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Abstract: Tumor aggressiveness and progression is highly dependent on the process of metastasis,
regulated by the coordinated interplay of genetic and epigenetic mechanisms. Metastasis involves
several steps of epithelial to mesenchymal transition (EMT), anoikis resistance, intra- and extravasa-
tion, and new tissue colonization. EMT is considered as the most critical process allowing cancer cells
to switch their epithelial characteristics and acquire mesenchymal properties. Emerging evidence
demonstrates that epigenetics mechanisms, DNA methylation, histone modifications, and non-coding
RNAs participate in the widespread changes of gene expression that characterize the metastatic
phenotype. At the chromatin level, active and repressive histone post-translational modifications
(PTM) in association with pleiotropic transcription factors regulate pivotal genes involved in the
initiation of the EMT process as well as in intravasation and anoikis resistance, playing a central role
in the progression of tumors. Herein, we discuss the main epigenetic mechanisms associated with
the different steps of metastatic process, focusing in particular on the prominent role of histone modi-
fications and the modifying enzymes that mediate transcriptional regulation of genes associated with
tumor progression. We further discuss the development of novel treatment strategies targeting the
reversibility of histone modifications and highlight their importance in the future of cancer therapy.

Keywords: metastasis; epigenetics; histone modifications; EMT; acetylation; methylation; anoikis
resistance; intravasation; drug targeting; novel therapies

1. Introduction

Cancer is associated with increased incidence and mortality worldwide due to complex
reasons reflecting population age and growth as well as the prevalence of main cancer risk
factors. Cancer prognosis is challenging to generalize and depends on host and tumor
heterogeneity, including cancer subtype, tumor staging and grading that often associate
with infiltration, aggressiveness, and dismal prognosis. Tumor stage is generally more
informative than grade in determining prognosis and is based on the assessment of tumor
size with direct invasion into nearby structures, lymph node involvement, as well as
metastasis which commonly correlates with worst patient outcome.

Metastasis involves the growth of secondary tumors at distant sites from the primary
location and is tightly connected to a well-coordinated gene regulation machinery. For
metastasis to occur, cancer cells need to undergo epithelial to mesenchymal transition (EMT)
characterized by loss of cell adhesion proteins, such as vimentins and cadherins, adapting
a nonpolarized, spindle-shaped, and fibroblast-like appearance [1]. This further leads to
loss of cell-to-cell and cell-to-matrix interactions, allowing neoplastic cells to escape from
the primary site into the circulation. Intravasation requires resistance to anoikis, a form of
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apoptosis induced by loss of cell-to-cell and cell-to-matrix interaction, thus promoting the
survival of neoplastic cells inside the blood vessels [2]. Under physiological conditions,
cells anchored to extracellular matrix or to adjacent cells are equipped with a pro-survival
machinery that can overwhelm apoptotic signals and promote normal cell function. Loss
of anchorage allows cancer cell to overcome apoptosis and travel to a distal location [3].
Extravasation and colonization of the new tissue represent the final steps of the metastatic
process. The ‘homing’ of cancer cells at target tissues is a highly specific process depending
on adhesion and extravasation as well as the properties of tissue microenvironment [4].

An interplay of genetic and epigenetic changes has been associated with the hallmarks
of metastasis, representing critical regulators of genes required for cancer spread in a
specific and reversible manner [5] (Figure 1). Epigenetic gene regulation can be achieved
by chemically modifying DNA or histones, or by non-coding RNAs, such as microRNAs
(miRNAs) and small interfering RNAs (siRNAs) [6]. Proper DNA and chromatin folding
relies on histones integrity, stabilisation, and condensation. Increased condensation is asso-
ciated with suppression of gene expression, whereas reduced condensation enhances gene
activation. This process is highly dependent on epigenetic post-translational modifications
(PTMs) taking place on the N- and C-terminals of histone proteins or on DNA. Histone
modifications are broadly categorized into active or repressive, based on their effects on
gene expression. Activating histone modifications include mainly acetylation, demethyla-
tion, and, in some cases, methylation of certain histones [7]. On the other hand, repressive
modifications include histone methylation, deacetylation, and, less often, demethylation [7].
On top of these modifications, DNA methylation taking place on cytosines, mainly in CpG
dinucleotides, induces further repression of gene expression. In parallel, non-coding RNAs
act to alter gene transcription and further affect the post-transcriptional fate of the gene
product [8]. In the following sections, we discuss main epigenetic mechanisms utilized by
cancer cells to regulate gene expression, alter their transcriptional phenotype, and promote
metastasis, focusing particularly on histone PTMs and their targeting options.

Figure 1. Epigenetic mechanisms regulate critical checkpoints of metastasis. Metastasis checkpoints are regulated by highly
coordinated epigenetic mechanisms. EMT is mainly characterized by loss of E-cadherin expression. This can be achieved
through regulation of transcription factors ZEB1, 2, SNAIL, and TWIST1. The p300/CBP complex acetylates the promoter of
ZEB1, which further activates BRG1, in order to suppress E-cadherin via histone methylation. Additionally, ZEB1/ZEB2 have
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the ability to recruit the CtBP complex, which enables HDAC1 to suppress the E-cadherin gene. At the same time, TGF-β,
which is activated by TGFBR2-mediated induction of SNAI1/2, can activate both JMJ3 demethylase and lncRNA-HIT. JMJ3
is part of a loop along with TGF-β and SNAI1, regulating each other’s induction. Histone methyltransferase G9 targets
SNAI1 which recruits SIN3A to suppress E-cadherin via deacetylation. Additionally, SET8 monomethylates H4K20 and
cooperates with TWIST1 to increase N-cadherin and suppress E-cadherin. The methyltransferase EZH2, part of the PRC2
complex and the MYC-activated miR-9 can also inhibit E-cadherin expression by histone methylation and targeting of
the E-cadherin mRNA. During the second step of intravasation and anoikis resistance, cancer cells express anti-apoptotic
factors, such as BCL2 as well as mesenchymal markers. FZD7 induces activation of TWIST1 which increases BCL2 and
FLIP inhibits anoikis by suppressing caspase-8 production. Moreover, JMJD2B interacts with β-catenin to upregulate the
mesenchymal marker vimentin and PHF8 is involved in elevation of integrins expression. In the final step of extravasation
and colonization, the cell differentiation NDRG1 gene plays a crucial role in reversing EMT and promoting metastasis.

2. Epigenetic Modifications Regulate Epithelial to Mesenchymal Transition (EMT)

The EMT process can be activated by extracellular signals, such as extracellular matrix
components, soluble growth factors such as the Transforming growth factor beta (TGF-β)
and fibroblast growth factor (FGF), the signaling Wnt and Notch proteins, or by several
intracellular cues which enhance signaling cascades, leading eventually to alterations in
cytoskeletal organization and disassembly of cell–cell junction complexes [1–3]. A hallmark
of EMT is the functional loss of the adhesion molecule E-cadherin present in most epithelial
cells that leads to disaggregation of adjacent cancer cells and contributes to dissemination
(Figure 1). The promoter of E-cadherin gene (CDH1) harbors E-box elements which are
bound to transcription factors such as the Snail family of zinc finger proteins (SNAI1/2/3),
the two double zinc finger and homeodomain factors ZEB1/2, and the family of bHLH
factors (TWIST1/2, E12/E47)) that are ultimately involved in gene regulation [2,9]. Upon
activation, these transcription factors act as molecular switches, induce transcriptional re-
programming, and mediate epithelial-mesenchymal plasticity, providing a rapid regulatory
mechanism for cancer progression. Additional transcription factors such as the Forkhead
Box C2 (FOXC2) and Transcription Factor 4 (TCF4) are involved in EMT without binding
to CDH1 but by suppressing the expression of claudins and desmosomes present in cell
junctions, or through interaction with other transcription factors.

