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Adipocytes are the largest cell type in terms of volume, but not number, in adipose tissue.
Adipocytes are prominent contributors to systemic metabolic health. Obesity, defined by
excess adipose tissue (AT), is recognized as a low-grade chronic inflammatory state.
Cytokines are inflammatory mediators that are produced in adipose tissue (AT) and
function in both AT homeostatic as well as pathological conditions. AT inflammation is
associated with systemic metabolic dysfunction and obesity-associated infiltration and
proliferation of immune cells occurs in a variety of fat depots in mice and humans. AT
immune cells secrete a variety of chemokines and cytokines that act in a paracrine manner
on adjacent adipocytes. TNFa, IL-6, and MCP-1, are well studied mediators of AT
inflammation. Oncostatin M (OSM) is another proinflammatory cytokine that is elevated in
AT in human obesity, and its specific receptor (OSMRb) is also induced in conditions of
obesity and insulin resistance. OSM production and paracrine signaling in AT regulates
adipogenesis and the functions of AT. This review summarizes the roles of the oncostatin
M receptor (OSMRb) as a modulator of adipocyte development and function its
contributions to immunological adaptations in AT in metabolic disease states.

Keywords: adipocyte, OSM, Inflammation, OSM receptor, fat, adipose tissue, insulin resistance
INTRODUCTION

The global obesity rate has nearly doubled since 1980 (1). This high incidence poses a massive
economic burden on healthcare systems. More importantly, obesity is frequently accompanied by
adverse metabolic effects including hypertension, dyslipidemia, fatty liver, insulin resistance and
type 2 diabetes (T2D) (2). In addition, obesity (3) and T2DM (4) are prominent risk factors for the
severity of COVID-19 infections. Although obesity is a threat to global health, treatment options
remain limited, and they are often ineffective or invasive (e.g. bariatric surgery) (5).

Obesity occurs when energy intake exceeds energy expenditure, but this relationship is complex,
as many factors influence these two parameters. Positive energy balance causes WAT to expand by
adipocyte hyperplasia, hypertrophy, or a combination of these processes. In addition to lipid
storage, adipocytes have important endocrine functions whereby they secrete hormones (leptin,
adiponectin, etc.), microRNAs, exosomes, and lipids that contribute to systemic metabolic health
(6). There is evidence that the release of proinflammatory cytokines, such as Tumor Necrosis Factor
a (TNFa) and Monocyte chemoattractant protein 1 (MCP-1) that can occur in obesity is driven by
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stress responses related to WAT expansion, although specific
mechanisms involved remain to be elucidated (7).

In addition to adipocytes, there are several other cell types
within WAT, including different types of macrophages and T
cells. The non-adipocyte cells in AT, such as immune,
endothelial, perivascular, and stromal cells, as well as
preadipocytes, collectively comprise the stromal vascular
fraction (SVF). The cell numbers of the SVF are greater than
number of adipocytes in white adipose tissue depots. Obesity is
associated with changes in the relative abundance and activation
states of various immune cell subpopulations in AT, as well as
with altered endocrine properties of adipocytes themselves.
Many of the proinflammatory cytokines produced in AT act in
a paracrine manner and typically do not contribute to circulating
levels of these signaling mediators. Proinflammatory cytokines
made in AT can inhibit adipocyte differentiation and induce
insulin resistance in adipocytes, and modulation of both these
processes in AT has systemic effects (8–10). Although less
studied than other AT cytokines, OSM clearly contributes to
AT homeostasis (11–13), and increased OSM levels in AT
promote systemic metabolic dysfunction through effects on
both adipocyte development and adipose tissue function.
OSM AND ITS SPECIFIC RECEPTOR
OSMRß: SOURCE AND BIOLOGY

