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Abstract

In human pathology, several diseases are associated with somatic mutations in the mitochondrial genome (mtDNA). Even
though mitochondrial dysfunction leads to increased oxidative stress, the role of mitochondrial mutations in atherosclerosis
has not received much attention so far. In this study we analyzed the association of mitochondrial genetic variation with the
severity of carotid atherosclerosis, as assessed by carotid intima-media thickness (cIMT) and the presence of coronary heart
disease (CHD) in 190 subjects from Moscow, Russia, a population with high CHD occurrence. cIMT was measured by high-
resolution B-mode ultrasonography and mtDNA heteroplasmies by a pyrosequencing-based method. We found that
heteroplasmies for several mutations in the mtDNA in leukocytes, including C3256T, T3336C, G12315A, G13513A, G14459A,
G14846A, and G15059A mutations, were significantly (p,0.001) associated with both the severity of carotid atherosclerosis
and the presence of CHD. These findings indicate that somatic mitochondrial mutations have a role in the development of
atherosclerosis.
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Introduction

In human pathology, several diseases have been associated with

somatic mutations in the mitochondrial genome. These mito-

chondrial mutations may arise during ontogenesis and are

associated with pathologies such as coronary vessel stenosis, some

forms of diabetes, myocardial infarction, cardiomyopathy and

other pathologies [1–17].

Atherosclerosis, the most common pathology in modern society,

is a multifactorial disease, in the development and progression of

which an interaction of phenotypic, environmental, socioeconomic

and genetic factors plays a significant role. Numerous polymor-

phisms of the nuclear genome, which are believed to be genetic

risk factors for atherosclerotic diseases, can help to explain for only

a few percentages of the variability of clinical manifestations of

atherosclerosis, such as coronary heart disease (CHD). At the same

time, mutations of the mitochondrial genome have remained out

of focus for a long time. However, they may play a pathogenic role

in the formation of atherosclerotic lesions of human arteries

causing various defects in the protein chains of some energy-

generating enzymes and transfer RNA (tRNA), synthesized

directly in the mitochondria. This leads to a decrease in the

concentration of these enzymes and their tRNA or total

dysfunction, which contributes to the development of oxidative

stress, deterioration of ATP production and accelerated develop-

ment of atherosclerosis.

In 2009, we developed a mutant allele quantitative assay to

study the differences in tissue-specific mitochondrial heteroplas-

mies [18]. Using this methodology we showed that there are

significant differences between unaffected intima and atheroscle-

rotic lipofibrous plaque in the level of heteroplasmy for several

point substitutions [18]. Further analysis revealed that several

mutations could be found in intimal cells that populate athero-

sclerotic lesions [19].

In a pilot study of ultrastructural characteristics of leukocytes

(Text File S1) we noted that in subjects without carotid

atherosclerosis, mitochondria typically contained well-defined

cristae, which were regularly located in the mitochondria matrix,

but the distribution and location of cristae in mitochondria in

leukocytes obtained from the blood of subjects with carotid

atherosclerosis were different (Fig. 1A–F). In some leukocytes

obtained from the blood of patients with carotid atherosclerosis

destructive alterations of mitochondria that were not present in

leukocytes of healthy subjects were observed (Fig. 2A–C). This

observation motivated us to investigate possible presence of

mutations in leukocytes in carotid atherosclerosis; The analysis

of mutation C3256T has revealed that there is a relation between

C3256T heteroplasmy level and predisposition to atherosclerosis

[20].

These findings motivated us to undertake the present study,

which was aimed to investigate if there might be association of the

levels of heteroplasmy of other mutations in leukocytes with the
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extent of carotid atherosclerosis as well as the presence of CHD. In

the present study a spectrum of well-known mutations, such as

A1555G, C3256T, T3336C, C5178A, G12315A, G13513A,

G14459A, G14846A, and G15059A, was analyzed.

Results

The phenomenon of heteroplasmy was observed for all

examined mutations of mitochondrial genome in the vast majority

of DNA samples, although the profiles of distribution differed

between mutations (Table 1). (In the present report, in order that

the levels of heteroplasmy among different mutations were visible,

we also included analysis of mutation C3256T, the data about

which was reported earlier [20]). The presence of mutation

A1555G was not detected only in one sample of 190, T3336C – in

3 samples, C5178A – in 6 samples, and G13513A – in 9 samples.

All other mutations were detected in all samples. Additionally,

100% of mutant allele was detected in DNA from blood leukocytes

only in one sample for T3336C, and in two samples for the

G15059A mutations.

We found significant correlations between carotid intima-media

thickness (cIMT) and the levels of heteroplasmy for C3256T

(r = 0.362, p,0.001), T3336C (r = 0.152, p = 0.036), G12315A

(r = 0.306, p,0.001), G13513A (r =20.357, p,0.001), and

G15059A (r = 0.316, p,0.001) mutations of the mitochondrial

genome (mtDNA). The levels of heteroplasmy for A1555G,

C5178A, G14459A, and G14846A had no associations with

cIMT. The data on the mean levels of heteroplasmy in the 1st and

4th quartiles of cIMT adjusted for age and gender are presented in

Table 2.