During transcriptional reprogramming, alterations in histone modifications play a
pivotal regulatory role, orchestrating the simultaneous repression of epithelial genes and
activation of mesenchymal genes. Based on their effects on gene transcription and the
associated chromatin environment, they are broadly characterized either as permissive or
repressive. Permissive PTMs may induce the upregulation of mesenchymal genes, such
as N-cadherin (CDH2), VE-cadherin (CDH5), fibronectin (FN1), and vimentin, whereas
repressive histone modifications mainly participate in the suppression of epithelial genes,
such as CDH1, claudin 1 (CLDN1), claudin 10 (CLDN10), and junction plakoglobin epithelial
gene (JUP) [10].

2.1. Activating Histone Modifications Involved in EMT

Activating histone PTMs include mainly acetylation and demethylation. It is well-
established that actively transcribed euchromatin is mainly characterized by high lysine
acetylation levels catalysed by the acetylases Lysine Acetyltransferase 2B (PCAF), Histone
Acetyltransferase P300/CREB Binding Protein (p300/CBP), and Tat Interacting Protein,
60 kDa (TIP60) (Figure 2).

During EMT, β-catenin, which is a core component of the cadherin protein complex,
has been shown to interact with the T cell factor, in order to translocate to the nucleus and
recruit the p300/CBP complex [11]. This further induces acetylation of the transcription
factor ZEB1, enhancing its binding to the microRNA-200c/141 promoter, ultimately leading
to its expression [12].
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Figure 2. Histone acetylation regulates genes involved in cancer progression. Histone acetylation is an activating histone
modification that favors gene transcription. H3K4Ac marks are present on the promoters of several genes, GLI1, SMO,
FOXF1, Bmi1, and SIRT2, which are upregulated in cancer, favoring tumor progression. Upon SNAI1/2 activation, increased
H3K9 acetylation has been observed on the promoter of TGFBR2, causing its upregulation. Critical acetyltransferases
TIP60, GCN5, PCAF, and p300 catalyze histone acetylation of metastasis-promoting genes. hMOF, a H4K16 histone
acetyltransferase normally maintains the expression of EMT-related tumor suppressor genes, such as TMS1, CDH1, and
ESR1, but is often downregulated in cancer. TIP60 is also commonly downregulated in various tumors, where it prevents the
activity of anti-tumor DDR and p53 pathways, indicating how reduction in histone acetylation promotes cancer progression.
HDAC3 can also be detected on the promoters of activated mesenchymal genes, even though most HDACs are associated
with gene repression. Upon Notch signaling activation, H3K4Ac is removed by HDAC3, allowing for Notch-mediated
expression of EMT-related genes. Profilin-2 interacts with HDAC1 and inhibits its binding to the promoters of Smad2 and
Smad3, causing Smad protein activation and subsequently enhancing TGF-β-induced EMT and angiogenesis. HDACs also
catalyze H3K4/56 deacetylation at the CDH1 promoter, thus repressing E-cadherin. Similarly, HDAC1 and 2 are recruited
by ZEB1 to CDH1 promoter, inducing its repression. In the same context, ZEB1 recruits SIRT1, a nicotinamide adenine
dinucleotide (NAD)-dependent deacetylase, associated with a global H3K27 deacetylation and reduced H3K9Ac and
H3K27Ac levels on the promoters of CDH1 and other epithelial genes, such as EPCAM, ST14, ESRP1, and RAB25, promoting
EMT and metastasis. Finally, overexpression of FLIP leads to the upregulation of the anti-apoptotic Bcl-XL, inhibiting the
anoikis apoptotic pathway. HDAC inhibition prevents this outcome by reducing FLIP levels and inducing apoptosis of
cancer cells, suggesting that HDACs participate in anoikis resistance of cancer cells through yet unknown mechanisms.

Histone 3 lysine 4 acetylation (H3K4Ac) marks mediated by TIP60, are often detected
in the promoters of EMT marker genes, including CDH1, glioma-associated oncogene
homolog 1 (GLI1) and smoothened homolog precursor (SMO) of the Hedgehog pathway
which are involved in cancer cell migration and invasion [13]. H3K4Ac marks are also
present in the transcription regulators Forkhead Box F1 (FOXF1) and BMI1 Proto-Oncogene,
Polycomb Ring Finger (BMI1), that promote tumor progression and stemness [13,14].

Increased H3K9 acetylation was observed on the promoter of Transforming Growth
Factor Beta Receptor 2 (TGFBR2) after the activation of SNAI1/2, leading to transcrip-
tion of TGF-β, a major player in the regulation of cancer metastasis [15]. In addition,
acetylation of H4K16, mediated by histone acetyltransferase Males-absent-on-the-first
(hMOF/KAT8/MYST1) has been demonstrated to maintain the expression of EMT-related
tumor suppressor genes, such as target of methylation-induced silencing (TMS1), CDH1,
and Estrogen Receptor 1 (ESR1) [16]. hMOF is therefore often downregulated in breast
cancer and medulloblastoma, resulting in genomic instability and impaired DNA damage
response [16].
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Another activating histone modification, demethylation is mainly mediated by the
enzymes Jumonji Domain-Containing Protein 1A/B (JMJD1A/B), Jumonji Domain Con-
taining 2 (JMJD2) and the PHD Finger Protein 2/8 (PHF2/8) [17]. JMJD1A has been shown
to upregulate Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1), a
long non-coding RNA that is involved in dysregulation of cell signaling and EMT induc-
tion, cancer cell migration and invasion [18]. Jumonji Domain Containing 2 B (JMJD2B)
can interact with β-catenin to mediate H3K9 demethylation of the vimentin (VIM) gene
promoter, and further promote EMT and metastasis [19]. Similarly, PHF8 causes H3K9
demethylation on the promoter of integrin genes including Integrin Subunit B2 (ITGB2),
Integrin Subunit Alpha M (ITGAM), and Integrin Subunit Alpha 9 (ITGA9) to induce their
expression [20]. Lastly, Jumonji Domain-Containing Protein 3 (JMJ3), a histone demethy-
lase that removes methyl marks from H3K27, is induced by TGF-β and activates SNAI1
expression to facilitate EMT [21].

2.2. Repressive Histone Modifications Involved in EMT

Repressive histone modifications mainly involve methylation and deacetylation. Hi-
stone methylation occurs on arginine and lysine residues by histone methyltransferases
(HMTs) which use S-adenosyl methionine (SAM) as a donor for methyl groups [8] (Figure 3).
The Enhancer of zeste homolog 2 (EZH2) methyltransferase, part of the repressive Poly-
comb Repressive Complex 2 (PRC2) complex has been overexpressed in cancer and espe-
cially in metastatic tumors [22]. EZH2 mediates the H3K27me3 marker which has been
associated to silencing of the CDH1 gene, Wnt antagonist genes such as Axis Inhibition
Protein 2 (AXIN2), Naked1 (NKD1), Protein Phosphatase 2 Regulatory Subunit 2 beta
(PPP2R2B), Prickle Planar Cell Polarity Protein 1 (PRICKLE1), Secreted Frizzled Related
Protein 5 (SFRP5) and of the metastasis suppressor gene Raf Kinase Inhibitory Protein
(RKIP) [22], promoting EMT and cancer metastasis [23] (Figure 3). The expression of PRC2
complex on the other hand has been inversely linked to metastasis and PRC2 loss has been
involved in the enhancement of tumor metastatic potential [24].

