free configuration. Rule-based fibres [8] were included, with a trans-

mural variation of −60˚ to 80˚ from epicardium to endocardium. Passive material properties

were modelled using the transversly isotropic cardiac strain energy function proposed by Guc-

cione [9]. This was further combined with a Lagrange multiplier scheme to enforce incompres-

sibility, coupled with a penalty term to improve stability of mechanics simulations [10, 11].

The calcium transient was assumed not to vary spatially and it homogeneously activated con-

traction throughout the ventricular walls. Spatial boundary conditions were applied by con-

straining all the ventricle basal plane mesh nodes along the apex-base axis, and by allowing no

movement along any direction for one mesh node on the interior LV wall to prevent free rota-

tion and translation of the mesh during the solution process without limiting the deformation

[6]. The hemodynamics (blood flow and pressures) at the computational domain boundaries

was controlled by coupling the heart with the rest of the body circulatory system via a three-

element Windkessel model [12].

The whole-organ full cardiac cycle was simulated using the protocol described in [6, 10,

11]. Briefly, dynamic changes in the LV and RV cavities’ boundary conditions were cyclically

applied. During diastole, a fixed atrial preload pressure and filling resistance was applied. At

activation, the cavity boundary conditions were switched to an isovolumetric constraint in

both chambers. When each chamber reached pre-set aortic and pulmonary artery pressures, a

three-element Windkessel model boundary condition was applied to each chamber to repre-

sent the aortic and pulmonary artery afterload. Once each chamber stopped ejecting, an isovo-

lumetric boundary condition was applied to represent isovolumetric contraction. Once the

cavity pressure fell below its respective atrial pressure, the heart returned to the diastolic cavity

boundary conditions to complete the pressure volume (PV) loop. The RV boundary condition

pressures (atrial and pulmonary artery) were set to be 1/3 of the equivalent LV values. The RV

Windkessel parameters were scaled to be equal to R/3, Z/3, 3C from the reference LV Wind-

kessel parameter set (R, Z, C).

The presented multi-scale rat heart contraction model is regulated by 71, 17, 18 parameters

for respectively the ionic, cell contraction, tissue + boundary components. We selected specific

parameters as representative regulators of each of these sub-models, for a total of 16 parame-

ters. The calcium transient represented the end output of the cellular electrophysiology model

used for the sarcomere contraction model, and was simulated only once at this stage. This is

because the first 4 parameters we selected for the multi-scale map input encoded the whole

shape of the calcium transient and could independently scale its main properties (diastolic

concentration, amplitude, time to peak and recovery time, see S1 Text for more details). Of the

other selected parameters, 8 described the sarcomere dynamics (4 parameters were thin fila-

ment-related and 4 were thick filament-related), and 4 parameters described boundary condi-

tions and tissue properties. The 16 parameters considered are defined in Table 1.

The rat heart model output is given as the LV pressure and volume transients, and the

related PV loop. To quantitatively characterise the LV activity, we extracted from these two

curves 14 scalar features of interest which are commonly used to characterise LV systolic and

diastolic functions (Table 2). The process of features extraction is illustrated in S2 Text.
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For a given heart mesh describing the cardiac anatomy and fibre orientation, we can define

a multi-scale, non-linear function that maps every set of 16 input parameters x to a set of 14

output LV features (y1, . . ., y14):

fsimul : R
16 ! R� . . .� R

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
14 times

x 7! ðy1; . . . ; y14Þ

ð1Þ

Eq (1) effectively constitutes a quantitative link between cellular, tissue and hemodynamic

properties to whole-organ function. Parameters can be mapped to features by running the full

Table 1. Model input parameters.

Parameter Units Definition

DCA μM diastolic Ca2+ concentration

AMPL μM Ca2+ concentration signal amplitude

TP ms time to peak Ca2+ concentration

RT50 ms time to half-maximal relaxation from peak Ca2+ concentration

Ca50 μM Ca2+ thin filament sensitivity

β1 − phenomenological tension length-dependence scaling factor

koff ms-1 unbinding rate of Ca2+ from TnC

ntrpn − Ca2+-TnC binding degree of cooperativity

kxb ms-1 cross-bridges cycling rate

nxb − cross-bridge formation degree of cooperativity

TRPN50 − fraction of Ca2+-TnC bounds for half-maximal cross-bridges activation

Tref kPa maximal reference tension

p kPa end-diastolic pressure

pao kPa aortic systolic pressure

Z mmHg s mL-1 aortic characteristic impedance

C1 kPa tissue stiffness

https://doi.org/10.1371/journal.pcbi.1009646.t001

Table 2. Model output LV features.