The gp130, or interleukin (IL)-6, family is a group of structurally
similar cytokines that includes IL-6, IL-11, IL-27, neuropoietin,
leukemia inhibitory factor (LIF), OSM, cardiotrophin-1, ciliary
neurotrophic factor, and novel neurotrophin-1/B cell stimulating
factor-3 or cardiotrophin-like cytokine (14). These cytokines
regulate a variety of complex biological processes, including
hematopoiesis, immune responses, inflammation, stem cell
potency, mammalian reproduction, cardiovascular action, and
neuronal survival (15). Also, gp130 cytokines have been
proposed as potential therapeutic targets for obesity treatment
(16). Hence, there is a strong rationale for studying gp130
cytokines in modulating metabolic processes in WAT and
other tissues involved in obesity and related diseases.

All members of the IL-6 cytokine family require glycoprotein
130 (gp130) as a common signal transducer in their receptor
complexes. Unlike other gp130 cytokines, OSM has its own
specific receptor (OSMRb) that heterodimerizes with gp130 but is
not used by other gp130 cytokines (17) andmediates the majority of
OSM effects. OSM and LIF evolved by gene duplication relatively
recently (18), and they share substantial sequence identity (19).
Though originally identified for its ability to inhibit cancer growth
in humans (20), OSM can modulate a variety of other biological
processes, including liver development and regeneration (21, 22),
hepatic insulin resistance and steatosis (23), inflammation (24), and
cardiomyocyte dedifferentiation and remodeling (25). There is some
evidence that OSM is the only gp130 cytokine with the unique
ability to signal through two distinct receptor units-the gp130/LIFR
(26) and the gp130/OSMRb complex (17). However, other studies
have shown that murine OSM signals only through the gp130/
OSMRb receptor complex (27–29).
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OSM is produced by activated T cells and macrophages (20,
30, 31), and elevated OSM levels are found in a variety of
inflammatory diseases in humans, including inflammatory
bowel disease, rheumatoid arthritis, cancer, and obesity (12,
32–35). Our own research has shown that OSM is present in
the SVF of AT, but not in adipocytes (11). Purification of
immune cells in AT revealed that T cells and macrophages
were the main sources of OSM in adipose tissue in mice (36).
Although OSM is produced in immune cells, the OSM receptor
(OSMRß) is present in both adipocytes and immune cells (36).
However, upregulation of OSMRß expression by high-fat diet is
observed only in adipocytes (36).
EFFECTS OF OSM-OSMRß INTERACTION
IN PATHOLOGICAL CONDITIONS