The methyltransferase G9a that mediates H3K9me2 can interact with SNAI1 and
promote EMT by silencing a wide array of genes [25]. Furthermore, it can recruit DNA
methyltransferases (DNMT) on the promoter of CDH1 through SNAIL interaction, further
suppressing E-cadherin expression and promoting EMT in vitro and in vivo [26]. Hypoxia
promotes G9a stability and promotes indirectly tumor progression [27]. The effects of G9a
can be partly attributed to its interaction with SNAI1, which induces EMT by silencing a
wide array of genes [25] (Figure 3).

Another histone methyltransferase SET Domain Bifurcated Histone Lysine Methyl-
transferase 1 (SETDB1) mediates the repressive H3K9me3 mark and inhibits gene tran-
scription. It has been shown to potentiate EMT by up-regulation of Signal Transducer And
Activator Of Transcription 3 (STAT3) and induction of TWIST and c-myc [28]. Additionally,
SETDB1 cooperates with ∆Np63α to induce its stabilization, and ∆Np63α recruits SETDB1
to target genes that are going to be repressed [29]. However, SETDB1 can also interact
with Mothers Against Decapentaplegic Homolog 2/3 (SMAD2/3) to suppress EMT and
metastasis [30].

Moreover, the histone methyltransferase SET Domain Containing Lysine Methyltrans-
ferase 8 (SET8) can monomethylate H4K20 and cooperate with TWIST to reduce CDH1 and
upregulate CDH2 in a mouse model in vitro [31]. Di- and tri-methylation of H4K20 is medi-
ated by the methyltransferase Suppressor Of Variegation 4-20 Homolog 1/2 (SUV420H1/2),
commonly lost in many tumors where it affects chromatin integrity [32,33] and regulates
tensin 3 (TNS3) adhesion protein [34].
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Figure 3. Role of histone methylation in gene regulation during tumor progression. Trimethylation of H3K27 and H3K4 has
been associated with suppression of epithelial genes or activation of mesenchymal ones, respectively. In this process, the
PRMT5-MEP50 complex suppresses CDH1 and GAS1 by mediating H3K4 and H4R3 methylation. E-cadherin is suppressed
by SNAI1-mediated PRC2 trimethylation of H3K27. PRC2 also suppresses KLF2 expression. JARID2 recruits both PRC2 and
G9a to promote H3K27 and H3K9 methylation at the promoters of CDH1 and miR-200. G9a also silences the ep-CAM gene,
promoting metastasis. The TRIM33/Smad2/3 complex inhibits the binding of HP1 on the DNA, leading to expression of
GSC and MIXL1 mesenchymal genes. The PRMT5-MEP50 complex recruits WDR5 and causes H3R2 methylation, activating
the EMT-promoting genes VIM and SNAI1/2. Over-expression of the histone demethylase, JARID1A leads to the activation
of cyclin D1/E1 and ITGB1 expression, promoting tumor progression. The H3K27 demethylase, UTX, activates several
pro-metastatic genes, such as MMP-9/11 and SIX1, after interacting with the MLL4 complex, which includes a H3K4
methyltransferase, thus causing enhancement of EMT and metastasis. The PHF8 demethylase upregulates the expression of
Vimentin, Integrin, and Rho-associated protein kinase (ROCK) kinase by removing H3K9 methylation marks, thus favoring
metastasis. JMJD2B, a H3K9 demethylase, induces the expression of Vimentin, after interacting with β-catenin and also
demethylates the Integrin (ITGB2, ITGAM, ITGA9, ITGAB2) gene promoters, further promoting EMT and metastasis. JMJ3,
a H3K27 histone demethylase is induced by TGF-β and activates SNAI1 expression to facilitate EMT. EZH2 establishes
repressive H3K27me3 marks and downregulates FOXC, inducing metastasis. It also silences the CDH1, AXIN2, NKD1,
PPP2R2B, PRICKLE1, SFRP5, RKIP, promoting EMT and cancer metastasis. SETDB1 methyltransferase amplification is
responsible for cancer cell growth by methylating and stabilizing the oncogenic p53 mutants. In this context, PRMT6
methyltransferase reduces the expression of p21, promoting tumor cell migration.

A subgroup of ATP-dependent chromatin remodeling complexes, the SWItch/Sucrose
Non-Fermentable (SWI/SNF) comprised of two catalytic subunits, BRM/SWI2-Related
Gene 1 (BRG1) and BRG1-Associated Factor 60C (BAF60c) has been involved in EMT and
tumor progression. BRG1 is recruited by ZEB1 on the CDH1 promoter inducing gene
silencing [35], while BAF60c upregulates WNT5a, a member of WNT signaling, activated
during EMT [36].

In addition, the Snail family of transcription factors can recruit the lysine-specific
demethylase 1 (LSD1) which catalyzes H3K4me2 demethylation, acting downstream to
silence Snail-regulated genes, such as CDH1. Transcription factors that activate Snail also
interact with Histone Deacetylase 1 (HDAC1), HDAC2 [37], and PRC2 [1]. Snail has been
also implicated in the formation of bivalent chromatin state harboring both repressive
H3K27me3 marks as well as active H3K4me3 marks. Bivalent genes exist in a poised state,
which makes them readily available for activation upon stimulation [38]. The property of
bivalency is of major importance in cancer metastasis, contributing to EMT reversibility.
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The other repressive histone PTM, deacetylation involves the removal of permissive
marks from histones, inhibiting gene expression. Histone deacetylases (HDACs) can form
large complexes that are recruited to specific areas, decreasing gene expression. SNAI1,
for instance, can recruit the SIN3 Transcription Regulator Family Member A (SIN3A)
repressor complex on the CDH1 promoter [39]. This complex contains HDAC 1/2 capable
to remove the acetyl marks in gene promoter and decrease its expression. Moreover, SNAI2
can form a complex with the evolutionarily conserved SNAG (Snail/Gfi) domain and
bind on the E-box of the BRCA2 promoter, where it recruits the oncogenic transcriptional
corepressor C-terminal-binding protein (CtBP) complex that contains HDAC1, further
inducing gene repression [40]. ZEB1/2 has been shown to recruit this complex on the
promoter of CDH1 [41]. Furthermore, HDAC6 and Sirtuin 1 (SIRT1) have been shown to
counteract the p300-mediated acetylation on cortactin and thus enhance its ability to bind
F-actin, leading to induction of EMT and tumor progression [42].

2.3. DNA Methylation Involved in EMT

Aberrant DNA methylation is often observed in cancer, mediated by DNA methyl-
transferases (DNMTs) which are responsible for the formation of methylome, a dynamic
chromatin state where genes can be silenced or activated in a quick, specific way, without
altering their DNA sequence [43]. Upon induction of EMT, the methylome undergoes spe-
cific changes which alter the expression profile of cancer cells and promote the transcription
of EMT-associated genes [44]. Silencing of CDH1 during EMT has been associated with
promoter hypermethylation, induced by the transcription factors SNA1 [26] and ZEB1 [45]
that recruit DNMTs. The DNMT1 cross-talks with the TGF-β/SMAD2 pathway [46] and
along with DNMT3A play a significant role in silencing the miR-200 family members
(miR-200b, miR-200a, miR-429, miR-200c, and miR-141) during EMT [47–49]. DNMTs
also recruit methyl-DNA-binding domain proteins such as Methyl-CpG Binding Protein
2 (MeCP2) and Methyl-CpG Binding Domain Protein 1-4 (MBD1-4) [50] that mediate chro-
matin compaction upon DNA methylation [51]. Methylation is also a reversible event with
DNA demethylases such as the three Ten-Eleven Translocation (TET) proteins, creating the
dynamic setting mentioned above [52].