Additionally, the levels of heteroplasmy for mutations C3256T,

T3336C, G12315A, G13513A, G14459A, G14846A, and

G15059A correlated significantly with the size of atherosclerotic

plaques in any visualized segment of carotid arteries, as it was

evaluated by 4-point scale (Spearman’s Rho, 0.317, p,0.001,

0.328, p,0.001, 0.356, p,0.001, 20.492, p,0.001, 20.150,

p = 0.038, 20.153, p = 0.034, and 0.210, p = 0.003, respectively).

The levels of heteroplasmy for A1555G and C5178A did not

correlate with the size of atherosclerotic plaques. The data on the

mean levels of heteroplasmy in study participants without

atherosclerotic plaques and those participants who had an

atherosclerotic plaque in any visualized segment of carotid arteries

are shown in Table 2.

Of the conventional coronary risk factors, age had the strongest

association with the studied mtDNA heteroplasmies. Age corre-

lated with the level of heteroplasmy for C3256T (r = 0.279,

p,0.001), C5178A (r = 0.199, p = 0.006), G12315A (r = 0.255,

p,0.001), G13513A (r =20.363, p,0.001), G14459A

(r =20.192, p = 0.008), and G15059A (r = 0.328, p,0.001)

mutations of mitochondrial genome of circulating leukocytes.

For four of the nine mutations (C5178A, G1231A, G13513A and

G14459A) there was a difference between men and women (data

not shown). A significant correlation was also found between

systolic blood pressure and the G15059A heteroplasmy level

(r = 0.218, p = 0.002), and between triglycerides and T3336C

(r = 0.291, p,0.001) and G12315A (r = 0.153, p = 0.034) hetero-

plasmies. None of the studied heteroplasmies correlated with

either diastolic blood pressure, serum total cholesterol or LDL

cholesterol.

We have performed a regression analysis, in which the positive

or negative correlation was factored for deriving the association

between mtDNA mutations and atherosclerosis. The model

employing multiple regression caused serious problems, since the

number of variables that should be included for the construction of

a general model was too large for a given sample size. In this case,

a serious bias resulted in the loss of statistical significance for all

variables, both conventional risk factors and genetic markers.

Therefore, each mutation was tested separately for mediation/

moderation. For this purpose, paired regression model was

estimated (e.g., cIMT vs. mutation, or the presence/absence of

atherosclerotic plaque vs. mutation), and then the multiple

regression model was built, which also included conventional risk

factors, to avoid false correlations. For this analysis, cIMT and the

levels of heteroplasmy were taken as quantitative values (not

quartile or ranked values). Since cIMT was distributed normally,

the assumptions for linear regression analysis have been met. Two

models were compared to assess whether the inclusion of

mutations adds a significant contribution to the increase of

explanatory power for cIMT variability. The first model included

only conventional risk factors (age, gender, diabetes, hypertension,

triglycerides, LDL cholesterol, HDL cholesterol), and the second

model also included the levels of heteroplasmy for mtDNA

mutations. The residues in the second model were significantly

lower than those in in the model employing only conventional risk

factors (Fisher’s statistics 5.09, p,0.001). The model, which

included both conventional risk factors and mutations provided

significantly better explanatory level than the first one (adjusted

R2, 33.5% vs. 24.5%). The similar approach was used to assess

whether the inclusion of mutations adds a significant contribution

to the increase of explanatory power for diagnostics of the

presence of atherosclerotic plaque in any visualized segment of

carotids. In this case, binary logistic regression analysis was

performed, and a direct comparison of logit models was made

using chi-square statistic. Mutations provided statistically signifi-

cant information for diagnostics (p,0.001). So, in-depth statistical

analysis have supported our assumption on significant association

for atherosclerosis and CHD with heteroplasmy level of both

proatherogenic and atheroprotective mtDNA mutations.

It is notable that the levels of heteroplasmy for those mutations,

which were correlated significantly with cIMT and/or atheroscle-

rotic plaque size, also correlated between each other (Table 3). As

a rule, the levels of heteroplasmy positively correlated with carotid

atherosclerosis, were also directly associated with each other, but

correlated negatively with heteroplasmy levels of mutations, which

had a negative association with atherosclerosis. These correlations

suggested the presence of linkage disequilibrium; therefore, we

used one more measure of ‘‘integral mutation burden of

mitochondrial genome’’, which was calculated as a simple

arithmetic sum of quartile numbers (ranks) of heteroplasmy levels,

assigned from the analysis of heteroplasmy distribution within the

sample (interquartile borders are shown in Table 1). If hetero-

plasmy level was positively correlated with carotid atherosclerosis,

its quartile number was taken with positive sign, for negative

correlations – with negative sign. The measure of integral

mutation burden varied from 27 to 11, with a median value of

2. The integral mutation burden correlated significantly with both

cIMT (Spearman’s Rho, 0.376, p,0.001) and the size of

atherosclerotic plaque (Spearman’s Rho, 0.487, p,0.001).