Label Units Definition

EDV μM end-diastolic volume

ESV μM end-systolic volume

SV μM stroke volume

EF % ejection fraction

IVCT ms isovolumetric contraction time

ET ms systolic ejection time

IVRT ms isovolumetric relaxation time

Tdiast ms diastolic filling time

PeakP kPa peak systolic pressure

Tpeak ms time to peak systolic pressure

ESP kPa end-systolic pressure

maxdP kPa ms-1 maximum pressure rise rate

mindP kPa ms-1 maximum pressure decay rate

Tau ms isovolumetric pressure relaxation time constant

https://doi.org/10.1371/journal.pcbi.1009646.t002
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forward model (simulator). However, this is computationally expensive (*4–10 CPU hours

per evaluation). To reduce computational costs we trained a low cost Gaussian process emula-

tor (GPE) to be a surrogate for the full model (Section 2.2. Fig 1 provides a schematic of the

multi-scale mapping: after training the emulator, we will be able to map input parameters to

Fig 1. 3D biventricular rat heart contraction model multi-scale map. Chosen 16 input parameters are calcium transient and sarcomere properties

(green), hemodynamics properties (red) and tissue properties (blue). The output features of interest are 14 indexes (yellow) characterising the LV

function and are extracted from the LV pressure and volume curves. The input parameters (Table 1) can be quantitatively be mapped to the output

features (Table 2) either by running the full model or by making predictions using trained GPEs.

https://doi.org/10.1371/journal.pcbi.1009646.g001
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output LV features both in a deterministic (using the simulator) and in a probabilistic (using

the emulator) way.

2.2 Surrogate model

GP emulation was employed to replace the computationally expensive map from model input

parameters to model output LV features. We followed the same emulation framework as in

[3]. Briefly, we trained the emulators to simulations with parameter values sampled across a

16-dimensional parameter space, defined as the hypercube obtained by the Cartesian product

of individual, 1-dimensional parameter intervals. Each parameter interval was constructed

with lower and upper bounds given as percentages of the SHAM rat heart model reference

parameter values, based on a literature search and preliminary sensitivity analysis studies (see

S3 Text for more details). For the sarcomere, boundary conditions and material properties we

varied parameters in the range [50%, 150%], except for β1 which we varied in the range [10%,

200%]. To cover both healthy and pathological calcium transient shapes, DCA, AMPL and TP

parameters were varied in the range [10%, 200%], while for RT50 a smaller range was used

([10%, 110%]). This was done to limit the generation of implausible calcium transients (where

the sum of the time to peak and the relaxation time exceed the cycle length) when randomly

scaling the reference calcium transient (see S1 Text for more details).

14, 848 points were sampled from a Latin hypercube design over the input parameter space.

The forward model was run at these points and the successfully completed simulations were

collected to form the training dataset. The final dataset consisted of 1, 299 data points, corre-

sponding to 8.7% of the total simulations attempted. A visual and quantitative inspection of

the obtained training dataset input parameter space suggested (see S3 Text for more details)

that this was still able to cover over 80% of the initial sampling space. The low number of suc-

cessful runs relates to a combination of failure of the mechanics simulations to converge or

complete a full cardiac cycle, which may happen for example if the contraction is insufficient

to reach the aortic pressure.

GPEs f(x) were defined as the sum of a deterministic mean function h(x) and a stochastic

process g(x) [13]:

f ðxÞ ¼ hðxÞ þ gðxÞ ð2Þ

The mean function was a linear regression model with first-order degree polynomials:

hðxÞ≔ b0 þ b1x1 þ � � � þ b16x16 ð3Þ

where bi 2 R for i ¼ 0; . . . ; 16 are the weights, while the stochastic process was a centred

(zero-mean) Gaussian process with the stationary squared exponential kernel as covariance

function:

gðxÞ � GPð0; kSEðdðx; x0ÞÞÞ ð4Þ

kSEðdðx; x0ÞÞ≔ s2
f e
� 1

2
dðx; x0Þ ð5Þ

dðx; x0Þ≔ ðx � x0ÞT L ðx � x0Þ ð6Þ

where s2
f 2 R

þ is the signal variance and L≔ diagð‘2

1
; . . . ; ‘

2

16
Þ, ‘i 2 R

þ for i = 1, . . ., 16 are

the characteristic length-scales of the process. The model likelihood was taken to be Gaussian,

i.e. the learning sample observations (y) were modelled to be affected by an additive,
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independent and identically distributed noise:

y ¼ f ðxÞ þ ε; ε � N ð0; s2
nÞ ð7Þ

where s2
n 2 R

þ is the noise variance. All the GPE’s hyperparameters were jointly optimised

during training by maximisation of the model log-marginal likelihood using GPErks emula-

tion tool [14] based on GPyTorch Python library [15].