2.4. Non-Coding RNAs (Nc-RNAs) Involved in EMT

Non-coding RNAs (ncRNAs) are also involved in the regulation of gene transcription
and EMT. MicroRNAs (miRs), a subtype of ncRNAs, target mRNAs post-transcriptionally
and promote degradation, inhibition of translation, or both [53]. During EMT, miR-200s,
miR-205, and ZEB1/2 act to suppress each other, forming an interactive loop [54]. In this
loop, miRs were shown to suppress EMT while ZEB1/2 promotes EMT and cancer progres-
sion [55]. TGF-β2 and β-catenin are also repressed by miR-200s, thus inhibiting the EMT
process [56]. Moreover, miRs have been shown to target other pro-EMT genes, including
EZH2, SNAI1/2, TWIST1/2 [57,58]. Additional miRNAs, such as the Myc-activated miR-9,
can promote EMT through targeting of the CDH1 gene [59] (Figure 1).

Long non-coding RNAs (lncRNAs) have also been shown to contribute to EMT and
tumor progression through several pathways [60]. LncRNA homeobox (HOX) Transcript
Antisense RNA (HOTAIR) that has been associated to metastasis and poor prognosis in
several cancer types [61], can interact with both PRC2 and LSD1 in order to repress HOX
genes such as HOXD8, HOXD9, HOXD10, HOXD11 along with other metastasis suppressor
genes, such as P53-Responsive Gene 1 (PRG1), Junctional Adhesion Molecule 2 (JAM2),
Protocadherin 10 (PCDH10), and Protocadherin Beta 5 (PCDHB5) [62]. Furthermore, TGF-β
signaling may induce lncRNA-HIT (HOXA transcript induced by transforming growth
factor (TGF)-β), which in turn inhibits the expression of E-cadherin, thus promoting EMT
and the metastatic process [63]. Collectively, these data depict the complexity of epigenetic
regulation that uses several different repressive methods to achieve quick control of gene
expression levels.
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3. Epigenetic Modifications Involved in Intravasation and Anoikis Resistance

Intravasation and anoikis resistance are the next crucial steps in the process of metasta-
sis. Cancer cells that have undergone EMT and have lost their anchorage, need to suppress
apoptotic signals. These signals act by promoting the death receptor activated pathway
which involves activation of the initiator caspase-8 along with several other caspases [64].
Cancer cells are able to block this pathway by overexpressing the FLICE-like inhibitory pro-
tein (FLIP) which inhibits caspase-8, and is associated with worse prognosis [65] (Figure 1).
Moreover, anoikis resistance is also regulated by the Frizzled Class Receptor 7 (FZD7)-
TWIST1 interaction where FZD7 regulates the expression of TWIST1 via histone PTMs,
such as H3K4me3 and H3K27Ac. These activating modifications increase the expression
of transcription factor TWIST1, as validated by the reduction of TWIST1 expression after
FZD7 knockdown [66]. BCL2 levels were shown to increase in parallel to TWIST1 levels.
Both FZD7 and BCL2 are correlated with the Wnt pathway, and the knockdown of WNT5A,
a ligand of FZD7, was shown to decrease BCL2 expression [66].

4. Epigenetic Modifications Involved in Extravasation and Colonization

The last steps in metastasis, extravasation, and colonization require circulating cancer
cells to alter again their phenotype in order to ‘home’ new tissues. In this process, cancer
cells are required to attain an epithelial-like phenotype which is achieved by reversing
EMT in a process called mesenchymal to epithelial transition (MET). This allows the cancer
cells to express adhesion molecules and cytokines which crosstalk with the cells of the local
tissue and induce recruitment of immune cells [67]. In this way, cancer cells orchestrate
their extravasation [68] by upregulating the expression of integrins and selectins [69],
leading to elevated cadherin expression [70]. Epigenetic mechanisms are also implicated
in this final step of metastasis mainly through histone methylation. Regulation of the cell
differentiation N-Myc-Downstream Regulated gene 1 (NDRG1) that induces MET change
and is involved in cancer cell metastasis, can be achieved through histone methylation
marks [71] (Figure 1). Notably, in cell lines with increased expression of NDRG1 and low
metastatic potential, increased methylation of H3K4 has been detected in NDRG1 gene.
Importantly, NDRG1 is often silenced in most metastatic cancers [72].

5. Cancer-Type Specific Histone Modifications Regulating Tumor Metastasis

Specific epigenetic changes have been associated with the regulation of metastasis
and the acquisition of invasive phenotype in several tumors, as described in this section.

5.1. Head and Neck Cancer

Acetylation of H3K4 has been detected on the promoters of EMT marker genes,
including CDH1, GLI1, and SMO which are involved in cell migration and invasion in
head and neck squamous cell carcinoma, serving as prognostic markers [13]. Of interest,
HDAC3 has also been detected on the promoters of activated mesenchymal genes. It has
been shown to remove H3K4Ac from specific gene repressing transcription factors such as
Ikaros, allowing the upregulation of EMT genes through activation of Notch signaling, and
enhancing metastasis [13].

5.2. Lung Cancer

In lung cancer, H3K4Ac marks have been detected in the transcription regulators
FOXF1, and Bmi1 that promote tumor progression and stemness [13,14]. FOXF1 induces
EMT through upregulation of lysyl oxidase (LOX) that is critical for the crosslinking of
extracellular matrix proteins as well as through suppression of Smad2/3 signaling or
transcriptional activation of SNAI1. Moreover, the actin binding protein profilin-2 interacts
with HDAC1 to inhibit its binding to the promoters of Smad2 and Smad3, leading to Smad
protein activation and subsequently enhancing the TGF-β-induced EMT and angiogenesis
in lung cancer cells [73].
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Apart of acetylation, histone methylation has also been observed in lung cancer cells.
In non-invasive tumor cells, TGF-β favors the association of methyltransferase SETDB1
with Smad3 which mediates H3K9me in the Snail promoter, repressing its expression [74].
On the other hand, in invasive tumor cells undergoing TGF-β-induced EMT, repression of
SETDB1 causes de-repression of the Snail promoter [74]. The association of SETDB1 with
Smad3 has been also shown to suppress metastasis in lung cancer by repressing IL-2 and
the Ca2+-dependent RNA-binding protein annexin A2 (ANXA2) that interacts with the
mRNA of the nuclear oncogene, c-myc [30,75].

Additionally, H3K9me3 in the Tripartite Motif Containing 33 (TRIM33)-Smad2/3
complex displaces the heterochromatin protein 1 (HP1), allowing the subsequent activation
of mesendoderm differentiation genes, such as Goosecoid Homeobox (GSC) and Mix
Paired-Like Homeobox (MIXL1) [76,77].