The measure of ‘‘integral atherosclerotic burden’’ was also used

for analysis; it was calculated as a simple arithmetic sum of quartile

numbers of cIMT (adjusted for age and gender) and the score of

the size of atherosclerotic plaques in any visualized segment of

carotid arteries. Two measures, integral mutation burden and

integral atherosclerotic burden, also were correlated significantly

(Spearman’s Rho, 0.405, p,0.001). One-way analysis of variation

confirmed the strong relationship between these two measures

(F = 4.595, p,0.001).

Mutations of mtDNA and Carotid Atherosclerosis
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The ROC-curve analysis of sensitivity/specificity ratio was

performed to evaluate diagnostic significance of mutation burden

of mtDNA, when the presence of any atherosclerotic plaque in any

visualized carotid segment (Fig. 3-A), or the presence of CHD

(Fig. 3-B) were taken as actual states. Integral mutation burden

was calculated by using logistic regression model, which predicted

the probability of belonging to a particular category (the predictors

were the levels of heteroplasmy for C3256T, T3336C, G12315A,

G13513A, G14459A, G14846A, and G15059A mutations). For

the presence of atherosclerotic plaque, the area under curve

accounted for 0.78860.033, p,0.001 (95% confidence interval,

0.724–0.853). The cut-off value for integral mutation burden

accounted for 0.5558; under these conditions, the sensitivity of this

measure was 72.2%, and specificity was 70.2%. For the presence

of CHD, the area under curve accounted for 0.64860.050,

p = 0.003 (95% confidence interval, 0.549–0.746). The cut-off

value for integral mutation burden accounted for 0.5558; under

these conditions, the sensitivity of this measure was 62.2%, and

specificity was 63.9%.

The other kind of ROC-curve analysis, when integral mutation

burden calculated on the basis of quartile numbers of hetero-

plasmies distribution was taken as test variable, and the presence of

any atherosclerotic plaque in any visualized segment of carotid

arteries was taken as an actually observed state, has shown that the

area under curve accounted for 0.70760.038 (95% confidence

interval, 0.632–0.781). The cut-off value for integral mutation

burden accounted for 1.5; under these conditions, the sensitivity of

this measure was 63.0%, and specificity was 63.1%.

Figure 1. Different ultrastructural appearances of mitochondria in leukocytes obtained from healthy volunteers and patients with
carotid atherosclerosis (A–F). (A): A mitochondrion with well-defined cristae and well-preserved surrounding membranes typically seen in
leukocytes of healthy volunteers. (B–F): Mitochondria with reduced numbers of cristae and the oedema of the mitochondrial matrix observed in
patients with carotid atherosclerosis (A–F): Electron microscopy. Scales = 150 nm.
doi:10.1371/journal.pone.0068070.g001

Mutations of mtDNA and Carotid Atherosclerosis
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The relationship between the levels of heteroplasmy of mtDNA

and the presence of CHD in study participants was also examined.

The results are presented in Table 2. The levels of heteroplasmy

for C3256T, T3336C, and G12315A were significantly higher,

and for G13513A and G14459A were significantly lower in CHD

patients as compared to study participants without clinical

manifestations of atherosclerosis. Seven CHD patients also had

the history of an acute myocardial infarction; the levels of

heteroplasmy for C3256T and G12315A mutations in them were

significantly higher as compared to the other study participants

(38.4%, SD 20.7, vs 22.7%, SD 14.2, p = 0.041, and 48.0%, SD

18.5, vs 32.1%, SD 19.3, p = 0.043).

In spite of relatively small sample size, statistical power in this

study reached 100% for the presence of carotid atherosclerotic

plaques in any visualized segment of carotid arteries, 89% for the

presence of CHD, and only 60% for the history of myocardial

infarction (all at a,0.05). This trend is easily explained by the fact

that clinical manifestations like CHD and myocardial infarction

should be considered as a probability function of the presence of

atherosclerosis itself, which is an obligatory prerequisite for

Figure 2. Ultrastructural appearances of mitochondria in leukocytes obtained from patients with carotid atherosclerosis (A–C). In
(A, B), note a profound focal oedema of the mitochondrial matrix and destructive alterations of cristae. In (C), a zone of destruction of the outer
mitochondrial membrane in shown by arrow (A–C): Electron microscopy. Scales = 150 nm.
doi:10.1371/journal.pone.0068070.g002

Table 1. Characteristics of distributions of heteroplasmy levels.

