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1  | INTRODUC TION

The contribution of natural enemies of insect pests as biological con-
trol agents has increasingly attracted attention, as farmers search 

for more environmentally friendly alternatives to pesticides (de 
Groot, Wilson, & Boumans, 2002; Wood, 2002). Pesticides, particu-
larly nonselective ones, have caused extensive loss of biodiversity in 
agricultural habitats due to their indiscriminate effects on nontarget 
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Abstract
In human-modified landscapes, important ecological functions such as predation are 
negatively affected by anthropogenic activities, including the use of pesticides and 
habitat degradation. Predation of insect pests is an indicator of healthy ecosystem 
functioning, which provides important ecosystem services, especially for agricultural 
systems. In this study, we compare predation attempts from arthropods, mammals, 
and birds on artificial caterpillars in the understory, between three tropical agricul-
tural land-use types: oil palm plantations, rubber tree plantations, and fruit orchards. 
We collected a range of local and landscape-scale data including undergrowth veg-
etation structure; elevation; proximity to forest; and canopy cover in order to under-
stand how environmental variables can affect predation. In all three land-use types, 
our results showed that arthropods and mammals were important predators of arti-
ficial caterpillars and there was little predation by birds. We did not find any effect of 
the environmental variables on predation. There was an interactive effect between 
land-use type and predator type. Predation by mammals was considerably higher in 
fruit orchards and rubber tree than in oil palm plantations, likely due to their abil-
ity to support higher abundances of insectivorous mammals. In order to maintain or 
enhance natural pest control in these common tropical agricultural land-use types, 
management practices that benefit insectivorous animals should be introduced, such 
as the reduction of pesticides, improvement of understory vegetation, and local and 
landscape heterogeneity.
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fauna (Le Roux et al., 2008) and have been blamed for destroying 
natural pest control services in various agricultural systems. The 
promotion of natural biological control agents can potentially re-
duce chemical usage and labor costs in various agricultural systems 
(Cleveland et al., 2006; Kellermann, Johnson, Stercho, & Hackett, 
2008; MEA, 2005; Sekercioglu, 2012).

Local and landscape factors are essential to supporting biologi-
cal controls (Lindgren, Lindborg, & Cousins, 2018; Milligan, Johnson, 
Garfinkel, Smith, & Njoroge, 2016; Nurdiansyah, Denmead, Clough, 
Wiegand, & Tscharntke, 2016; Seifert, Lehner, Adams, & Fiedler, 
2015). The presence of biological control agents is strongly affected 
by vegetation characteristics as heterogeneous vegetation offers a 
variety of resources and niches (Azhar et al., 2015; Denmead et al., 
2017; Nurdiansyah et al., 2016). Similarly, agricultural areas which have 
greater landscape heterogeneity show higher predation compared with 
landscapes which are predominantly monocultures (Rusch et al., 2016).

There are a range of pest species in agricultural systems, of which 
lepidopteran larvae have one of the greatest negative economic im-
pacts in fruit orchards (Elsey & Sirichoti, 2003; García, Miñarro, & 
Martínez-Sastre, 2018; Simon, Lesueur-Jannoyer, Plénet, Lauri, & 
Bellec, 2017), oil palm plantations (Basri, Norman, & Hamdan, 1995; 
Corley & Tinker, 2008; Kamarudin & Wahid, 2010; Wood, 2002), and 
rubber tree plantations (Jayasinghe, 1999; Winder, 1976). In order to 
assess natural predation of these critical agricultural pests, experi-
ments utilizing artificial caterpillars have been used and represent one 
of the most robust methodologies for measuring biological pest control 
(Jedlicka, Greenberg, & Letourneau, 2011). Researchers have recently 
started using artificial caterpillars as bait and recording predation rates 
(Howe, Nachman, & Lövei, 2015; Lemessa, Hambäck, & Hylander, 
2015; Low, Sam, McArthur, Posa, & Hochuli, 2014; Maas, Tscharntke, 
Saleh, Dwi Putra, & Clough, 2015; Nurdiansyah et al., 2016; Roels, 
Porter, & Lindell, 2018; Seifert et al., 2015). Predation pressure and 
influence of landscape management on pest control can be determined 

using artificial caterpillar experiment (Low et al., 2014). This method has 
been tested in a range of latitudes, elevations, and landscape contexts 
(Howe, Lövei, & Nachman, 2009; Milligan et al., 2016; Nurdiansyah 
et al., 2016; Roslin et al., 2017). However, most studies in developing 
countries have so far focused on only a single agricultural crop (i.e., 
Howe et al., 2009; Koh & Menge, 2006; Nurdiansyah et al., 2016).