TGF-β can also activate the Jumonji and AT-Rich Interaction Domain Containing 2
(JARID2), a component of the PRC2 complex that downregulates E-cadherin expression in
lung cancer cells. JARID2 occupies the promoters of CDH1 and miR-200 family members
and controls the recruitment of PRC and G9a methyltransferase, promoting methylation
of H3K27, H3K9, and gene repression [78]. The pro-metastatic effect of G9a observed in
lung cancer is attributed to gene silencing of epithelial cell adhesion molecule (ep-CAM),
enhancing invasion [79].

Moreover, the protein arginine methyltransferase 5 (PRMT5) forms complex with
the methylosome protein 50 (MEP50) to catalyze histone mono- and dimethylation of
important EMT genes in lung cancer cells [80]. Specifically, the PRMT5-MEP50 complex
mediates H3R2me through recruitment of the nuclear scaffolding protein WD Repeat
Domain 5 (WDR5), causing the activation of EMT-promoting genes, such as VIM, Snail
and Slug (SNAI1/2). They also mediate H3K4 and H4R3 methylation to repress metastasis
suppressing genes, such as CDH1 and the Growth arrest-specific 1 (GAS1) [80]. Addition-
ally, overexpression of a H3K4 histone demethylase, Jumonji, AT Rich Interactive Domain
1A (JARID1A) leads to the activation of cyclin D1/E1 and Integrin Subunit Beta 1 (ITGB1)
expression, promoting lung cancer cell growth and metastasis [81].

In parallel with histone modifications, DNA methylation is also implicated in lung
cancer metastasis. Overexpression of the programmed death-1 (PD-1) ligand 1 (PD-L1) that
regulates tumor microenvironment during EMT has been attributed to decreased DNMT1
levels in lung cancer cells which lead to demethylation of the PD-L1 promoter, changing its
expression [82].

5.3. Breast Cancer

Acetylation marks (H3K4Ac) are present in estrogen receptor (ER) signaling-responsive
genes in breast cancer cells and their detection has proved useful in predicting early stages
of tumor progression [83]. The acetyltransferase TIP60 that establishes H3K4, is involved
in oncogene-induced DNA damage response and is often downregulated during hypoxia-
induced EMT in ER-negative tumors. Reduced TIP60 expression was shown to block
anti-tumor responses, including the DNA Damage Response (DDR) and p53 pathway,
suggesting that H3K4Ac reduction favors ER-negative breast cancer progression [84]. On
the other hand, TIP60 depletion in ER-positive breast cancer inhibits tumor development.
This is possibly attributed to TIP60 recruitment by estrogens, promoting gene transcription.
TIP60 interaction with ER-α results in the recruitment of histone methyltransferase Mixed
Lineage Leukemia 1 (MLL1), which increases the H3K4me and H2AK5Ac marks, activating
target genes that participate in the development of breast cancer [84].

The histone acetyltransferase General Control Of Amino Acid Synthesis Protein 5-Like
2 (GCN5) plays a critical role in the TGF-β/Smad signaling pathway in breast cancer
cells [85]. GCN5 inhibition prevents EMT, migration and invasion of breast cancer cells.
Another acetyltransferase family member, PCAF promotes EMT and cancer metastasis [86].
The p300 acetylase has been shown to interact with a complex comprised of the Disruptor of
telomeric silencing 1-like (DOT1L) histone lysine methyltransferase and c-Myc, activating
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EMT regulators in breast cancer, and serving as a potential oncogene responsible for the
formation of an aggressive phenotype and transformation of cancer stem cells (CSCs) [87].

Histone deacetylases are also highly involved in breast cancer metastasis. HDAC1
induces the growth and migration of breast cancer cells by upregulating Snail/IL-8 sig-
nals [88]. HDAC2 enables the motility of breast cancer cells by upregulating Matrix Metal-
loproteinase 2 (MMP2) and N-cadherin and HDAC3 associates with Epidermal Growth
Factor Receptor (EGFR) and c-Src to promote breast cancer cell invasion [89,90]. In contrast,
HDAC8 forms a complex with SMAD3/4, in order to transcriptionally suppress SIRT7
and thus inhibit metastasis, increasing the efficacy of chemotherapy in breast cancer [91].
Finally, SIRT7 reduces breast cancer metastasis by degrading SMAD4, the key factor in
TGF-β pathway, thus inhibiting this pathway [91].

Moving towards methylation, the histone methyltransferase PRMT1 was shown to
bind ZEB1 promoter and induce EMT in breast cancer cells [92]. Similarly, PRMT7 reg-
ulates E-cadherin expression and promotes EMT [93] whereas PRMT6 attenuates p21
signaling [94]. Additionally, PRMT9 activates the Phosphoinositide 3-kinase/AKT Ser-
ine/Threonine Kinase/Glycogen Synthase Kinase 3 Beta/Snail (PI3K/Akt/GSK-3b/Snail)
pathway, enhancing cell migration and invasion [95].

In contrast, the methyltransferase SUV420H2 attenuates EMT and tumor progression
by establishing H4K20me3, and decreasing the expression of the focal adhesion protein
tensin-3 (TNS3) [34].

The lysine-specific demethylase JARID1A, upregulates the expression of the extra-
cellular matrix protein Tenascin C (TN-C), and favors breast cancer cell invasion [96].
The demethylase JARID1B, promotes EMT by suppressing miR-200s [97] or Phosphatase
And Tensin Homolog (PTEN) [98] through H3K4 demethylation of its promoter. How-
ever, JARID1B can act in concert with LSD1, to remove three H3K4 methylation marks
from the C-C Motif Chemokine Ligand 14 (CCL14) promoter, resulting in inhibition of
chemokine-mediated migration, angiogenesis and breast cancer metastasis [99].

The Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX/KDM6A)
demethylase activates several oncogenes and pro-metastatic genes, such as metallopro-
teinases MMP-9/11 and Homeobox protein Sineoculis homeobox homolog 1, Sine Oculis
Homeobox Homolog 1 (SIX1), upon interaction with the H3K4 methyltransferase, MLL4
complex, enhancing EMT and breast cancer metastasis [100]. However, UTX has been also
shown to cooperate with LSD1, HDAC1 and DNMT1 to compete with the MLL histone
methyltransferase complex and disrupt the recruitment of c-Myc and p300. This induces
the inhibition of H3K4 methylation on the promoters of EMT regulators, including Snail,
ZEB1, and ZEB2 [101], as well as on the promoter of CDH1.

At this point, it is important to note that different histone PTMs are associated with
specific breast cancer subtypes. H3K9ac and H3K36me3 marks are often detected in HER2-
positive breast cancer cells, while H3K9Ac, H3K4me3 and H3K79me2 are predominant in
triple negative breast cancer (TNBC) [102]. H3K27me3 is present in lower grade tumors,
Luminal A and B1 subtypes [103,104] where it associates with repression of the Forkhead
Box C1 (FOXC1) gene in Luminal B breast cancer, resulting in metastatic behavior [105].
SIRT1 is upregulated in luminal and HER2-positive subtypes but is significantly down-
regulated in TNBC, whereas H3K4ac, H3K9ac, and H4K16ac are relatively upregulated in
TNBC but greatly reduced in luminal and HER2-positive subtypes [106].