Mutation of mtDNA Heteroplasmy level, %
The proportion of cases
with identified mutation, %

range 25th percentile median 75th percentile mean (SD)

A1555G 0–83 10 13 18 16,5 (10.9) 99,5

C3256T 5–74 13 18 36 23.3 (14.7) 100

T3336C 0–100 5 7 10 8.3 (8.3) 98.4

C5178A 0–83 11 15 19 15.6 (10.6) 96.9

G12315A 2–88 18 28 51 32.3 (19.4) 100

G13513A 0–85 10 20 35 23.7 (18.7) 95.3

G14459A 3–82 12 18 33 27.2 (21.1) 100

G14846A 3–96 8 10 15 15.8 (17.4) 100

G15059A 4–100 26 39 47 37.6 (16.8) 100

doi:10.1371/journal.pone.0068070.t001

Mutations of mtDNA and Carotid Atherosclerosis

PLOS ONE | www.plosone.org 4 July 2013 | Volume 8 | Issue 7 | e68070



clinically significant consequences. It may be speculated that in the

given time individuals already have subclinical atherosclerosis,

which is in part explained by mutations of mtDNA; to evaluate

prognostic significance of proatherogenic and atheroprotective

mtDNA mutations, long-tern prospective studies are needed. Our

data demonstrate that the presence of atherosclerosis and CHD is

associated significantly with integral mutation burden of mito-

chondrial genome. Therefore, the assessment of impact of single

mutation should be made on the basis of weighed coefficients

obtained from regression analysis. The thresholds for the level of

heteroplasmy for mutation to be in contention as a marker were

obtained from ROC-analysis. For G12315A it accounted for

26.5%; this value provided the sensitivity 0.704, and specificity

0,607; however, a range of values can be considered.

Discussion

Earlier we demonstrated a relation between C3256T and

predisposition to atherosclerosis [20]. This mutation is located in

coding sequence of the MT-TL1 gene (codon recognizing UUR)

which encodes tRNA leucine [21–23], and is expressed at the

cellular level as a reduced amount of cellular organelles and

impaired protein synthesis [21–23]. In this study we show for the

first time that at least six of other mitochondrial mutations

(T3336C, G12315A, G13513A, G14459A, G14846A, and

G15059A) are also associated with the extent of carotid

atherosclerosis, which was diagnosed in our study by means of

quantitative ultrasound examination of carotid arteries.

One of newly studied mutation, namely G12315A mutation

which can be expressed at the cellular level as a altered amount of

cellular organelles and impaired protein is located in the coding

sequence of mitochondrial gene encoding tRNA leucine, the MT-

TL2 gene (codon recognizing CUN). The results of this study

demonstrate that this mutation is associated with the extent of

atherosclerosis and even with its clinical manifestation CHD and,

possibly, myocardial infarction. Thus, the impairments of tRNA

leucine synthesis may act as a previously unknown mechanism for

atherosclerosis development and progression. By now, G12315A

mutation is described to be associated with mitochondrial

encephalomyopathy [8,24,25]. The association of this mutation

with atherosclerosis has not been reported previously. Another

studied mutation T3336C is located in the coding region of the

MT-ND1 gene encoding subunit 1 of NADH dehydrogenase;

however, it is considered to be a silent point mutation producing

no changes in protein sequence (ATT R ATC, Ile). We suggest,

however, that this mutation may be associated e.g. in linkage with

some mutant haplotype, still unknown, which produces human

pathologies. This assumption is partially supported by the high

correlation of heteroplasmy levels of T3336C and G12315A

mutations, the latter of which was strongly atherogenic in the

present data.

Mutations G13513A, G14459A, G14846A, and G15059A

occur in coding regions of genes responsible for the synthesis of

respiratory chain enzymes (MT-ND5 and MT-ND6 genes

encoding the subunits 5 and 6 of NADH dehydrogenase,

respectively, and MT-CYB gene encoding cytochrome B). An

impairment of NADH dehydrogenase activity can be expected to

attenuate NADH oxidation and CoQ (ubiquinone) reduction and

thus promote oxidative stress. Mutation G13513A (MT-ND5

gene) is believed to be associated with hereditary encephalomyo-

pathy, cardiomyopathy, and the WPW syndrome [25–28].

Mutation G14459A (MT-ND6 gene) results in alanine to valine

substitution in a conserved region of ND6 protein at position 72,

and is associated with hereditary ocular neuropathy, atrophy of
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visual nerve, Leber’s hereditary visual neuropathy, dysfunction of

basal ganglia, musculospastic syndrome and encephalopathy

[13,29–31]. Mutations G14846A and G15059A may lead to the

damage of cytochrome B: the first one results in glycine to serine

substitution in position 34, thus affecting intermediate transfer of

electrons in mitochondrial respiratory chains; the second one

results in glycine to stop codon substitution at position 190, thus

stopping translation and leading to the loss of 244 amino acids at

C-terminal of protein. Both mutations are capable of reducing

enzymatic function of cytochrome B, and associated with

mitochondrial myopathies [1,32,33].

The fact that none of the mutations examined in our study have

been yet associated with either atherosclerosis or CHD might be

due, in part, to methodological issues: the vast majority of the

existing nucleotide sequence analysis methods do not allow precise

quantitative measurement of heteroplasmies but indicate only the

presence of the mutant allele or provide semi-quantitative

assessment of proportion of mutant alleles in biological samples.