Univariate GPEs were trained to predict each output feature using a 5-fold cross-validation

process, for a total of 14 trained GPEs. To evaluate each emulator’s accuracy, the predicted

posterior mean emulator output ymeani was compared with the true output value ytruei for each

respective point xi in a held-out testing dataset of size n × 16. We used the coefficient of deter-

mination (or R2-score) to measure how well the regression predictions approximate the real

data points. This is defined as:

R2 ≔ 1 �

Pn
i¼1
ðytruei � ymeani Þ

2

Pn
i¼1
ðytruei � �yÞ2

; with �y≔
1

n

Xn

i¼1

ytruei ð8Þ

We additionally used the predicted posterior variance emulator outputs yvari , for i = 1, . . ., n
to calculate the percentage of points which had an independent standard error (ISE) smaller

than 2. This quantity, which we call ISE2, is a measure of how well the emulator uncertainty is

accounting for the mean predictions’ departure from the observed data, and is defined as:

ISE2 ≔ 100 �
Xn

i¼1

jytruei � ymeani j
ffiffiffiffiffiffi
yvari
p < 2

� �

=n ð9Þ

The Boolean result inside the parentheses is encoded with either 0 (false) or 1 (true). The

GPEs’ accuracy was therefore given as the R2-score and ISE2 obtained by averaging the scores

calculated when testing the emulators on the respective left-out parts of each dataset splitting

during cross-validation. These are summarised in S3 Text, where an example of GPEs doing

inference on a testing set is also provided. As a result of the cross-validation procedure, the

emulators were tested for accuracy against different regions of the input parameter space,

eventually covering all of it.

2.3 Model fitting

A Bayesian history matching (HM) technique was used to re-fit model parameters as done pre-

viously [3], to create a mathematical model of the obese ZSF1 rat (Section 3.3) and to virtually

recover it towards an healthy condition (Section 3.4).

HM is an iterative algorithm that at each iteration (also called wave) identifies from the cur-

rent plausible parameter space (at the first wave this coincides with the full space) the region

where parameter sets are more plausible to yield a model output that matches a set of experi-

mentally measured quantities within experimental uncertainty. Every point in the current

plausible space is tested against an implausibility criterion to determine if it has to be kept for

the next wave (non-implausible) or discarded (implausible). Let m be the number of output fea-

tures to match. Then, for each test point x, the trained univariate GPEs f iemul for i = 1, . . ., m are

used to calculate the following implausibility measure:

max
i¼1;...;m

jE½f iemulðxÞ� � mijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½f iemulðxÞ� þ s2

i

p ð10Þ

where mi � si 2 R represents the experimental variability observed for feature i. The implausi-

bility criterion simply consists in comparing the implausibility measure (Eq (10)) with a cutoff
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value which is normally taken to be equal to 3. An implausibility measure below the cutoff will

deem the point non-implausible or implausible if otherwise. At the next wave, the GPEs train-

ing dataset is augmented with parameter points from the plausible region of the current wave,

so that the re-trained GPEs become more accurate in the plausible region. Points are tested

again against the implausibility criterion to find plausible regions and the iterations will con-

tinue until reaching convergence of the plausible space.

2.4 Global sensitivity analysis

In order to understand the input parameters impact on the output features total variance we

performed a global sensitivity analysis. Model outputs sensitivity to parameters was character-

ised by Sobol’ first-order and total effects [16]. These indexes were estimated using the Saltelli

method [17] with SaLib Python library [18]. GPErks tool [14] was used to incorporate full

GPE’s posterior distribution samples to account for emulators uncertainty in Sobol’ indexes

estimates. Parameters whose resulting indexes were below the threshold 0.01 were determined

to have negligible effect.

2.5 Model validation

To test if the rat heart contraction model and its probabilistic surrogate can predict how

changes in calcium transients impact the whole heart function, we validated the computational

framework by comparing qualitative measurements and predictions of changes in cardiac

mechanics in the presence of pharmacological compounds that manipulate the calcium tran-

sient. This provides a multi-scale test on the ability of the model to map from changes in ion

channels conductances to changes in calcium transient and the resulting changes in whole

heart function. The validation workflow is summarised in Fig 2.

Briefly, we selected 8 compounds, which were well characterised for multiple ion channels

and for which we could find whole organ measurements from literature, from the comprehen-

sive in vitro proarrhythmia assay (CiPA) [19] official list, namely bepridil, chlorpromazine, dil-

tiazem, mexiletine, nifedipine, ranolazine, sotalol and verapamil, and we described their action

at the cell level using a 4-channel description, namely INa, Ito, IK1 and ICaL. IKr channel was not

included as it has a small amplitude in rats myocytes [20] and so was not included in the

employed rat cell model [5].

The affinity of each compound for each channel was taken from CiPA project datasets [21,

22] (summarised in S4 Text) and is described by the Hill coefficient h and the half-maximal

inhibitory concentration IC50 values of a Hill-type relationship which gives the fraction of

blocked current B as a function of the compound concentration C, also known as pore block

model:

B ¼
1

1þ C
IC50

� �h ð11Þ

For each given compound, we calculated B for each channel when C was set to equally-

spaced values in a log-molar space. By subtracting the obtained B values from 1, we obtained a

matrix of scaling coefficients for the channels’ conductances, representing the fractions of

active channels in the presence of the compounds at different concentrations. We tested 13

equally-spaced compound concentrations (−log M) in the range [4, 10] (extremes included),

which corresponded to compound concentrations between 10−10
M and 10−4

M. We then run

the Gattoni et al. [5] model by scaling the ion channels conductances to simulate the action of

different concentrations of each compound at the cell level and collected the resulting calcium
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transients (last beat curves of limit cycle, 5000 beats simulations). An example of calcium tran-

sients obtained after simulating the effect of verapamil is provided in S4 Text. The used

approach simulates the pharmacologically induced changes in calcium transients, thereby

overcoming the issue when no directly recorded calcium transients are available. As a result,

Fig 2. Model validation workflow. (1) The pore block model is used to calculate the fraction of blocked ion channel at a given compound

concentration for each ion channel. These channels’ conductances are scaled to reflect the effect of the compound. (2) The rat myocyte

electrophysiological model is run to generate perturbed calcium transients for different compound concentrations. (3) The calcium transients are used

as an input for the 3D biventricular rat heart contraction model, and perturbed LV features’ values are obtained. For each LV feature, the number of

perturbed values was equal to the number of input calcium curves, which corresponds to the number of tested compound concentrations. (4) Each LV

feature values are plotted against the tested compound concentrations to obtain dose-response curves. (5) The qualitative trend of the LV features after

in silico pharmacological modulation is compared with literature experimentally measured effects of the same compound on the same LV features for

each compound under study.

https://doi.org/10.1371/journal.pcbi.1009646.g002
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we created a fully simulated map from cellular pharmacological modulation to whole organ

mechanical function.

We used the full multi-scale model (Section 2.1) to simulate the LV features values using as

an input the obtained calcium transients and the remaining parameters fixed to the SHAM rat

model reference values. This allowed us to obtain the LV features’ change from baseline values

in a dose-dependent manner. PeakP, maxdP and mindP features’ simulated responses to dif-

ferent doses of all the tested compounds are reported in S4 Text. These features’ qualitative

responses after in silico pharmacological modulation were compared to qualitative changes in

the same LV features observed after compounds’ administration in literature experimental

studies performed on either conscious, or Langendorff-perfused or working healthy rat heart

preparations. These experimental changes were either recorded after a single dose in the pre-

ischemic phase of an ischemia-reperfusion experiment, or in a dose-dependent manner, and

are summarised in S4 Text.

3 Results

We can summarise the results as follows. In Section 3.1, we use the trained framework for eval-

uating the whole multi-scale model output global sensitivities to model parameters. The full

model and the surrogate model are validated in Section 3.2 against known pharmacological

effects on whole-organ function from literature experimental studies. In Section 3.3, we create

a virtual representation of the ZSF1 rat. In Section 3.4, we employ the validated framework to

provide indication of both calcium dynamics and sarcomere potential pharmacological targets

for in silico recovery of the diseased HFpEF rat back to the healthy state.

3.1 Model output explained variance

In Fig 3, the calculated Sobol’ first-order and total effects are reported for all the parameters

and LV features.

Compounds may target calcium dynamics, thin filament kinetics, thick filament kinetics or

tissue/organ scale properties (boundary conditions and stiffness). To determine which of these

sets has the greatest impact overall on whole heart cardiac mechanics, we ranked the parame-

ters according to their total effects from the one that affected the highest number (and by the

highest amount) to the one that affected the lowest number (and by the lowest amount) of LV

Fig 3. Sobol’ first-order (S1) and total effects (ST). The contribution of each parameter (Table 1) by itself (S1) or jointly with the other parameters

(ST) into explaining the total variance of each LV feature (Table 2) is expressed as Sobol’ indices ranging from 0 (no effect) to 1 (maximal effect).

https://doi.org/10.1371/journal.pcbi.1009646.g003

PLOS COMPUTATIONAL BIOLOGY In silico identification of cellular targets for recovering LV function in rat HFpEF

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009646 December 6, 2021 10 / 22

https://doi.org/10.1371/journal.pcbi.1009646.g003
https://doi.org/10.1371/journal.pcbi.1009646


features. The obtained ranking is presented in Table 3. We divided the 16 parameters in 4 sub-

categories according to which specific part of the multi-scale model they regulated, with 4

parameters in each category. By summation of the parameters’ individual ranks within each

category we were able to classify the groups according to how important they are in explaining

the variance across output variables: the lower the sum, the higher the importance. We found

that the calcium transient is the most important input of the multi-scale model, immediately

followed by the thin filament and the thick filament. The boundary conditions were found not

to play an important role in this model (ranked fourth). Altering preload and afterload are pre-

dicted to have a secondary impact on the overall cardiac function, with cellular properties

being the dominant regulators of cardiac function.

3.2 Model agreement with experiments

A comparison of qualitative model predictions against experimental observations is shown in

Fig 4. The model correctly predicted 16 out of 19 (84%) experimental observations, with 5

observations missing data, matching 6 out of 8 compounds. Model predictions were never

opposite to observations, with either the model or observations reporting no-change when the

model failed. A quantitative comparison was also performed when data was available. This is

provided in S4 Text.