5.4. Gastrointestinal Cancers

Several deacetylases have a predominant role in gastrointestinal cancers. SIRT2
is involved in the regulation of Akt/GSK-3β/β-catenin pathway to mediate EMT and
associates with prognosis in hepatocellular carcinoma and esophageal squamous cell
carcinoma. In hepatoma cells, HDACs catalyze H3K4/56 deacetylation at the CDH1
promoter, inducing E-cadherin repression by Snail2, in favor of EMT [107]. HDAC1/2 are
recruited to ZEB1 on CDH1 promoter, inducing its repression in pancreatic cancer cells [41].
Moreover, overexpression of FLIP has been shown to mediate a concomitant overexpression
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of the anti-apoptotic factor Bcl-XL, and inhibit the anoikis apoptotic pathway in a pancreatic
cancer cell model [108]. This result was counteracted by HDAC inhibition, which reduced
FLIP levels and induced apoptosis of cancer cells, suggesting that HDACs participate in
anoikis resistance of cancer cells [108].

Furthermore, amplification of the SETDB1 methyltransferase is responsible for the out-
growth of liver cancer cells by methylating and stabilizing the oncogenic p53 mutants [109].

The PRC2 complex that establishes repressive H3K27me3 marks has been shown
recruited on the Kruppel Like Factor 2 (KLF2) and CDH1 promoters in gastric cancer
cells [110]. A switch of active H3K4me3 to repressive H3K27me3 has been detected
on 102 EMT marker gene promoters, whereas the opposite switch of H3K27me3 to the
activating H3K4me3 was observed on a series of upregulated mesenchymal gene promoters,
such as ZEB2, CDH2, Platelet Derived Growth Factor Receptor α (PDGFRα) and ESRP1 in
a TWIST1-induced EMT cell model [111]. Additionally, a third set of promoters containing
both H3K4me3 and H3K27me3 marks were detected to regulate several bivalent genes
in the same model, indicating an increased level of plasticity of the mesenchymal cell
state [111].

Finally, DNA methylation has been also shown to regulate TWIST1/2 promoter methy-
lation and correlate inversely with the TWIST1/2 expression levels in colorectal cancer.
TWIST1/2-positive high-grade tumors exhibit both lymphatic vessel invasion and lymph
node metastasis suggesting that TWIST promoter methylation may serve as a prognostic
marker for patients with colorectal cancer [112]. Similarly, ZEB2 expression is also regulated
by promoter methylation in pancreatic and hepatocellular carcinoma [113,114].

5.5. Prostate Cancer

Several histone modifications have been detected in prostate cancer cells with NAD-
dependent deacetylase SIRT1 being recruited in ZEB1 to induce silencing of CDH1 and
promoting EMT [115]. ZEB1-induced EMT is accompanied by repression of other epithelial
genes, such as Epithelial cell adhesion molecule (EPCAM), Suppressor of tumorigenicity
14 (ST14), Epithelial Splicing Regulatory Protein 1 (ESRP1), and RAB25, reduced H3K9Ac
and H3K27Ac on their promoters and a global H3K27 deacetylation [116]. Additionally,
TGF-β promotes H3K4me3 and Retinoblastoma-Binding Protein 5 (RbBP5) binding to the
promoter of Snail by recruiting Smad2/3 and CBP, leading to enhanced Snail expression in
prostate cancer cells [78]. Furthermore, PHF8 demethylase was demonstrated to remove
H3K9 methylation on the promoter of integrin genes and Rho-Associated Protein Kinase
1 (ROCK) kinase in prostate cancer cells and inducing their expression and promoting
migration and invasion, thus being correlated with poor prognosis [20].

6. Targeting Options

The high predominance of epigenetic changes in the metastatic process of several
tumors, along with their reversibility, has pointed research efforts towards their therapeutic
targeting for the development of new epigenetic drugs that will be patient- and cancer-
subtype specific (Table 1).

6.1. Low Molecular Weight EMT Inhibitors

An interesting EMT therapeutic approach is the use of small molecular weight in-
hibitors of EMT promoting genes, which target specific binding proteins that recognize
different histone modifications with promising results in vitro [117]. These include small
molecule compounds that target the acetylated-histone binding bromodomain (BD), specif-
ically blocking the binding to acetylated lysine by the BD-containing transcriptional co-
activator, Bromodomain Containing 4 (BRD4) [118,119]. Since BRD4 is found in the super-
enhancer region of the Myc oncogene, its inhibition prevents Myc function in tumor
cells [120]. More specifically, treatment with the BRD4 inhibitor MS417 was shown to re-
duce metastasis of colorectal cancer in mouse models by altering the expression of key EMT
genes, causing a sharp increase in the epithelial marker E-cadherin, as well as a decrease in



Int. J. Mol. Sci. 2021, 22, 2778 12 of 23

the mesenchymal marker vimentin [121]. Another BRD4 inhibitor JQ1 along with MS417
were demonstrated to interfere with BRD4 binding to Keratin 73 (K73)/K76Ac2 on TWIST
transcription factor and repress WNT5A expression, thus reversing EMT and metastasis of
breast cancer in vitro and in vivo [122]. Currently BRD4 inhibitors are tested in multiple
clinical trials of different cancer types. Other small molecules, such as UNC1215 and
UNC3866 that target specific methylated histone binders have been also used, even though
their function in reversing EMT and tumor progression has yet to be clarified. They were
shown to block the binding of methyl-lysine by the Malignant Brain Tumor (MBT) domain-
containing protein Lethal(3)Malignant Brain Tumor-Like Protein 3 (L3MBTL3) [123] and
CD-containing protein Chromobox 4/7 (CBX4/7) [124], respectively. Furthermore, in the
context of EMT, TGF-β1 treatment in gastric cancer cells induced expression of JARID1A
demethylase, which is recruited by p-SMAD3 to CDH1 promoter, inducing its silencing,
and promoting malignant progression [125]. Finally, drugs, such as salinomycin that target
CSCs, which play a great role in EMT have been successfully used in preclinical settings of
various tumors [126–130]. Experimental data support that these epigenetic cancer treat-
ments may influence the Twist-Snail/ZEB-E-cadherin axis and EMT inducers, such as
Wnt-TGFβ-Bone Morphogenetic Protein (BMP). Finally, RNA interference techniques also
seem to rise as a more promising approach for repressing these TFs on mRNA level [131].

6.2. Histone-Modifying Drugs

Several epigenetic drugs have already been approved for clinical use, including
the combination regimen of DNA methyltransferase inhibitors (DNMTi) with histone
deacetylase inhibitors (HDACi) in the treatment of myelodysplastic syndromes [132].
Clinical trials (up to phase IIb) with the same regimen have also been conducted for
non-Hodgkin’s lymphomas, such as T-cell and diffuse large B-cell lymphoma, as well
as acute myeloid leukemia [133]. In other solid tumors, for example non-small cell lung
cancer, these drugs have yet to be established as a preferred treatment option and are only
being used as experimental therapies in advanced, recurrent, or refractory states [133,134].
Moreover, panobinostat, a novel potent inhibitor of all HDAC enzymes has been effective
towards cancer proliferation and apoptosis [135], as well as towards the expression of
differentiation and EMT markers in in vivo hepatoma models [136]. Panobinostat was
shown to upregulate the epithelial cytokeratin marker and downregulate the mesenchymal
vimentin marker. The combination of the histone deacetylase inhibitor, Suberoylanilide
hydroxamic acid (SAHA), and the methyltransferase inhibitor, Zebularine affects the
differentiation of pancreatic cancer models [137]. Peroxiredoxin-2 (TSA) has also been
used to target class I HDACs both in vivo and in vitro and resulted in reduced cancer cell
growth along with EMT and metastasis suppression [138]. Mocetinonstat was also the
only HDACi that demonstrated specific antagonism of ZEB1-mediated miR-203 repression
in pancreatic cancer cells. miR-203 silencing by ZEB1 is strongly associated with tumor
recurrence after treatment with gemcitabine [139]. A number of HDACi have also been
investigated in the treatment of solid tumors, including breast cancer [140,141]. They
have yet to be approved for clinical use, but they comprise a promising target for treating
breast cancer and especially the refractory hormone-positive subtypes. HDACi prevent
breast tumor progression via transcriptional inhibition of EMT-related genes, modulation
of human epidermal growth factor receptor 2 (HER2) expression or induction of estrogen
receptor (ER) in hormone receptor-negative tumors, as well as by increasing the sensitivity
of hormonal therapy in ER positive tumors [142]. Only one phase III clinical trial exists
that demonstrates the anti-tumor effects of HDACi in breast cancer [143]. HDACi have
also been shown to target metastatic triple-negative breast cancer [144].