We demonstrated in the present study a high prevalence of

mutations of mitochondrial genome in a population sample, in

which the participants had no clinical signs of any mitochondrial

disease. Moreover, it is known nowadays that pathogenic

mitochondrial DNA mutations are very common in the general

population [34,35].Obviously, clinical and phenotypic manifesta-

tions should depend on the levels of heteroplasmies.

Surprisingly, high prevalence of mitochondrial mutations, as

well as rather high levels of heteroplasmies was found in this study;

it may be supposed that such phenomenon should have been

detected in the many hundreds of mtDNA genomes sequenced in

the past by Sanger sequencing for other purposes. However, direct

sequencing is not the method of choice for the quantitation of

heteroplasmy levels. As a rule, sequence analysis of heteroplasmy

around 50% provides clear results in terms of the presence of

heteroplasmy, but not in a quantitative manner. Lower level

heteroplasmy is often undetectable by direct sequencing. As an

example, Meierhofer et al. have used denaturing high perfor-

mance liquid chromatography to rapidly screen the entire mtDNA

for mutations; this approach yielded straightforward interpretation

of results with a detection limit down to 1% mtDNA hetero-

plasmy. However, direct sequencing analysis has become infor-

mative only after collection and re-amplification of low degree

heteroduplex peak-fractions [36]. Moreover, recently we have

performed full mtDNA sequencing using NGS approach (Roche’s

454 Sequencing technique) in 30 randomly selected persons. We

have detected 160 novel mutations of mtDNA, which have not

been described previously in numerous studies on direct mtDNA

sequencing; among them, 24 mutations were detected in 10–60%

cases, in which the heteroplasmy level varied from 7% to 64%

(preliminary data, not published). This finding provides one more

evidence that mitochondrial DNA mutations are much more

common in population, than could be expected from earlier

knowledge.

Mitochondrial mutations can be either somatic or inherited

through the maternal line. They are characterized by the

phenomenon of heteroplasmy, which is defined as the presence

of a mixture of more than one type of an organellar genome within

a cell or individual. Mitochondrial DNA is present in hundreds to

thousands of copies per cell and also has a very high mutation rate.

New mtDNA mutations arise in cells, coexist with wild-type

mtDNA, and segregate randomly during cell division. The high

prevalence of the examined mutations of mitochondrial genome

suggests that they are maternally inherited. On the other hand, the

heteroplasmy levels of six out of 10 mutations rose with increasing

age, which supports also the somatic nature of mutations: in any

case, there is an increase in the proportion of mutant alleles of the

mitochondrial genome of human white blood cells with age.

Although it appears likely, it is not known whether the processes of

accumulation of the mutant allele occur in other tissues of the

human body. Preferential survival of somatic cells or progenitor

cells with higher content of the mutant allele in the mitochondrial

DNA cannot be excluded either, although this assumption

contradicts the association of mitochondrial mutations with

neurodegenerative diseases and atherosclerosis, which reduce

longevity.

Leukocytes play a special role in atherogenesis [37]. They

migration of variety of leukocyte subtypes in the subendothelial

layer in arteries and their participation in the processes of

inflammation and atherosclerotic plaque formation is well

documented [38]. It is possible to expect that a high level of

mtDNA heteroplasmy in cells that circulate in the blood stream

might be indicative of a high likelihood that the defective

leukocytes with impaired mitochondrial function would enter into

the arterial intimal layer. If leukocyte function is inhibited due to

the presence of mutations in coding regions of mtDNA, this may

lead to local oxidative stress and other pathologic events which

could promote atherosclerosis formation. Thus one can assume

that mtDNA heteroplasmy, being a biomarker of defective

mitochondrial function in leukocytes, can also be regarded as a

biomarker for atherosclerosis and consequent clinical manifesta-

tions such as CHD.

The findings of the present investigation open prospects for

further studies. Even though the sample size in the present

investigation was sufficient to detect significant differences in the

levels of heteroplasmy of mitochondrial genome between non-

atherosclerotic participants and patients with subclinical athero-

sclerosis, or between CHD-free individuals and CHD patients, the

Table 3. Correlations between the levels of heteroplasmy of mitochondrial genome from human blood leukocytes.

Mutation Pearson’s correlation coefficient

T3336C G12315A G13513A G14459A G14846A G15059A

C3256T 0.303, p,0.001 0.792, p,0.001 20.626, p,0.001 20.435, p,0.001 20.153, p = 0.034 0.214, p = 0.003

T3336C – 0.412, p,0.001 NS NS NS NS

G12315A – 20.447, p,0.001 20.363, p,0.001 NS 0.212, p = 0.003

G13513A – 0.362, p,0.001 NS 20.238, p = 0.001

G14459A – 0.164, p = 0.023 NS

G14846A – 0.196, p = 0.006

doi:10.1371/journal.pone.0068070.t003
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results of this study may be needed to be extended by the use of

population sample taken not only from ethnically heterogeneous

population of Moscow that consisted of senior and elderly ages but

also from inhabitants of younger age. Obviously, other ethnic

groups should be studied as well. Finally, it is worth to noting here

that the present study was cross-sectional and thus the assessment

of actual risk of atherosclerosis and cardiovascular disease due to

the presence of mutations of mitochondrial genome requires

further prospective studies.