3.3 Building a model of the obese ZSF1 rat

In order to create a mathematical model of the obese ZSF1 rat, we performed a literature

search to characterise the experimentally observed variability on LV systolic and diastolic func-

tion this rat shows with respect to its control animal. We than applied this variability to our

SHAM control rat model, and we re-fitted model parameters using the HM technique (Section

2.3), trying to match the calculated shift in the LV function in the ZSF1 rats. The obtained rep-

resentative ZSF1 rat model calcium transient and PV loop are depicted in Fig 5, and are

Table 3. Parameters ranking according to their influence on the model output total variance. A rank is assigned to

each parameter according to how much it impacts the model output total variance. Parameter groups are assigned a

score given by the sum of the ranks of their member parameters. This score reflects the importance of the group as an

input for the multi-scale model.

Group Parameter Rank Group score

Calcium transient (Ca) DCA 1 22

AMPL 3

TP 10

RT50 8

Thin filament (TNF) Ca50 2 26

β1 14

koff 6

ntrpn 4

Thick filament (TKF) kxb 12 33

nxb 7

TRPN50 5

Tref 9

Boundary conditions (BC) p 13 55

pao 11

Z 16

C1 15

https://doi.org/10.1371/journal.pcbi.1009646.t003
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compared with the reference SHAM rat model. Details of each step in the ZSF1 rat model crea-

tion process, including the complete sets of re-fitted and fixed model parameters and corre-

sponding LV features are reported in S5 Text.

3.4 In silico recovering HFpEF condition towards healthy condition

We aim to identify cellular properties that can be manipulated to recover the ZSF1 rat towards

the SHAM rat within a purely virtual experiment. By “recover” we mean to bring the altered

LV features’ values we observed for the ZSF1 rat model back to the values of the SHAM rat

model. We will do so by specifically targeting different subsets of model parameters to repre-

sent in silico different possible pharmacological mechanisms of action.

To recover the ZSF1 rat we re-fitted different subsets of model parameters in the ZSF1

model to recover the SHAM model output features, within the certainty that these features are

predicted by the model (S6 Text). The LV features we aimed to recover were EDV, ESV,

PeakP, maxdP, Tau. The groups of parameters selected for optimisation were: calcium tran-

sient (Ca), thin filament (TNF), thick filament (TKF) (Table 3), and the three groups com-

bined (CaMYO). For each group of D parameters p = (p1, . . ., pD) we first trained one

univariate GPE for each of the target LV features to substitute the following deterministic map

f : RD ! R ð12Þ

p 7! fsimulðp; ðpZSF1Dþ1
; . . . ; pZSF1

16
ÞÞ ¼ y ð13Þ

with a probabilistic surrogate to predict the LV feature value y 2 R for a given parameter set

p 2 RD. This was done by sampling points (512 for Ca, TNF, TKF groups and 2048 for

CaMYO group) from a Latin hypercube design over the restricted, D-dimensional parameter

space and by running the full simulator fsimul at these points to build new training datasets

Fig 4. Model validation against known CiPA compounds effects on whole-organ function. Eight CiPA compounds effects (“experiment” columns)

on PeakP, maxdP and mindP are compared with model same compounds’ predicted effects on the same features (“model” columns). The effects of

compounds are colour-coded as orange (feature unchanged) and green (feature decreased). None of the compounds caused an increase in the

considered LV features. White/empty space means that the specific effect could not be retrieved from the examined literature studies. Model predicted

effects are in agreement with the experimentally observed effects for 6 out of 8 compounds.

https://doi.org/10.1371/journal.pcbi.1009646.g004
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while keeping all the remaining parameters ðpZSF1Dþ1
; . . . ; pZSF1

16
Þ fixed to the ZSF1 reference val-

ues. The new training datasets had dimensions of 104, 129, 114 and 326 points for the Ca,

TNF, TKF and CaMYO groups, respectively. The GPEs’ accuracy are reported in S6 Text for

each group.

For each parameter subgroup the adjustable parameters were re-fit using HM. Additional

information about performed waves, used cutoff values and percentages of space reduction are

reported in S6 Text. In Fig 6 the history matching waves progression is shown. For each LV

feature we aimed to match, its values obtained when simulating parameter points from a spe-

cific wave’s non-implausible region are plotted as a distribution, possibly overlapping to the

experimental variability (red band) observed for the same feature. This is done at every wave

run, so that the HM is represented as a sequence of LV features values’ distributions over con-

secutive waves.