HMT inhibitors targeting PRMT3-6 in breast cancer have also been used preclini-
cally [145], with PRMT5 inhibition displaying the greatest effects among the other family
members. Its inhibition seems to reduce the metastatic potential and proliferation rate
of breast cancer cells [146] and influence breast cancer sensitivity to other drugs [80]. On
the other hand, PRMT2 methyltransferase itself was shown to improve the sensitivity of
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tamoxifen in ER positive breast cancer cells by transcriptionally suppressing the 36 kDa
variant of estrogen receptor a, ER-a36 [147]. Similarly, PRMT4 activation was inhibited in
endocrine resistant breast cancer cells [148].

Furthermore, EZH2 methyltransferase inhibitors have been used in clinical trials [149]
and can be combined with Extracellular Signal-Regulated Kinase (Erk) inhibitors to sup-
press TGF-β-induced EMT [150]. The EZH2 inhibitor Tazemetostat, is currently under
clinical trial in lymphomas and other tumors [151]. However, a recent clinical study of the
EZH2 inhibitor GSK2816126 on lymphomas, solid tumors and multiple myelomas showed
little effect in treatment efficiency and was terminated [152].

The non-selective Suppressor Of Variegation 3-9 Homolog 1 (SUV39H1) methyltrans-
ferase inhibitor, chaetocin [153] has been demonstrated to restore E-cadherin expression
and the tumor suppressor p15INK4B, by reducing the levels of H3K9me3 on the promoters
of these genes [154]. BIX01294, another histone methyltransferase inhibitor was shown to
induce E-cadherin expression through inhibition of G9a and G9a-Like Protein (GLP) and
reduction of H3K9me2 on its promoter [155,156]. UNC0638, another specific inhibitor of
G9a and GLP methyltransferases with lower toxicity profile compared to BIX01294, was
shown to exert similar effects and reduce the global H3K9me2 levels in in vivo [157].

The demethylase LSD1 implicated in the promotion of EMT can be also targeted to
suppress metastasis. In vivo and in vitro studies showed that LSD1 inhibition by parnate
or by an inhibitor targeting LSD1-SNAI1 interaction, leads to decreased cancer motility
and invasiveness while also increasing E-cadherin [158]. Similar results were observed
with the LSD1 inhibitor pargyline [159,160]. On the contrary, another clinical study on the
LSD1 inhibitor GSK2879552 in patients with relapsed/refractory small cell lung carcinoma
showed that the risk benefit was not significant to justify further studies on this drug [161].
However, more LSD1 inhibitors are currently tested in clinical trials for evaluation of their
efficacy [162].

6.3. DNA Methylation Inhibitors

DNA methylation has also been explored as a possible therapeutic target for metastatic
cancers. The DNA methylation status of cancer cells can predict their responsiveness
to treatment with cisplatin, a standard chemotherapeutic agent used in gastric cancer.
Furthermore, the DNA methylation inhibitor, decitabine applied in myelodysplastic syn-
dromes (MDS) and acute myeloid leukemia (AML) has been shown to induce changes
in cancer cell morphology, colony formation, and cell differentiation markers’ expres-
sion [163]. The hypomethylating agent 5-aza-2′-deoxycytidine can influence the differentia-
tion status of cultured cancer cells and inhibit the High Mobility Group AT-Hook Protein 2
(HMGA2)-induced EMT [164–166]. 5-aza-2′-deoxycytidine was also able to restore epithe-
lial phenotypes and inhibit EMT by promoting E-cadherin re-expression [167]. Moreover,
5-aza-2′-deoxycytidine-mediated targeting of BMP-4 that is epigenetically upregulated
in cisplatin-resistant gastric cancer cell lines, was shown to improve their sensitivity to
chemotherapy [168]. However, this effect of DNA demethylating agents, although capa-
ble of restoring genes silenced in cancer is not specific, and may result in the aberrant
expression of many non-epithelial genes, affecting positively EMT progression and tumor
metastasis [169].

6.4. NcRNAs

Lastly, the use of non-coding RNAs has been proposed as a treatment modality to
reduce cancer metastasis. miRNAs and lncRNAs can decrease the expression of EMT-
promoting transcription factors as well as the activity of epigenetic modifying enzymes.
Therefore, increasing the expression of these non-coding RNAs or reintroducing them in
the organism are under study. Despite the lack of in-depth knowledge, preclinical studies
demonstrate promising results for future implementation of these epigenetic modulators
in the treatment of cancer [170].
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Table 1. Drug targeting of histone modifications.

Drug Category Drug Name Cancer Type Effect Reference

LMW EMT
inhibitors

BRD4
Inhibitors

MS417 Colorectal Inhibits metastasis via induction of E-cadherin
and inhibition of Vimentin [121]

JQ1 Breast

Blocks BRD4 binding to K73/K76Ac2 on the
TWIST transcription factor, resulting in

decreased WNT5A expression and inhibition
of EMT and metastasis

[122]

Histone binder
inhibitor UNC3866 Prostate Blocks the binding of CBX4/7 to

methyl-lysine; unclarified role in EMT reversal [124]

CSC targeting
drugs Salinomycin

Breast, GI,
Leukemia, Lung,

Prostate

Influences the Twist-Snail/ZEB-E-cadherin
axis and Wnt-TGF-β-BMP to inhibit EMT

[126–
130]

Histone-modifying
drugs

DNMT
Inhibitors

Chaetocin AML
Restores E-cadherin and p15INK4B expression
by reducing SUV39H1- mediated H3K9me3 on

their promoters
[154]

BIX01294 HeLa cells
Induces E-cadherin expression by inhibiting

G9a and GLP-mediated H3K9me2 deposition
on its promoter.

[155,156]

UNC0638 Pancreatic
Induces E-cadherin expression by inhibiting

G9a and GLP-mediated H3K9me2 deposition
on its promoter.