This study aims to assess one of the key ecosystem services 
provided by biodiversity in Southeast Asian agricultural systems. 
We identified which natural predators are likely to be effective bi-
ological control agents in the understory of fruit orchards, oil palm 
plantations, and rubber tree plantations by assessing attack marks 
left by predators on artificial caterpillars (Curtis et al., 2013). We ex-
amined how local and landscape environmental variables influence 
predation on artificial caterpillars and assume that predation on pest 
insects would follow similar patterns. We predicted that fruit or-
chards, with their increased levels of vegetation heterogeneity and 
native fruit trees, would experience higher predation than the other 
land-use types due to a greater abundance of predators.

2  | METHODS

2.1 | Study area

The study was conducted between Pedas (2°37ʹ13.08″N, 102° 
03ʹ27.88″E) and Tampin (2°31ʹ08.35″N, 102°00ʹ55.41″E) in Negeri 
Sembilan, west coast of Peninsular Malaysia (Figure 1). Data were 
collected from January to June 2018 during the dry season. The 
study area was converted at least 60 years ago from lowland dip-
terocarp forest to agricultural areas. Three agricultural land-use 
types were surveyed, consisting of mixed fruit orchards, oil palm 
plantations, and rubber tree plantations (Figure 2). Fruit orchards 
were small-scale and mostly managed by villagers. They were 

F I G U R E  1   Map of study area shows 
the plots are located in the state of Negeri 
Sembilan, Peninsular Malaysia
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planted with a variety of fruit trees such as Durian (Durio zibethi-
nus), Rambutan (Nephelium spp.), Jackfruit (Artocarpus heterophyl-
lus), Langsat (Lansium parasiticum, Lansium domesticum), Mangosteen 
(Garcinia mangostana), Papaya (Carica papaya), Mango (Mangifera in-
dica), and Chempedak (Artocarpus integer).

2.2 | Study design

A total of 180 plots were established across the study site. Sixty 
individual plots with a 50 m radius were established in each land-
use type (fruit orchards, oil palm plantations, and rubber tree planta-
tions). We used a systematic sampling design with a random start 
(Morrison, Block, Strickland, Collier, & Peterson, 2008) for each crop, 
with the next plot at least 100 m away.

2.3 | Artificial caterpillar preparation, 
deployment, and identification

Artificial caterpillars were made from nontoxic green-colored 
clay plasticine modeling compound, rolled by hand to shape the 

caterpillars into a cylindrical form, and standardized to 4.5  cm in 
length and 0.7 cm in width (Howe et al., 2009). The clay contains 
wheat and is not harmful if consumed by a predator, conforming 
to ASTM D-4236(2016) the Standard Practice for Labelling Art 
Materials for Chronic Health Hazards.

To attach the caterpillars on the vegetation surfaces, adhesive 
glue was applied at both ends of the caterpillar. Artificial caterpillars 
were bent in the middle to mimic real caterpillar. Glue use was mini-
mized to avoid any excessive smells. Artificial caterpillars were glued 
to leaves/fronds, branches of trees, or oil palm trunks and also on 
understory vegetation which was 0.5 m above ground and at least 
5 m apart from each other (Seifert et al., 2015). Five artificial cat-
erpillars were deployed haphazardly within each plot, resulting in a 
total of 900 artificial caterpillars for the whole study (3 agriculture 
types × 60 plots × 5 artificial caterpillars). The caterpillars were de-
ployed in each land-use type simultaneously.

The caterpillars were left exposed to predation for 72 hr. On the 
third day, an inspection was carried out with the aid of a magnifying 
glass to examine the visible attack marks left by predators (Figure 3). 
We identified the animal taxon which caused the attack marks. We 
counted the number of attacks based on the multiple attack marks 
left on artificial caterpillars.

F I G U R E  2   Production landscapes 
represented by (a) fruit orchard, (b) oil 
palm plantation, and (c) rubber tree 
plantation

(a)

(b)

(c)
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Any visible marks observed on artificial caterpillar were con-
sidered evidence of predation (Low et al., 2014). Identified pred-
ator marks were analyzed based on the descriptions by Howe et 
al. (2009), Tvardikova and Novotny (2012), Low et al. (2014), and 
Nurdiansyah et al. (2016). The recorded predation marks were from 
the predators’ mandibles, ovipositors, beaks, bird's claws, and teeth.