For each parameter group, we can distinguish whether a specific LV feature has been recov-

ered by looking at the last wave’ distribution. Specifically, a feature was determined to be

recovered if this distribution median was within the uncertainty region for that feature. We

Fig 5. Representative SHAM and ZSF1 rat models calcium transients and pressure-volume loops. The ZSF1 rat model is created by perturbing the

SHAM, healthy state. LV features which significantly changed from control to diseased animal are highlighted at the center of the PV loops sub-plot. EF

showed no significant change.

https://doi.org/10.1371/journal.pcbi.1009646.g005
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can see that we were able to recover the maxdP feature in all 4 cases. EDV and Tau features

were only recovered in the CaMYO group. The ESV feature was harder to recover, being very

close to the uncertainty region in all the 4 cases although never meeting the median-based cri-

terion. PeakP was never recovered, although it moved in the correct direction of recovery

(decreasing) in all 4 cases. For each group, we selected (according to an L2-norm best-fit crite-

rion) a reference recovered rat model which we labelled as “RECOV”, and we plotted the

respective LV pressure and volume transients and PV loops (Fig 7), compared with the refer-

ence SHAM rat and ZSF1 rat models.

By relaxing the median-based recovery criterion, we also looked at whether the last wave’

distribution of a specific LV feature i had a median value yRECOVi which was moving towards

the healthy experimental mean value ySHAMi starting from the reference, diseased state value

yZSF1i . For each parameter group, we computed the percentage of recovery Rperc for each LV

Fig 6. History matching waves progression. At each wave, 128 points are simulated from the current non-implausible parameter region and the

features’ values from the converging simulations are plotted as box plots coloured in blue variants for different consecutive waves. The median trend of

these distributions is represented by a dashed blue line. Mean ±3 standard deviations target intervals are represented in light red-coloured shaded areas

for each LV feature.

https://doi.org/10.1371/journal.pcbi.1009646.g006
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feature as described by the ratio:

Rperc ¼
yRECOVi � yZSF1i

ySHAMi � yZSF1i

�
�
�
�

�
�
�
� ð14Þ

A value of Rperc = 1 indicates that the feature has been recovered fully. When the median of

a given LV feature’s distribution was not moving towards the correct direction of recovery, its

corresponding Rperc value was set to 0. When the median was moving towards the correct

direction of recovery but surpassed the healthy value, its corresponding Rperc value was set to 1

instead. Rperc values for each LV feature for each group are summarised in Table 4. We can see

Fig 7. Best fit recovered rat heart models. For each parameter group, the last wave fitted models are compared against the target mean which the

history matching aimed to match, and the best-fit model is selected according to the L2-norm. This best-fit rat model (RECOV, black thick line) is

compared with the reference ZSF1 rat model (red dashed line) and with the reference SHAM rat model (blue dashed line).

https://doi.org/10.1371/journal.pcbi.1009646.g007

Table 4. LV features’ percentages of recovery. For each LV feature we aimed to recover, the distance between its

median recovered value and the respective healthy value is divided by the distance between the initial, diseased value

and the healthy value. This ratio describes the percentage of recovery for the examined feature.

LV feature Parameter group

Ca TNF TKF CaMYO

EDV 0.01 0.04 0.05 0.40

ESV 0.00 0.00 0.00 0.00

PeakP 0.33 0.36 0.35 0.20

maxdP 1.00 0.85 0.82 0.73

Tau 0.34 0.17 0.00 0.61

Mean recovery 0.34 0.28 0.24 0.39

https://doi.org/10.1371/journal.pcbi.1009646.t004
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that the highest degree of recovery (39%) can be achieved when manipulating both the sarco-

mere kinetics and the calcium dynamics at the same time. It is worth noticing that the different

degrees of recovery achieved by targeting the first three groups of parameters, namely 34%,

28%, 24% respectively for Ca, TNF, TKF groups, match the relative importance these groups

have into explaining the total variance of the considered LV features (Table 3).

We further inspected the parameter space which the history matching converged to in the

last wave for each parameter group, and we compared this with the ZSF1 rat model reference

parameter set (see Fig 8). The distribution’s median trend over consecutive waves of each

Fig 8. Parameter distributions across progressing waves for the four different parameter groups. Each parameter distribution is represented as a

gray box plot at each wave. Its median trend during multiple waves is highlighted in a solid black line and is compared with the ZSF1 rat model

reference value for the same parameter highlighted in a dashed red line. All the plotted RECOV parameter values are given as percentages of the

respective baseline ZSF1 parameter values. (A) Ca group. (B) TNF group. (C) TKF group. (D) CaMYO group.

https://doi.org/10.1371/journal.pcbi.1009646.g008
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parameter within each group provides indication on which direction the parameter has under-

gone a perturbation from the reference ZSF1 rat same parameter value in order to recover the

LV function. This is summarised in S6 Text for the last waves’ perturbations.

We can see that in order to recover the LV function by only perturbing the calcium tran-

sient (4 parameters), DCA and TP increased, while AMPL and RT50 decreased. This resulted

in a calcium transient signal which was shifted upwards, flatter and delayed in time with fast

recovery. By only perturbing the thin filament properties (4 parameters), the LV function

could be recovered when Ca50 increased at a constant ntrpn, with decreased β1 and koff. This

resulted in TnC-Ca2+ bound complexes saturating at lower [Ca2+]i and to a slower dissociation

of the TnC-Ca2+ bound state which in turns made actin binding sites available for longer. By

only perturbing the thick filament properties (4 parameters), the LV function could be recov-

ered when nxb and kxb decreased with increased TRPN50 and Tref. This resulted in an overall

slower force generation with increased maximal generated force. Lastly, when manipulating

both the calcium transient and the whole sarcomere at the same time (12 parameters) to

recover the LV function, AMPL and TP were increased at a constant DCA and decreased

RT50; koff and ntrpn were decreased at a constant Ca50 and β1; nxb and TRPN50 were increased

at a constant Tref and decreased kxb.