The findings of the study indicate that heteroplasmies for several

mutations in the mtDNA in leukocytes, including C3256T,

T3336C, G12315A, G13513A, G14459A, G14846A, and

G15059A mutations, are significantly (p,0.001) associated with

both the severity of carotid atherosclerosis and the presence of

CHD. These findings suggest that somatic mitochondrial muta-

tions might have a role in the development of atherosclerosis.

Materials and Methods

This study was kept in accordance with the Helsinki Declaration

of 1975 as revised in 1983. It was approved by the local ethics

committees of the Institute of General Pathology and Pathophys-

iology, Moscow, and Institute for Atherosclerosis Research,

Skolkovo Innovation Center, Moscow, Russia. All participants

gave their written informed consent prior to their inclusion in the

study.

The study participants were recruited consecutively from the

visitors flow at Moscow municipal outpatient clinics No. 202, who

have passed a routine screening for cardiovascular risk factors

(mainly blood cholesterol and arterial blood pressure). Exclusion

criteria were anatomic configuration of neck and carotid arteries

preventing from qualitative ultrasonography, serious life-threaten-

ing diseases, and the refusal from signing informed consent form.

In total, 190 participants were recruited (84 men, 106 women)

aged 65.0 years (SD 9.4); among them 45 participants (24%) had

clinical CHD. The gender ratio was similar in healthy participants

and CHD patients (P = 0.17). CHD patient were older than

healthy participants; mean age was 70.0 (SD 8.7) and 63.5 (SD

9.0), respectively, P,0.001. Antropometric, clinical and biochem-

ical characteristics of study participants are given in Table 4.

High-resolution B-mode ultrasonography was used for carotid

arterial imaging to assess the extent of carotid atherosclerosis. The

protocol of ultrasound examination involved the scanning of the

right and left common carotid artery and the area of the carotid

sinus (bulb) as high up as possible [39]. Three fixed angles of

interrogation were used (anterolateral, lateral, and posterolateral).

Images were focused on the posterior wall of the artery. The B-

mode ultrasound system (SSI-1000, SonoScape, China) used a

7.5 MHz linear array probe. The measurements were always

performed at 10-mm section of common carotid artery adjacent to

the carotid bulb. The carotid intima-media thickness (cIMT) of the

posterior wall was measured as the distance from the leading edge

of the first echogenic (bright) line to the leading edge of the second

echogenic line. The measurements were carried out with M’Ath

computer software (IMT, France). The mean of three measure-

ments (in anterolateral, lateral, and posterolateral positions) was

considered to be the integral cIMT estimate. Reproducibility of

cIMT measurements was assessed according to the protocol of the

IMPROVE Study [40].

The degree of susceptibility to atherosclerosis was estimated by

using interquartile cIMT values derived from Moscow population

sample of 1287 participants (429 men, 858 women) free of CHD

(Table 5). Such approach allowed distinguishing persons predis-

posed or not predisposed to atherosclerosis. If a person belonged to

the lowest quartile of age-adjusted cIMT distribution, this person

was considered as non-predisposed to atherosclerosis; if the person

belonged to the highest quartile, then this person had a high

predisposition to atherosclerosis. The belonging to the 2nd or the

3rd quartiles of cIMT distribution was regarded as a moderate or

elevated susceptibility, respectively.

Figure 3. ROC-curves for analysis of sensitivity/specificity ratio
to evaluate diagnostic significance of integral mutation
burden of mtDNA, when the presence of any atherosclerotic
plaque in any visualized carotid segment (A), or the presence
of CHD (B) are taken as actual states. Integral mutation burden is
calculated by using logistic regression model, which predicted the
probability of belonging to a particular category (the predictors are the
levels of heteroplasmy for C3256T, T3336C, G12315A, G13513A,
G14459A, G14846A, and G15059A mutations).
doi:10.1371/journal.pone.0068070.g003
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Additionally, the presence and the size of atherosclerotic

plaques in any visualized segment of carotid arteries was evaluated

by a 4-point scale (0 - no atherosclerotic lesions; 1–2 - elevated

atherosclerotic plaques taking up to 20% or 20 to 50% of lumen

diameter, respectively: 3 - hemodynamically significant athero-

sclerotic plaques taking more than 50% of lumen diameter).

DNA samples were obtained from whole venous blood using a

commercially available kit for DNA purification (QIAGEN

GmbH, Germany). For the amplification of fragments of

mitochondrial DNA by polymerase chain reaction (PCR) method

followed by pyrosequencing, the previously described primers and

conditions were used [18]. In brief, to quantitatively evaluate

mutant allele, a method of pyrosequencing [41–43] was adapted

for conditions where both normal and mutant alleles were present

in a biological specimen; the defective allele was quantified by

analyzing the peak heights in the pyrogram of one-chained PCR-

fragments of a mitochondrial genome. The levels of heteroplasmy

in DNA samples were calculated, taking into account the expected

sequence and the dimension of peaks for the homozygotes

possessing either 100% of the normal or 100% of the mutant

allele, as described elsewhere [18]. The nucleotide sequences for

forward primers, reverse primers, and sequence primers are

represented in Table 6.