2.4 | Assessment of environmental variables

We assessed a range of environmental variables to understand their 
relationship with predation (Table 1). The variables measured were 
as follows: (i) canopy cover; (ii) plot elevation; (iii) understory veg-
etation cover; (iv) height of understory vegetation; and (v) proximity 
to forest. Variables i, ii, iii, and iv were measured within a 10-m-
radius circle haphazardly located at each plot. We measured canopy 
cover using Gap Light Analysis Mobile Application (Glama) version 
3.0 (Tichý, 2016). This application tool supports the calculation 
of canopy openness and measures tree layer cover by analyzing a 
hemispherical photograph. The understory vegetation cover was 
visually estimated at each plot (Milligan et al., 2016). Understory 
vegetation cover was divided into the grass and nongrass vegeta-
tion. We used Global Positioning System (GPS) to determine eleva-
tion at each plot. The distance of each sampling plot to the nearest 
contiguous forest (>10,000 ha) was measured using Google Earth 
Pro measuring tools.

2.5 | Statistical analysis

All statistical analyses were conducted in R version 3.6.1 (R Core 
Team, 2019). We only analyzed data from artificial caterpillars at-
tacked by natural predators and excluded missing artificial caterpil-
lars (Nurdiansyah et al., 2016).

In order to examine whether total predation differed between 
land-use types and how this differed between arthropods, mammals, 
and birds, we fitted generalized linear mixed models (GLMMs) with 
a binomial distribution with predation as a binary response variable 
(evidence of predation or not) and habitat type and predator type as 

interacting categorical predictor variables. We also tested whether 
environmental variables: (i) canopy cover; (ii) plot elevation; (iii) un-
derstory vegetation cover; (iv) height of understory vegetation; and 
(v) proximity to forest had any effect on predation. We fitted plot 
nested within plantation number as random effects to account for 
the nested sampling design, for example, predation ~ habitat type * 
predator type  +  (1|plantation number/plot). After extensive data ex-
ploration and model selection using AIC (Burnham, Anderson, & 
Huyvaert, 2011), we discounted models with all of the environmen-
tal variables as they did not improve model fit and had no noticeable 
effect on predation.

3  | RESULTS

3.1 | Predation of artificial caterpillars

A total of 294 of the 900 artificial caterpillars deployed across the 
study were identified as being predated. Sixty-two caterpillars were 
reported missing from the deployed locations. Predation by arthro-
pods (17.6%  =  158 marks) was the highest, followed by mammals 
(12.3% = 111 marks) and birds (2.8% = 25 marks) (Table 2). Our mod-
els showed that there was no difference in the total amount of pre-
dation of artificial caterpillars between oil palm plantations, rubber 
tree plantations, and fruit orchards (Table 3). Arthropods were the 
most common predators in all three land-use types with bird and 
mammal predation 100 times and 15 times less likely than arthro-
pod predation, respectively, according to model estimates (Table 3). 
Predation by arthropods and birds did not differ between land-use 
types; however, mammal predation was 3.6 and 2.6 times more 
likely in fruit orchards and rubber tree plantations than in oil palm 
plantations.

3.2 | Effect of environmental variables on predation

None of the environmental variables (e.g., distance to forest, under-
story vegetation height/cover, elevation) had any noticeable effect 
on predation.

F I G U R E  3   Predators’ attack marks 
on artificial caterpillar: (a) predation by 
arthropods (ants), (b) mammal, and (c) bird

(a) (b) (c)
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4  | DISCUSSION

We found that arthropods were the most important predators across 
all land-use types, with mammals also providing a significant role. 
However, birds were minor predators, in all three land-use types.

Our findings share similarities with previous work that found 
that arthropods were the primary predator group in oil palm and 

rubber tree plantations, with mammals and birds more minor pred-
ators (Nurdiansyah et al., 2016). However, predation rates by birds 
and mammals were much higher at our study sites than in the previ-
ous study, particularly predation by mammals (>12% of all caterpil-
lars vs. <2%).

