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Although the identification of protein interactions by high-
throughput (HTP) methods progresses at a fast pace, ‘inter-
actome’ data sets still suffer from high rates of false positives and
low coverage. To map the human protein interactome, we
describe a new framework that uses experimental evidence on
structural complexes, the atomic details of binding interfaces and
evolutionary conservation. The structurally inferred interaction
network is highly modular and more functionally coherent
compared with experimental interaction networks derived from
multiple literature citations. Moreover, structurally inferred and
high-confidence HTP networks complement each other well,
allowing us to construct a merged network to generate testable
hypotheses and provide valuable experimental leads.
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INTRODUCTION
Proteins perform their functions through interactions with
proteins and other biomolecules. The knowledge of entire sets
of interactions combined with the locations and properties of
protein-binding sites is essential for our understanding of cellular
functions and the origin of many diseases. Recent advances in
experimental high-throughput (HTP) approaches allowed the
determination of protein interaction partners in various organisms
on a large scale. Although detection of protein interactions through
HTP methods progresses at a fast pace, current ‘interactome’ data
sets still suffer from a high rate of false positives and low coverage.
Comprehensive human interactome mapping is a daunting task
with more than 80–90% of human protein–protein interactions
remaining to be determined [1]. Given that the number of known
structures of human protein complexes increases by thousands
every year, low-throughput and high-resolution X-ray/NMR
methods can be used to complement and verify interactions

obtained from HTP screens. Ideally, complete structural coverage
of protein complexes provides information on protein partnership
combined with the atomic details of binding site locations and
physicochemical properties of interaction interfaces.

Previously, structural data have been used to interrogate HTP
yeast interactions using homologous structures [2,3] or by
comparing query proteins to known template protein–protein
interfaces [4] (see supplementary information online). Here, we
describe a framework that allows consistent inference of protein
interactions and binding sites, using structural data on protein
complexes. As interaction annotations transferred from one
protein to another might result in incorrect assignment at larger
evolutionary distances, our approach verifies interactions and
binding interfaces by examining their evolutionary conservation,
uses algorithms to evaluate correct biological forms of proteins in
a cell and finally applies a rigorous scheme to rank binding sites
with respect to their relevance to the query protein. Although our
procedure can be applied to the interactome of any organism, we
illustrate our method by rigorously determining a web of protein
interactions in human. Our inferred protein interactions can be
accessed at ftp://ftp.ncbi.nih.gov/pub/mmdb/humanIntNw/ and
these data files also provide characteristics such as structural
properties, evolutionary conservation and locations of binding
sites on human protein sequences.

RESULTS AND DISCUSSION
In Fig 1, we present a schematic outline of our procedure. Pooling
all human gene sequences from the curated RefSeq database [5],
we select the longest protein isoforms resulting in 20,846 protein
sequences (step 1, Fig 1). For each protein sequence, we retrieve
protein interaction partners and binding sites using our IBIS
database [6,7], which predicts and clusters protein interaction
partners together with the locations of their binding sites on a
query protein. IBIS provides experimentally ‘observed’ human
interactions if a protein has at least five amino-acid residues
‘contacting’ another protein. Specifically, two residues are defined
to be in contact if any of the heavy-atom inter-atomic distances is
o6 Å, while the group of residues that have contacts with an
interaction partner is called a ‘binding site’. On the basis of
homology-based inference, we align query proteins to close
homologues with known structural complexes (step 2, Fig 1), and
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transfer partner and binding site annotations from homologues to
the query (step 3, Fig 1).

To ensure the biological relevance of interaction partners and
binding sites, we cluster similar binding sites of homologous
protein complexes (‘conserved binding site clusters’). Specifically,
similarity of binding sites is assessed by considering the sites’
sequence and structure conservation as well as physicochemical
properties of protein assemblies. Interaction interfaces in com-
plexes are additionally validated using the PISA algorithm. Using
chemical thermodynamics, PISA computes a set of macromole-
cular assemblies that are expected to be stable in solution and
presumed to represent the biological form of a protein in the
cell [8]. We then map interaction partners from complexes of

other organisms to their most similar human proteins that have
more than 80% sequence identity and 80% protein sequence
coverage (step 4a, Fig 1). We define a self-interaction (step 4b, Fig 1)
if an interaction is inferred from a homooligomeric complex
(complex of identical chains). We label each interaction with an
‘inference threshold’, defined as the average percentage of sequence
identity between the query human protein and homologous
structural complexes of the conserved binding site cluster.

As a result of our approach, we obtained 13,217 interactions
(including 2,944 self-interactions) between 3,614 human genes,
covering B18% of the human proteome (step 5, Fig 1) and B10%
of the human interactome based on previous estimates of the size
of the complete human interactome [1]. About 10% of all 13,217
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interactions were ‘observed’ in actual protein structural com-
plexes; 58% of all interactions were evolutionarily conserved
among non-redundant homologous complexes (that is, part of
‘conserved binding site clusters’) as opposed to ‘singleton’ clusters
formed by only one protein complex.