To interpret these changes in terms of intact muscle experimental measurements, we used

the contraction model [6] to estimate the corresponding changes in steady state force-calcium

relationship and field stimulated isometric tension transient predicted by the model to recover

cardiac function in the ZSF1 model. This is illustrated in Fig 9. Common patterns can be

Fig 9. Isometric force-calcium relationship and generated active tension properties from the recovered rat model parameter space. (A) Calcium

sensitivity (pCa50) and Hill coefficient (h) features are extracted from the force-calcium curve, while peak tension (Tmax) and maximum rates of tension

development (dT/dtmax) and decay (dT/dtmin) are extracted from the twitch transient. (B) Distributions of extracted pCa50 (blue), h (orange), Tmax
(green), dT/dtmax (red), dT/dtmin (purple) values are compared with the respective ZSF1 rat model baseline values (dashed lines).

https://doi.org/10.1371/journal.pcbi.1009646.g009
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observed in the way in which the four different simulated strategies of recovery act on the sar-

comere. They all cause a none-to-rightwards shift of the force-calcium relationship, thereby

desensitising the myofilament to intracellular calcium concentrations, and they all cause a no-

change-to-decrease in the same curve’s Hill coefficient, resulting in an overall reduced affinity

for calcium. Maximum generated active tension is always decreased apart from when the

recovery is carried out via calcium transient modulation (Ca parameter group). Maximum

rates of tension development and decay are always slowed down (less pronouncedly for the Ca

strategy), which promoted the sarcomere to stay for longer in the force generating state.

4 Discussion

In this study, we proposed that calcium dynamics, thin and thick filament kinetics are all

potential pharmacological targets for HFpEF, based on simulations in the ZSF1 rat model. The

found recovered rat model parameter space, when interpreted in terms of muscle experimental

measurements, also suggested that HFpEF-treating compounds should possibly act as direct

sarcomere modulators by desensitising the myofilament and reducing the affinity to intracellu-

lar calcium, and decreasing the maximum generated active force while slowing down active

force generation and relaxation in the intact muscle.

Previously, HFpEF was thought to result from solely diastolic dysfunction and LV hyper-

trophy [23]. However, therapies within this conceptual framework were not successful [24].

Recently, a combination of immune dysregulation and inflammation that leads to systemic

microvascular endothelial dysfunction in various organ systems has been proposed as cause

of HFpEF. There are now *20 pharmacotherapeutic clinical trials targeting signalling mech-

anisms along this cascade. Two of these respectively aim at blocking IL-1, a proinflammatory

cytokine that inhibits the L-type calcium channels, and at inhibiting the late inward sodium

current INa. Both the therapies are expected to prevent cytosolic calcium overload, which

may in turn improve LV relaxation (or lusitropy). This common end point is consistent with

the targets identified in this study (Fig 8). Specifically, both the Ca and the CaMYO strategies

of recovery proposed a decrease (of *30 − 50% from the diseased animal reference value) in

the half-maximal calcium relaxation time, making less calcium available during the cardiac

cycle. However, if this is accompanied by only a slight increase (*5 − 10%) in the diastolic

calcium concentration, a very prolonged (*40 − 60%) time to peak calcium concentration is

present as well, although this affects mostly the tension development and duration, rather

then relaxation. We have seen that the Ca and CaMYO strategies have proposed a Ca2+ tran-

sient which is slower to rise and faster to decline, corresponding to a delayed and more sym-

metric Ca2+ transient. This causes a far greater delay between activation and contraction and

a delayed systole, also visible in the left- and right-most panels in Fig 7. However, as more

time is spent in isovolumetric contraction with unaltered ejection times, this results in negli-

gible negative effects on the cardiac output. At the same time, this is accompanied by a

shorter diastole, which in the case of HFpEF pathology constitutes an improvement for car-

diac relaxation.

Targeting calcium handling is already subject of different clinical trials. On the other hand,

the possibility to target the sarcomere to treat different cardiovascular pathologies including

HFpEF by dynamically modulating its constituent proteins is an ongoing investigation [23].