Within this study, a total of 43 mutations of mtDNA have been

tested (A1555G, A3280G, A750G, C14482C, C14482G,

C15452A, C3256T, C3285T, C5178A, C6489A, G12351A,

G13513A, G14459A, G14846A, G15059A, G15084A,

G15762A, G3316A, G5540A, G8363A, G3316A, G9379A,

T14484C, T14487C, T14709C, T3258C, T3271C, T3336C,

T5692C, T5814C, T716G, T8362G, T8993C, T8993G, inser-

tions ins5132AA, ins652G, ins961C, and deletions del15498_23,

del5132AA, del652G, del9489, del9537C, del961C). As a result,

Table 4. Antropometric, clinical and biochemical characteristics of study participants.

Variable Total group, n=190 Non-CHD controls, n = 145 CHD patients, n = 45 P for the difference

Age, years 65.0 (9.4) 63.5 (9.0) 70.0 (8.7) ,0.001 *

Gender, m:f 84:106 60:85 24:21 NS (0.10)

BMI, kg/m2 26.9 (4.6) 26.6 (4.5) 27.7 (4.8) NS (0.10) **

SBP, mm Hg 139 (17) 138 (17) 141 (18) NS *

DBP, mm Hg 83 (11) 83 (10) 81 (13) NS ***

Smokers, % 8.9 11.0 2.2 NS (0.06)

Hypertension, % 64.9 58.9 84.4 0.001

LVH, % 34.0 28.1 53.3 0.002

Diabetes, % 12.6 6.8 31.1 ,0.001

Angina, % 24.1 0.0 100.0 ,0.001

AMI in anamnesis, % 3.7 0.0 15.6 ,0.001

Stroke in anamnesis, % 2.6 0.0 8.9 0.011

Family anamnesis for AMI, % 27.7 26.0 33.3 NS

Family anamnesis for HT, % 39.3 39.0 40.0 NS

Family anamnesis for T2DM, % 17.3 17.1 17.8 NS

Total cholesterol, mg/dl 239 (48) 240 (48) 235 (50) NS *

Triglycerides, mg/dl 127 (60) 125 (60) 131 (60) NS **

LDL cholesterol, mg/dl 148 (43) 148 (43) 145 (45) NS *

HDL cholesterol, mg/dl 66 (15) 67 (15) 63 (16) NS *

Fasting blood glucose, mmol/l 4.9 (1.2) 4.8 (1.2) 5.2 (1.6) NS *

Statins, % 11.5 7.5 24.4 0.006

Plaque, score 0.83 (0.86) 0.73 (0.85) 1.16 (0.85) 0.003 **

Mean cIMT, mm 869 (167) 841 (150) 961 (189) ,0.001 *

Maximum cIMT, mm 1006 (213) 971 (185) 1117 (258) ,0.001 **

*one-way ANOVA;
**Mann-Whitney U-test;
***Welch test.
doi:10.1371/journal.pone.0068070.t004

Table 5. Interquartile cIMT values derived from Moscow
population.

Age

,50 51–60 61–70 .70

Men

2nd quartile, mm 660 740 830 840

3rd quartile, mm 745 810 910 930

4th quartile, mm 800 910 990 1060

Women

2nd quartile, mm 605 665 760 825

3rd quartile, mm 665 735 830 895

4th quartile, mm 740 815 920 990

doi:10.1371/journal.pone.0068070.t005
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most of mutations were excluded from further analysis, as they

were not found in DNA from leukocytes, or have demonstrated a

negligibly low level of heteroplasmy (1–5%). Mutations C3256T,

T3336C, G1231A, G13513A, G14459A, G14846A and G15059A

were found to have high prevalence in the study sample, and

demonstrated high variability; therefore, they were selected for

further analysis. The results on C3256T heteroplasmy seemed to

have the highest diagnostic significance; therefore, we have

analyzed and reported the data on C3256T separately [20].

However, during in-depth analysis several mutations proved to be

associated in some way either with cIMT, or CHD, or the

presence of atherosclerotic plaques. Thus, the role of integral

mutation burden of mtDNA in predisposition to atherosclerosis or

its clinical manifestations has been analyzed, and within this

analysis, C3256T heteroplasmy was included as one of the factors

responsible for formation of integral mutation burden.