As a comparison benchmark, we used experimental protein
interactions determined mostly from HTP screens. Pooling all
interactions from Reactome [9], MINT [10] and HPRD [11]
databases we assembled 61,240 unique interactions between
11,446 human proteins. In addition, we constructed a high-
confidence (HC) set of 8,024 unique interactions between 3,168
proteins, demanding that each HC interaction was reported in at
least two publications. We considered ‘structurally inferred’ (SI)
interactions as those that were ‘observed’ or determined from a
conserved binding site cluster. As a metric that allows the
assessment of network similarity, we calculated the Jaccard
distance, considering sets of edges of networks i and j. Using
different inference thresholds, we compared SI networks with HTP
and HC networks, respectively. Only considering interactions
between proteins that appeared in both compared networks, we
observed that Jaccard distances decreased with increasing
inference threshold (Fig 2A). In particular, distances between SI
and HC networks were not only smaller but also declined faster
with increasing inference threshold compared with distances
between SI and HTP networks. To estimate the significance of our
results, we randomly distributed SI interactions, keeping the
number of interactions per protein constant. Furthermore, we
calculated distances of such randomized SI networks to HTP and
HC interactions as previously described. Using a Z-test, we found
that the observed distances at all inference thresholds were highly
significant (P{0.01). We also calculated Jaccard distances
between proteins rather than edges, confirming our initial result
(supplementary Fig S1 online).

A different level of comparison is the assessment of network-
dependent topological parameters. Using different inference
thresholds, we compared SI with HTP and HC interactions
between proteins that appeared in both networks. Consistent with
a previous study [3] we found that the mean node degrees of
proteins in the HTP network were generally much higher than for

HC and SI networks (supplementary Fig S2a,b online), pointing to
the possibility of false positives in the HTP network and possible
physical constraints on the number of partners in SI networks. As for
other topological measures, we observed similar mean clustering
coefficients for HTP, HC and SI networks at different inference
thresholds. Although mean shortest path lengths within connected
components remained constant in HTP and HC networks, corre-
sponding values of SI networks decreased with increasing inference
threshold (supplementary Fig S4a,b online). As a different measure of
centrality we also calculated betweenness centrality (supplementary
Fig S5a,b online), indicating that centrality characteristics of SI
networks appear closer to the HC than the HTP network.

To further measure the quality of structurally inferred interac-
tions, we calculated pathway and functional distances between
interacting proteins. Here we considered SI interactions that had an
inference threshold of more than 50% sequence identity. Using
pathway data from the Molecular Signature Database [12], we
annotated each human protein with all human specific pathways
with which it participated. Calculating pathway-specific Jaccard
distances between interacting proteins (see Methods), we observed
that proteins in SI and HC interactions are involved in more similar
pathways than proteins in the HTP network (Fig 2B). Such a shift to
lower distances is especially pronounced for SI networks (Wilcoxon
rank-sum test, P{0.01). As for biological functions, we annotated
each protein with its corresponding Gene Ontology (GO)-terms
[13]. In accordance with the previous result, HC and SI interactions
appear to be more functionally coherent than HTP interactions
(inset, Fig 2B). As for qualitative functional characteristics, we find
several tightly connected and functionally coherent clusters of
proteins in the SI network ranging from signalling, regulatory,
cytoskeletal regulation, protein degradation to immune response
functions (supplementary Fig S6 online).

Wondering whether SI and HC networks complement each
other, we find that only 24% of interactions in the HC network are
observed in the SI network, whereas only B22% of SI interactions
are covered by HC interactions (even considering interactions
between proteins that appear in both networks). Fig 3A shows the
‘merged’ network representing a union of HC and SI interactions.
Both types of interactions appear to merge well together,
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suggesting that structurally inferred interactions might comple-
ment reliable HTP interactions. To test such an observation on a
quantitative level, we define a ‘network coverage’ (see Methods).
Considering a set of proteins from a certain pathway or GO
category, we define coverage as the corresponding fraction of
these proteins that appear in a given interaction network.
Calculating coverage values for all pathways, we indeed observed
that the coverage distribution of the merged network is signifi-
cantly shifted to higher values compared with distributions of the
network coverage of SI and HC (Wilcoxon rank-sum test, P{0.01;
Fig 3B), implying that the SI and HC networks complement each
other in terms of pathway coverage. In Fig 3C, we use GO
categories, allowing us to obtain a similar result (P¼ 0.05).

We also expected that the merged network largely recovered
known topological characteristics of protein interaction networks.
Indeed, we clearly observed that degree distributions of the
merged network decayed as a power law (Fig 3D), similar to the
separate SI and HC networks (supplementary Fig S7a online). At
the same time, modularity of the SI and HC networks is evident
from the strong power-law decay of the clustering coefficients
with increasing node degree [14] (supplementary Fig S7b online),
a characteristic that prevails in the merged network as well (inset,
Fig 3D). The merged network comprises 5,464 protein nodes
and 17,199 edges (excluding self-interactions) and is available at
ftp://ftp.ncbi.nih.gov/pub/mmdb/humanIntNw/.