The molecular signaling caused by OSM-OSMRß interaction has
been suggested to modulate several inflammatory processes,
including obesity-related insulin resistance (11, 13). One of
several mechanisms involved in the ability of excess OSM to
promote metabolic dysfunction is the control of adipogenesis.
Inhibition of fat cell differentiation and adipose tissue expansion
has been recognized as a causative factor for insulin resistance for
over twenty years (37). Indeed, factors that inhibit adipogenesis,
including OSM, tumor necrosis factor alpha and interferon
gamma have been shown to have metabolically unfavorable
effects such as insulin resistance (38). It is well established that
OSM inhibits adipocyte development of both brown and white
adipocytes in vitro (39–41). Mice with a global deletion of OSMRb
have increased adipose tissue mass (42), supporting the concept
that OSM acts to inhibit adipocyte development and that lack of
OSM signaling leads to increased AT expansion. There is also
evidence to suggest that OSM treatment of mice reduces body
weight and adiposity (42, 43). However, it should be noted that the
OSM doses used in these mouse experiments were very high (12.5
ng/g body weight, administered twice daily) and may have caused
indirect effects on fat mass. The anti-adipogenic effects of OSM
have also been shown in human preadipocytes (13). In regard to
the molecular mechanisms involved in the impairment of
adipogenesis, OSM has been shown to inhibits C/EBPa and
PPARg (peroxisome proliferator-activated receptor g) expression,
two key transcription factors involved in adipogenesis (40, 44). In
terms of modulation of lipid and glucose homeostasis, the anti-
adipogenic effects of OSM could have systemic consequences. In
addition to AT, the liver is an essential metabolic organ for
lipogenesis, lipid uptake, and fatty acid b-oxidation and liver is
responsive to OSM signaling (45). Some studies show that the
OSMRb expression levels negatively correlate with mRNA levels
of gluconeogenic genes. Moreover, OSMRb ablation lead to
decreased levels of genes related to cholesterol efflux and fatty
acid b-oxidation, and increased expression of genes that regulate
cholesterol synthesis, fatty acid synthesis, and uptake (45). Hence,
it is likely that OSM promotes inflammation and metabolic
dysfunction at least in part by inhibiting the development of
new adipocytes., but there is also evidence to show OSM also
regulates lipid metabolism pathways in the liver.
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In addition to regulating adipocyte differentiation, OSM has
been proposed to contribute to AT immune response. In contrast
to IL-6 which is directly induced through the TLR-nuclear factor
k-B pathway (46), OSM is secreted by activated macrophages
through a PGE2-cyclic adenosine monophosphate- protein
kinase A pathway (47, 48). In adipose tissue from obese mice,
OSMRß has been reported to be increased in the SVF, especially
in the F4/80-positive ATMs (adipose tissue macrophages),
suggesting that OSM signaling is strongly associated with the
pathogenesis of obesity and related metabolic disorders (43).
OSM binding to OSMRß modulates inflammatory states, both in
vitro and in vivo. Expression of stromal cell-derived factor 1
alpha (SDF-1a) has been reported to be suppressed by OSM
treatment of adipocytes (49). SDF-1a, also known as CXCL12,
regulates the trafficking of bone marrow progenitor cells, as well
as the transendothelial migration of leukocytes (50, 51). Further
studies are required to determine whether altered SDF-1 levels
play a role in mediating OSM’s effects on homeostasis or
metabolic dysfunction. In addition to SDF-1, there is evidence
that plasminogen-activator inhibitor 1 (PAI1) is also directly
regulated by OSM (11). The ability of OSM to induce PAI1 is
dependent on OSMRß expression in cultured murine adipocytes
(11). Although SDF-1 and PAI-1 may play a role in OSM
function in AT, no rigorous studies have identified or directly
evaluated OSM-regulated genes in adipocytes. Interestingly, in
vitro experiments in brown adipocytes have demonstrated that
OSM signaling via the OSMRß results in an increase in TNFa
and MCP-1 (or C-C Motif Chemokine Ligand 2, Ccl2) mRNA
levels, and interleukin 6 protein and each of these cytokines are
involved in the recruitment and activation of macrophages in AT
(13, 41). Therefore, it is reasonable to predict that in obesity, the
overexpression of OSM by immune cells, including macrophages,
is acting on adipocytes to induce the secretion of inflammatory
cytokines that promote infiltration and activation of more
macrophages. This vicious cycle leads to a low-grade chronic
Frontiers in Immunology | www.frontiersin.org 3
inflammatory state that contributes to the development of insulin
resistance (Figure 1). Moreover, in humans with obesity, OSM
levels correlate positively with inflammatory markers and
negatively with glucose transporter 4 (Glut4), suggesting that
signaling through OSMRß could promote an immunological
response in AT that impairs glucose homeostasis (13, 41).

In vivo experiments have demonstrated that mice lacking
OSMRb, specifically in adipocytes, have significant increases in
AT mass and OSM expression in fat, as well as enhanced adipose
tissue inflammation, as compared to floxed littermate controls
(36). The latter observation is unexpected, given that OSM
signaling is known to promote inflammation. Although data
from this study suggests that enhanced OSM-OSMRb action in
other AT cells, including immune populations, is consistent with
the increased inflammatory immune response and insulin
resistance phenotype in mice that lack OSM receptor
specifically in adipocytes (36). Hence, by blocking OSM
signaling in adipocytes via loss of the OSM receptor, the AT
levels of OSM increase and promote metabolically unfavorable
effects by acting on non-adipocyte cells present in AT.