Furthermore, although predation rates were broadly similar 
among land-use types, in our study, predation by mammals was al-
most twice as high in fruit orchards and rubber tree plantations than 
in oil palm plantations. This perhaps reflects a higher abundance of 
mammals in these land-use types. Bats and rodents are likely to be 
the main mammalian predators in this study, as they are common 
in agricultural habitats in South-East Asia (Buckle, Chia, Fenn, & 
Visvalingam, 1997; Maas, Clough, & Tscharntke, 2013; Phommexay, 
Satasook, Bates, Pearch, & Bumrungsri, 2011; Syafiq et al., 2016). 
However, oil palm plantations have been found to poorly support 
insectivorous mammals (Yue, Brodie, Zipkin, & Bernard, 2015). 
Insectivorous bats are an important predator group that is less likely 
to be accurately assessed with artificial caterpillar techniques. This is 
because of their use of echolocation while foraging.

Predation by birds was very low in our study, likely caused 
by low abundances of insectivorous in the three land-use types. 
Insectivorous bird abundance and diversity have been found to be 
greatly reduced when forest habitats are converted to oil palm plan-
tations and rubber tree plantations, in particular (Azhar et al., 2011; 
Prabowo et al., 2016; Srinivas & Koh, 2016).

Our study showed that both arthropods and mammals play im-
portant functional roles as predators and consequently may provide 
important pest control ecosystem services in tropical agricultural 
landscapes. Interestingly, none of the environmental factors we 
measured had appreciable effects on rates of predation. This could 
be due to our fine-scale sampling approach of environmental vari-
ables compared to the relatively heterogeneous management prac-
tices between plantations and fruit orchards across our study area. 
All land-use types were owned and managed by smallholders, and 
therefore, trees were managed differently and planted at different 
times. This heterogeneity, in combination with the small size of the 
farms, may have confounded any relationship between environmen-
tal variables (e.g., understory vegetation cover and canopy cover) 
and predation rate. Stronger relationships of environmental vari-
ables (e.g., understory vegetation structure) with ecosystem func-
tion may be found in larger-scale monoculture plantations where 
medium-scale heterogeneity is low (Ashton-Butt et al., 2018).

Nevertheless, understory vegetation can provide habitat and 
food plants for predatory arthropods (Ashraf et al., 2018; Spear et 
al., 2018; Tews et al., 2004). Therefore, reducing herbicide use and 
allowing understory vegetation to proliferate could be an import-
ant management tool, in all three land-use types, where arthropods 
were by far the most significant predator. Predation by mammals 
was higher in fruit orchards and rubber tree than in oil palm plan-
tations. Lower predation rates likely reflect the poor ability of oil 
palm to support insectivorous mammals (Yue et al., 2015). While 
higher predation in fruit orchards is likely to be related to polycul-
ture farming systems which includes a mix of native tree species and 

TA B L E  1   Summary statistics of environmental variables in each 
land-use type

Explanatory 
variable Mean ± SD Median Min – Max

Fruit orchard

Canopy cover 
(%)

55.40 ± 10.31 56.96 26.29–79.20

Elevation (m) 45.08 ± 12.09 43 28.50–76

Grass coverage 
(%)

39.60 ± 25.15 35.50 2–81

Grass height 
(cm)

18.05 ± 19.43 9.95 3.60–96.40

Nongrass cov-
erage (%)

30.40 ± 23.44 21 4–95

Nongrass 
height (cm)

44.42 ± 31.39 36.30 4.20–193.10

Proximity to 
forest (km)

5.19 ± 2.97 4.62 0.34–14.11

Oil palm plantation

Canopy cover 
(%)

50.76 ± 7.16 52.28 31.83–61.45

Elevation (m) 58.46 ± 15.58 59.70 25.40–98

Grass coverage 
(%)

40.47 ± 25.08 39 5–90

Grass height 
(cm)

10.46 ± 6.20 9.50 3.20–32.60

Nongrass cov-
erage (%)

32.13 ± 23.22 25.50 4–91

Nongrass 
height (cm)

45.40 ± 22.53 42.90 9.50–110.30

Proximity to 
forest (km)

5.99 ± 2.02 5.49 3.57–9.77

Rubber tree plantation

Canopy cover 
(%)

56.36 ± 5.99 55.28 45.10–73.14

Elevation (m) 53.26 ± 18.40 49.85 21.60–96

Grass coverage 
(%)

43.57 ± 22.96 42.50 1–89

Grass height 
(cm)