[157]

Zebularine Pancreatic Used in combination with SAHA to promote
the differentiation of cancer cells [137]

HDAC
Inhibitors

SAHA Pancreatic Combined with Zebularine in order to
promote differentiation of cancer cells [137]

Panobinostat Hepatocellular
Inhibits cancer proliferation and induces
apoptosis of cancer cells. Also increases

differentiation markers in vivo
[135]

Mocetinostat Pancreatic
Specific antagonism of ZEB1-mediated

silencing of miR-203, which is associated with
tumor recurrence

[139]

Entinostat Breast In phase III clinical trial [143]
PRMT5

Inhibitors
shRNA- mediated

inhibition Breast, Lung Reduces metastatic potential, EMT and
proliferation rate of cancer cells [80,146]

EZH2
Inhibitors

Tazemetostat
Advanced solid

tumors and
lymphomas

Under clinical trial investigation [152]

GSK2816126 Lymphomas, solid
tumors and MM

Clinical study terminated due to little effect in
treatment efficiency [152]

Erk Inhibitors AZD6244 Breast Combination with EZH2 inhibitors suppresses
TGF-β-induced EMT [150]

LSD1
Inhibitors

Parnate Myelogenous
leukemia

Decreases motility and invasiveness, increases
E-cadherin [158]

Pargyline Lung Suppresses proliferation, migration and
invasion of cancer cells [159,160]

GSK2879552 Lung Clinical study discontinued [161]

DNA methylation
inhibitors

Decitabine MDS, AML
Changes cancer cell morphology,

differentiation markers and
inhibits proliferation

[163]

5-aza-2′-deoxycytidine Gastric
Improves sensitivity to chemotherapy, restores

epithelial phenotypes by promoting
E-cadherin re-expression and inhibits EMT

[167,168]

LMW; Low molecular weight, EMT; Epithelial to Mesenchymal Transition, BRD4; Bromodomain-containing protein 4, CSC; Cancer stem
cell, GI; Gastrointestinal, WNT5A; Wnt Family Member 5A, CBX4/7; Chromobox 4/7, DNMT; DNA Methyltransferase, HDAC; Histone
Deacetylase, SUV39H1; Suppressor Of Variegation 3-9 Homolog 1, G9a; Euchromatic histone-lysine N-methyltransferase 2 (EHMT2), GLP;
G9a-like protein, ZEB1; Zinc finger E-box-binding homeobox 1, PRMT5; Protein Arginine Methyltransferase 5, EZH2; Enhancer of zeste
homolog 2, MM; Multiple Myeloma, MDS; Myelodysplastic Syndromes, AML; Acute Myeloid Leukemia.

7. Conclusions—Future Perspectives

Collectively, metastasis is a critical step in cancer progression and worsens drastically
patients’ survival. Its complexity stems from the wide variety of crosstalk pathways, as well
as the heterogeneity observed in different cancer types and subtypes that either promote or
inhibit the process. The subdivision of metastasis in three major steps has helped research
to focus more on the specific checkpoints that regulate the process and elucidate previously
unknown regulatory mechanisms for potential targeting.
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Epigenetic modifications have recently emerged as critical regulators and drivers of
the metastatic process. Targeting of these pathways holds a great therapeutic potential, with
scientists being able not only to determine the epigenetic alterations, but also use newly
discovered epigenetic modulators, to specifically target and reverse them. In this way, an
effort is made to reset the process of metastasis and reconstitute the loss of epithelial-like
phenotype in cancer cells. Until recently, most drugs targeting the epigenetic state of
cells were only evaluated in vitro or in in vivo models. However, the constant progress
in the field of epigenetics, has allowed their future implementation in clinical trials and
in the clinical setting as individualized therapies that specifically target each cancer’s
unique “epigenome”.

Despite these encouraging results, epigenetic therapies need extensive investigation
to overcome the current lack of specificity of some agents, to elucidate the exact role of
the different epigenetic alterations, and to determine the therapeutic effect of epigenetic
regulation and the way to implement them in treatment schemes as a monotherapy or in
conjunction with other agents. Future research should focus on unraveling the complex
regulatory network induced by epigenetic mechanisms along with tumor microenviron-
ment, aiming to define the best therapeutic targets and biomarkers for evaluating tumor
aggressiveness and potential response to therapy. In these efforts, new technologies such as
ATAC-seq, single-cell RNA-seq, and ChIP-seq will also prove invaluable and help scientists
shed light in the entirety of the epigenome, its alterations in cancer, and the ways it can be
targeted to increase patient prognosis, survival, and quality of life.
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Abbreviations

EMT Epithelial to Mesenchymal Transition
P300/CBP E1A Binding Protein P300/CREB Binding Protein
ZEB1 Zinc Finger E-Box Binding Homeobox 1
BRG1 BRM/SWI2-Related Gene 1
CtBP C-terminal-binding protein
HDAC Histone deacetylase
SNAI1 Snail Family of zinc finger proteins 1
SNAI2 Slug
JMJ3 Jumonji Domain Containing 3 Histone Lysine Demethylase
G9a Euchromatic Histone Lysine Methyltransferase 2
SIN3A SIN3 Transcription Regulator Family Member A
SET8 Lysine Methyltransferase 5A
H Histone
K Lysine
me methylation
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ac acetylation
R Arginine
TWIST1 Twist Family BHLH Transcription Factor 1
EZH2 Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit
PRC2 Polycomb Repressive Complex 2
FZD7 Frizzled Class Receptor 7
FLIP CASP8 and FADD Like Apoptosis Regulator
JMJD2B Jumonji Domain-Containing Protein 2B
PHF8 PHD Finger Protein 8
NDRG1 N-Myc Downstream Regulated 1
GLI1 Glioma-Associated Oncogene Homolog 1
SMO Smoothened, Frizzled Class Receptor
FOXF1 Forkhead Box F1
Bmi1 Polycomb Complex Protein BMI-1
SIRT2 Sirtuin 2
TGFBR2 TGF-β Receptor type 2
GCN5 General Control of Amino Acid Synthesis Protein 5-Like 2
PCAF P300/CBP-Associated Factor
TIP60 Tat Interacting Protein, 60 kDa
DDR DNA Damage Response
hMOF Males-absent-on-the-first histone acetyltransferase
TMS1 Target of Methylation-induced Silencing
ESR1 Estrogen Receptor 1
Smad2 Mothers Against Decapentaplegic Homolog 2
EPCAM Epithelial Cell Adhesion Molecule
ST14 Suppression of Tumorigenicity 14
ESRP1 Epithelial Splicing Regulatory Protein 1
RAB25 RAB25, Member RAS Oncogene Family
FLIP CASP8 And FADD Like Apoptosis Regulator
PRMT Protein Arginine Methyltransferase
MEP50 Methylosome Protein 50
GAS1 Growth Arrest Specific 1
PRC Polycomb Repressive Complex
KLF2 Kruppel Like Factor 2
JARID Jumonji, AT Rich Interactive Domain
TRIM33 Tripartite Motif Containing 33
Smad2/3 Mothers Against Decapentaplegic Homolog 2/3
HP1 Heterochromatin Protein 1-Alpha
GSC Goosecoid Homeobox
MIXL1 Mix Paired-Like Homeobox
WDR5 WD Repeat-Containing Protein 5
KDM6B Lysine (K)-Specific Demethylase 6B
ITG Integrin
UTX Ubiquitously- Transcribed X Chromosome Tetratricopeptide Repeat Protein
MMP-9/11 Metalloproteinase-9/11
SIX1 Sine Oculis Homeobox Homolog 1
MLL4 Mixed-Lineage Leukemia Protein 4
ROCK kinase Rho-Associated Protein Kinase 1
FOXC1 Forkhead Box C1
SETDB1 SET Domain Bifurcated Histone Lysine Methyltransferase 1
CDH1 Cadherin 1
AXIN2 Axis Inhibition Protein 2
NKD1 Naked1
PPP2R2B Protein Phosphatase 2 Regulatory Subunit 2 beta
PRICKLE1 Prickle Planar Cell Polarity Protein
SFRP5 Secreted Frizzled Related Protein 5
RKIP Raf Kinase Inhibitory Protein
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