Recent attempts of targeting the sarcomere have seen mavacamten and omecamtiv as protago-

nists. The first compound inhibits ATP hydrolysis thereby reducing myocardial contractility,

while the second one activates cardiac myosin by stabilising it and favouring the power stroke,

and it has been proposed as a treatment for HF with reduced EF. However, they are both indi-

rect treatments for HFpEF, as in the first case only a chronic administration of mavacamten
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has been seen to reduce LV hypertrophy [25], while in the second case only in the presence of

RV failure an HFpEF patient could benefit from increased RV contractility through omecam-

tiv action [26]. For this reason, the strategies of recovery proposed in this study by the TNF,

TKF and CaMYO parameter groups cannot be directly compared to what is currently being

tested experimentally (although we have already shown that single compounds’ effects can be

quantitatively validated using mathematical models [27]), and therefore still miss thorough

validation. As previous works (e.g. [28]) have demonstrated how models could be used for

transferring findings between species, we don’t exclude the possibility for this framework to be

scaled to human scale models, in order to potentially help the designing and developing of

future diagnostic and therapeutic strategies.

4.1 Limitations

This work has a number of limitations. The model itself is a two-chamber simplification of a

real heart, and spatial boundary conditions do not account for the pericardium which may

have a role in constraining cardiac mechanics [29]. If the model is an approximation of the

real system it represents, when we substitute it with an emulator we are adding an extra level

of model discrepancy which will require further experts knowledge to be quantified. The per-

formed GSA showed that altering preload and afterload has a secondary impact on the overall

LV function. However, we modelled these two factors as fixed boundaries, and in more

sophisticated closed loops heart systems the situation might change. The GSA also highlighted

that parameters related to cross-bridge dynamics had a limited impact. This may be in part

due to the length dependence of tension, where decreased Tref or kxb will lead to slower ten-

sion development, which will lead to the muscle remaining at higher sarcomere lengths for

longer, and hence having higher Ca2+ sensitivity, which in turn will recover contraction.

Additional one-at-a-time sensitivity analyses show (S7 Text) that, although Tref has a non-neg-

ligible impact on e.g. ESV and SV over its full range of variability, this parameter has saturat-

ing effects at high levels on these features, whereas other parameters (e.g. calcium-related or

thin filament-related) are operating at a maximum with reference parameter values and small

changes will lead to a higher impact on the LV features. Similarly, the above discussed effects

of changes in afterload and preload may be mitigated by the length dependence of tension.

For model validation, most of the compounds we tested were calcium channel blockers,

which are known to reduce the heart rate. Although this can be neutralised by secondary

effects such as a reflex increase in beta adrenergic tone in response to systemic vascular dila-

tion, so that because of the level of reflex beta adrenergic discharge the net effect on heart rate

could be balanced out [30], our model doesn’t account for heart rate variations, so the valida-

tion was performed by evaluating the effects of compounds at a fixed, physiological rate. The

negative chronotropic effect, coupled with the impact calcium channel blockers have on mus-

cle sympathetic nerve activity [31], can also partially explain the mismatch observed (S4 Text)

when quantitatively comparing compounds’ effects onto LV pressure features with the model

simulations. Another source of mismatch can be linked to the fixed LV volume setup nor-

mally used in the considered experimental studies to evaluate the compounds’ effects, which

differ from our rat heart model. The emulators were able to predict with high accuracy the

same quantitative compounds’ effects on the examined LV features as the ones obtained using

the simulator. However, the accuracy notably decreased and uncertainties increased when

predicting high compound concentration values. We know that high concentrations of cal-

cium channel blockers are associated with vanishing calcium transients. Since vanishing cal-

cium transients also made the simulator fail due to small calcium signal amplitudes (S3 Text),

the training dataset consequently did not contain parameter points encoding this kind of
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calcium transient shape. Therefore, predicting high compound concentration regions resulted

in performing extrapolation outside the emulators’ training space boundaries, which can

explain the observed reduction in prediction accuracy. Building a ZSF1 rat model by perturb-

ing the SHAM model is a pragmatic choice. Ideally, one would want to start from MRI images

of the obese ZSF1 rat and its related control (lean ZSF1 rat), create an in silico representation

of both by fitting model parameters to hemodynamic measurements (possibly obtained from

the same experimental rats cohorts) and then attempt to “virtually” recover the obese rat (dis-

eased state) towards the lean rat (healthy state). The calculated percentages of recovery

pointed out that all the parameter groups are able to recover cardiac function of similar

degrees. Since every parameter group represents a strategy of recovery, this results in weight-

ing all the types of recovery equally, and in real life situations each of them might have a dif-

ferent weight of clinical importance. However, this information can potentially be included in

our analysis by weakening or strengthening the implausibility criterion for parameters that

have to be more important than others.

5 Conclusion

We have used a validated biophysically detailed computational model of 3D biventricular rat

heart mechanics and a Bayesian probabilistic framework to provide indication of potential cel-

lular pharmacological targets to evaluate recovery of the LV function in an animal model of

HFpEF. This combination of forward deterministic modelling with machine learning tech-

niques proved to be crucial to carry out analysis which are normally too computational inten-

sive to be performed within reasonable timescales. The developed framework can easily be

adapted to solve many other different systems biology problems and could potentially aid the

drug discovery and development process at preclinical stages.
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