17.34 ± 14.11 13.80 3–80.70

Nongrass cov-
erage (%)

39.13 ± 21.33 39 4–89

Nongrass 
height (cm)

66.45 ± 39.30 58.65 15.40–
168.10

Proximity to 
forest (km)

7.93 ± 3.66 8.82 3.78–13.45
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crops such as banana and mangoes attracting small mammals like 
bats (Syafiq et al., 2016). In rubber tree plantations, the higher pre-
dation by mammals could be due to the mix of perennial fruit tree 
species planted alongside rubber trees. Commercial crop production 
landscapes with more heterogeneous vegetation for the provision of 
refuges can increase mammal diversity (Ramírez & Simonetti, 2011) 
and in turn enhance ecosystem service provision (Landis, 2017).

Our study provides useful experimental results which would be 
difficult to obtain through alternative, indirect methods (Howe et 
al., 2009); nevertheless, there are a number of limitations associated 
with the use of artificial caterpillars which may confound our results. 
Ideally, some sort of comparison with living organisms would be use-
ful to validate how effectively the artificial caterpillars simulated real 
living organisms.

Differences in predation between taxa were found; in particular, 
predation by birds was low in our study. The lack of predation by 
birds could be the result of a number of reasons. First, bird abun-
dance may be low as insectivorous birds are often adversely affected 
by the conversion of forest to agricultural land use, particularly in oil 
palm (Azhar et al., 2011; Srinivas & Koh, 2016). Alternatively, insec-
tivorous birds can also be very selective in their diet (Morse, 1971) 
and may not have been attracted to the artificial caterpillars, in our 
study system, thus biasing the results. However, this is unlikely, as 

birds have been identified as the main predator in previous studies 
using artificial caterpillars (Maas et al., 2015).

Our results may not reflect the canopy level of each land-use 
type. Deploying the artificial caterpillars at the canopy level is im-
practical. High air temperature at the canopy level may damage the 
artificial caterpillars. Another methodological uncertainty is the dis-
appearance of artificial caterpillars during the study. This could have 
been caused by weather conditions (e.g., heavy rain) or complete 
consumption by large mammals (e.g., cattle and buffalo). There were 
also signs that long-tailed macaque (Macaca fascicularis) detached 
some of the deployed artificial caterpillars.

5  | CONCLUSION

Our study demonstrates that arthropods and mammals play an im-
portant functional role as biological control agents in the understory 
of oil palm plantations, rubber tree plantations, and fruit orchards. 
To support sustainable agricultural management, the diversity and 
abundance of arthropod and mammal predators should be main-
tained by tolerating understory vegetation and minimizing applica-
tion of pesticides. Predation by birds was very low in our study, likely 
reflecting the poor ability of the three land-use types to support in-
sectivorous birds. While further research is necessary to character-
ize the economic value of beneficial ecosystem services provided 
by natural predator populations in oil palm plantations, rubber tree 
plantations, and fruit orchards, we show that arthropods and mam-
mals, in particular, are important predators and thus management ef-
forts should be made to conserve beneficial arthropod and mammal 
diversity and abundance.
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Location

Number of predation

Arthropod Bird Mammal
Overall predation 
by land use

Fruit orchard 42 6 45 93

Oil palm 65 5 24 94

Rubber 51 14 42 107

Overall predation by 
taxon

158 25 111  

TA B L E  2   Summary of predation on 
artificial caterpillars by arthropods, birds, 
and mammals

TA B L E  3   GLMMs of caterpillar predation with organism type 
(arthropods, birds, and mammals) and habitat type (oil palm, 
orchard, and rubber tree) as interacting predictor variables. 
Predation by arthropods in oil palm is the intercept of the model of 
which all other variables are compared to using the odds ratio

Predictors Odds ratio CI p

Arthropod 0.23 0.13–0.40  

Bird 0.06 0.03–0.15 <.001

Mammal 0.29 0.17–0.48 <.001

Orchard (arthropod) 0.59 0.26–1.34 .208

Rubber (arthropod) 0.81 0.36–1.80 .601

Bird*Orchard 1.43 0.41–4.98 .572

Mammal*Orchard 3.56 1.80–7.05 <.001

Bird*Rubber 2.44 0.83–7.23 .106

Mammal*Rubber 2.64 1.34–5.17 .005

Note: Symbol “*” denotes a model interaction.
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