As the validity of the heteroplasmy measurements seemed to be

crucial, and pyrosequencing method is not so common and self-

explanatory for the reader, an experimental proof with the

introduction of different proportion of a mutated allele was

obtained. Theoretical background for calculation of heteroplasmy

level by analyzing the peak heights in the pyrogram, as well as

original peak height histograms of real samples were described

elsewhere [18]. To get the data on pyrosequencing calibration, the

mixtures of DNA samples with either 100% of the normal or

100% of the mutant allele were tested, with the ratio of 1:0

(homoplasmy), 4:1 (20% heteroplasmy), 2:3 (40% heteroplasmy),

1:2 (67% heteroplasmy), and 0:1 (homopasmy). To estimate the

reproducibility of measurements, this set of DNA mixtures was

analyzed in 6 independent experiments. The original pyrograms

are shown at Figure S1. The results of measurements were very

close to the expected values, and accounted for 0%, 18%, 42%,

66%, and 100%. The data on reproducibility of measurements are

given in Table S1. The mean value of coefficient of variation for

20%, 40% and 67% heteroplasmic mixtures accounted for 4.7%,

and for 100% mutant allele –2.1%; in the opposite, for 100%

normal allele small erroneous peaks for mutant nucleotide were

detected, which provided a coefficient of variation of 35.1%

(Figure S2). These observations allowed us to conclude that for

determining the level of heteroplasmy higher than 10%, the

coefficient of variation does not exceed 10%, and the results of

quantitative heteroplasmy measurements are accurate and repro-

ducible. However, for very low heteroplasmy levels (less than 5%),

this method is effective for the assessment of the presence of

heteroplasmy, but does not provide precise measurements. On the

other hand, such low heteroplasmy levels will hardly result in

clinical consequences. Based on this assumption, the heteroplasmy

levels below 5% were considered negligible.

To demonstrate the variability in heteroplasmy levels in real

DNA samples, several original pyrograms are presented in Figure

S3.

Statistical analysis was performed using the SPSS 14.0 software

(SPSS Inc., USA). The methods of one-way analysis of variance,

cross-tabulation analysis, and correlation analysis by Spearman

and Pearson were used. The comparison of mean values for

continuous variables was performed using the U-test by Mann-

Whitney, for categorical variables by chi-square Pearson’s test.

The data are presented in terms of mean and SD. The significance

of differences was defined at the 0.05 level of confidence.

Supporting Information

Figure S1 Pyrograms of the mixtures of DNA samples with the

ratio of normal and mutant allele 1:0 (homoplasmy, 0% mutant

allele), 4:1 (20% heteroplasmy), 2:3 (40% heteroplasmy), 1:2 (67%

heteroplasmy), and 0:1 (homopasmy, 100% mutant allele).

(TIF)

Figure S2 Graph showing the relationship between the level of

heteroplasmy in mixed DNA samples and coefficient of variation

of measurements.

(TIF)

Figure S3 Practical pyrograms for the measurement of mtDNA

heteroplasmy levels. Upper row, C3256T heteroplasmy; left –4%

heteroplasmy, right –13% heteroplasmy. Middle row, G12315A

heteroplasmy; left –0% heteroplasmy, right –83% heteroplasmy.

Lower row, G13513A heteroplasmy; left –4% heteroplasmy, right

–74% heteroplasmy.

(TIF)

Table S1 The descriptive statistics and analysis of reproducibil-

ity of heteroplasmy level measurements by pyrosequensing method

in DNA mixtures.

(DOCX)

Text File S1 TEM procedures. For electron microscopic

analysis, samples of white blood cells were processed according to

the procedures described by James et al [1]. As a fixative, 1.5%

glutaraldehyde in 0.1 M phosphate buffer (pH 7.2) was used; for

post-fixation 1% OsO4 was used. White blood cells were

embedded in Araldite resin. Ultrathin sections were stained with

uranyl acetate and lead citrate and examined with the aid of a

Hitachi H7000 electron microscope at an accelerating voltage of

Table 6. Primers for PCR and pyrosequencing.

Mutation Forward primer for PCR Reverse primer for PCR Sequence primer

G1555A TAGGTCAAGGTGTAGCCCATGAGGTGGCAA bio-GTAAGGTGGAGTGGGTTTGGG ACGCATTTATATAGAGGA

C3256T bio-AGGACAAGAGAAATAAGGCC ACGTTGGGGCCTTTGCGTAG AAGAAGAGGAATTGA

T3336C bio-AGGACAAGAGAAATAAGGCC ACGTTGGGGCCTTTGCGTAG TGCGATTAGAATGGGTAC

C5178A bio-GCAGTTGAGGTGGATTAAAC GGAGTAGATTAGGCGTAGGTAG ATTAAGGGTGTTAGTCATGT

G12315A bio-CTCATGCCCCCATGTCTAA TTACTTTTATTTGGAGTTGCAC TTTGGAGTTGCAC

G13513A CCTCACAGGTTTCTACTCCAAA bio-AAGTCCTAGGAAAGTGACAGCGAGG AGGTTTCTACTCCAA

G14459A CAGCTTCCTACACTATTAAAGT bio-GTTTTTTTAATTTATTTAGGGGG GATACTCCTCAATAGCCA

G14846A CAGCTTCCTACACTATTAAAGT bio-GTTTTTTTAATTTATTTAGGGGG GCGCCAAGGAGTGA

G15059A CAGCTTCCTACACTATTAAAGT bio-GTTTTTTTAATTTATTTAGGGGG TTTCTGAGTAGAGAAATGAT

doi:10.1371/journal.pone.0068070.t006
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