One method to assess the importance of an endocrine mediator
is to inhibit its activity with an immunoneutralization approach.
Immunoneutralizing OSM is a complementary approach to
knocking down the OSM receptor in adipocytes. In a recent study,
we used high-fat fed C57BL/6J mice to induce OSM expression in
AT and performed OSM immunoneutralization. Mice that received
a specific anti-OSM antibody had improved inflammatory responses
as compared to mice treated with a control IgG antibody (13).
Moreover, OSM immunoneutralization normalized glucose levels
and decreased expression of inflammatory genes in adipose tissue.
However, OSM immunoneutralization did not significantly alter
whole-body glucose tolerance or systemic insulin sensitivity (13).
Although there are limitations with this approach, these studies
underscore the need to understand the cell and tissue specific effects
of both physiological and pathological functions of OSM.
FIGURE 1 | Excess OSM and lack of adipocyte OSM signaling contributes to metabolic dysfunction. Less than half of the cells that comprise white adipose tissue
depots are adipocytes. OSM is not produced in adipocytes, but in adipose tissue macrophages in conditions of obesity. OSM acts on preadipocytes to inhibit
adipogenesis and acts on mature adipocytes to promote inflammatory signaling and insulin resistance in adipocytes. Both a loss of OSM signaling in adipocytes or
excess OSM in adipose tissue promote systemic metabolic dysfunction.
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In addition to its functions in AT and association with obesity
and Type 2 diabetes, OSM has been shown to play a role in a
variety of disease conditions. Several studies have identified the
OSM-OSMRß interaction as a potential therapeutic strategy for
several pathological conditions. The selective inhibition of OSM by
a neutralizing antibody suggested that paracrine actions of OSM in
mammary fat played a role in breast cancer progression (34). In
addition, OSM has been identified as a potential biomarker and
therapeutic target in inflammatory bowel disease (35). The ability to
target OSM in inflammatory bowel disease is important as up to
40% of patients do not respond to anti-TNF agents. Of note, an
anti-OSMmonoclonal antibody has recently been shown to be well
tolerated in healthy subjects, and has demonstrated sufficient
affinity to achieve target engagement in systemic circulation and
target skin tissue, supporting further clinical investigation of anti-
OSM antibodies for inflammatory diseases (52).
CONCLUSIONS

In summary, OSM is a member of a large cytokine family, but its
unique functions in adipocytes drive its effects on metabolic
health. Levels of OSM and its receptor are elevated in AT in
conditions of obesity and insulin resistance in mice and man
(12). The roles of OSM have been elucidated using a wide range
of approaches including global and adipocyte-specific knockout
of the OSM receptor, as well as immunoneutralization of OSM in
metabolically compromised mice. In AT, elevated levels of
immune cell-derived OSM act on adjacent AT cells to inhibit
preadipocyte differentiation and to enhance proinflammatory
responses in adipocytes. Although adipose tissue OSM levels
Frontiers in Immunology | www.frontiersin.org 4
correlate with systemic metabolic dysfunction, a loss of OSM
receptor in adipocytes is also associated with impaired metabolic
responses. This finding is consistent with a role for OSM
signaling in healthy adipocytes and in AT homeostasis. Of
note, there is a precedent for the contribution of inflammatory
mediators in normal adipocyte function, as suppressing
adipocyte inflammation impairs AT function and promotes
insulin resistance (53, 54). Notably, the suppression of
macrophage inflammation has little effect on obesity-induced
insulin resistance, but inhibition of inflammatory signaling in
adipocytes substantially effects systemic metabolic function (54).
Inflammatory signaling in adipocytes plays a role in maintaining
normal adipose tissue function and OSM signaling in adipocytes
and adipose tissue is important for normal adipose tissue
function and systemic metabolic health.
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