Here we present a comprehensive attempt to use the growing
data on protein structural complexes to map the human
interactome. Our framework not only uses invaluable experi-
mental evidence to infer interactions but also taps the atomic
details of binding interfaces and their evolutionary conservation,

allowing the assessment of their functional importance. Our
functional analysis and comparison with HTP networks show that
our structurally inferred interactions are more functionally and
pathway coherent than interactions obtained by HTP screens. As a
proof of concept, the merged network of HC and SI interactions
recovers general topological characteristics of protein interaction
networks. Furthermore, SI and HC interactions complement each
other well, suggesting that our approach might generate testable
hypotheses and provide valuable experimental leads.

METHODS
Software. Our pipeline was implemented using BioRuby [15], the
NCBI Toolkit and the Entrez Programming Utilities [16] to
facilitate data manipulation and analyses. Cytoscape [17] was
used for interaction network visualization.
Inferring protein–protein interactions. To infer interactions based
on homology, we first collected template proteins with known
structures that are similar to a given query protein and have at
least 80% sequence identity and more than 80% of the query
sequence aligned using cBlast [18]. For each template protein, we
retrieved all homologous (ensuring more than 30% identity to a
query) and structurally similar proteins with known structural
complexes from the Protein Data Bank [19]. Template and
homologous structural complexes were structurally aligned using
the VAST algorithm [20]. Subsequently, homologous complexes
were grouped based on their binding site similarity with the
concept that a binding site is more likely to be functionally
important and not lineage specific if it is evolutionarily conserved
among non-redundant homologues. A binding site cluster
represents a collection of structures that are related to the query
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protein where all members of the cluster contain similar binding
sites. We measured similarity between binding sites in terms of
sequence similarity, and assigned an additional weight to
structurally aligned positions (see supplementary information
online). Such a two-step process of mapping a query protein to
homologous structural complexes was necessary to ensure high
quality alignments through structure–structure comparisons.
Sequence similarity between the query and homologous structural
complexes in the conserved binding site cluster was calculated
and defined as the ‘inference threshold’. Binding sites were
additionally verified using the PISA algorithm [8].

HTP protein–protein interactions. For a representative set of
human protein–protein interactions that have been determined
mostly by experimental HTP methods (although some low-
throughput interactions were also included), we pooled all
interactions from Reactome [9], MINT [10] and HPRD[11] to
construct a network of 61,240 unique interactions between
11,446 human proteins. In addition, we accounted for interactions
that have been reported in at least two different publications by
these databases, allowing us to compile a HC network of 8,024
unique interactions between 3,168 human proteins.

Jaccard distance. Representing each protein i by a list of
attributes, Gi (GO or pathway annotations), we defined the
Jaccard distance between interacting proteins i and j as

Dij ¼ 1�
jGi \ Gj j
jGi [ Gj j

;

where 0pDijp1. We also calculated Jaccard distance between
two networks i and j by considering the corresponding sets of
edges/interactions Gi and Gj between proteins that appeared in
both networks.

Functional and pathway coverage of interactions. As a measure
of a network’s G¼ (V,E) functional or pathway coverage, we
considered sets of proteins that appeared in a certain pathway or
represented a GO function P¼ (p1, p2,y ,pn) We constructed a
corresponding graph GP¼ (Vp, Ep) by accounting for all interac-
tions in the given network G between proteins that appeared in a
given set P, Ep ¼ fðpi ; pjÞ 2 E jpi 2 P ; pj 2 Pg. Therefore, Vp is a
subset of P, VpDP, suggesting that jVp jpjP j, allowing us to define
the set-specific coverage of a network regarding set P as

Cp ¼
jVp j
jP j ;

where 0pCpp0. Using all pathways or GO categories, we
obtained corresponding frequency distributions of Cp values.

Pathway information. As a resource of pathway information, we
used data from the Molecular Signatures Database [12] that
compiles pathway information from KEGG [21], Biocarta and
Reactome [9]. We discarded redundant pathways that shared
more than 95% of their proteins with other pathways and ended
up with 480 non-redundant pathways.
Network parameters. A local measure of protein centrality in the
network is its degree, defined as the number of interaction
partners. We calculated mean shortest path length, defined as the
shortest paths between all protein pairs in a given connected
component and then averaged over connected components. As a
global measure of protein centrality, we calculated betweenness
centrality, reflecting a protein’s appearance in shortest paths
through the whole network. In particular, we defined betweenness

centrality of a node n as

cBðnÞ ¼
X

s 6¼v 6¼t2V

sst ðnÞ
sst

;

where sst was the number of shortest paths between proteins s and
t, while sst(n) was the number of shortest paths running through n
[22]. The clustering coefficient, Ci, was defined as the fraction of
observed interactions Ei, among all possible interactions between
Ni neighbours of a protein i,

Ci ¼
2Ei

NiðNi � 1Þ :

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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