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abstract

PURPOSE Keratinocyte cancers are exceedingly common in high-risk populations, but accurate measures of
incidence are seldom derived because the burden of manually reviewing pathology reports to extract relevant
diagnostic information is excessive. Thus, we sought to develop supervised learning algorithms for classifying
basal and squamous cell carcinomas and other diagnoses, as well as disease site, and incorporate these into
a Web application capable of processing large numbers of pathology reports.

METHODS Participants in the QSkin study were recruited in 2011 and comprised men and women age 40-
69 years at baseline (N = 43,794) who were randomly selected from a population register in Queensland,
Australia. Histologic data were manually extracted from free-text pathology reports for participants with his-
tologically confirmed keratinocyte cancers for whom a pathology report was available (n = 25,786 reports). This
provided a training data set for the development of algorithms capable of deriving diagnosis and site from free-
text pathology reports. We calculated agreement statistics between algorithm-derived classifications and 3
independent validation data sets of manually abstracted pathology reports.

RESULTS The agreement for classifications of basal cell carcinoma (κ = 0.97 and κ = 0.96) and squamous cell
carcinoma (κ = 0.93 for both) was almost perfect in 2 validation data sets but was slightly lower for a third (κ =
0.82 and κ = 0.90, respectively). Agreement for total counts of specific diagnoses was also high (κ. 0.8). Similar
levels of agreement between algorithm-derived and manually extracted data were observed for classifications of
keratoacanthoma and intraepidermal carcinoma.

CONCLUSION Supervised learning methods were used to develop a Web application capable of accurately and
rapidly classifying large numbers of pathology reports for keratinocyte cancers and related diagnoses. Such tools
may provide the means to accurately measure subtype-specific skin cancer incidence.
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INTRODUCTION

Among fair-skinned populations, keratinocyte cancers
are more numerous than any other cancer type.1 Be-
cause of volume and limited resources, keratinocyte
cancers are either excluded from cancer registration1,2

or registration is limited to the first incident basal cell
carcinoma (BCC) or squamous cell carcinoma (SCC) for
each person.3 Incidence estimates and population
trends are typically derived from administrative data sets
of treatment information that do not discriminate be-
tween subtypes.1,4 This is a major restriction to the
optimal allocation of health resources.

Pathology reports provide information on definitive
diagnosis of keratinocyte cancers. Skin cancer pa-
thology is usually reported in a free-text format, and
reports often include histologic assessments for mul-
tiple lesions. Histology of skin lesions can be complex;

a single lesion may show characteristics of more than
one diagnosis. Interpretation and data extraction from
pathology reports for skin cancers are therefore time
consuming and require high-level ability to codify
complex clinical information.

Automated encoding of data from free-text pathology
reports has been recognized as a useful tool to identify
new cancer diagnoses and for cancer registration.5-7 A
variety of machine learning methods have been used
to reliably and accurately extract information from free-
text pathology reports and from clinical narratives for
cancers.8 At least one study has used natural language
processing to identify keratinocyte cancers from pa-
thology reports, although that algorithm did not extract
diagnosis or site details.9

Globally, Australia experiences the highest incidence
rates of skin cancers,10 and Queensland experiences
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the highest rates of skin cancers within Australia.11 The
QSkin study is a large, population-based, longitudinal study
of residents of Queensland, Australia. Large numbers of
pathology reports for skin cancers from study participants
provided an opportunity to investigate the automated ex-
traction from free-text pathology reports. The ability to
automatically process free-text pathology reports on a large
scale has the potential for accurately tracking the incidence
of keratinocyte skin cancers in various clinical settings,
including hospitals and cancer registries. Here, we de-
scribe the development and validation of a Web application
that uses supervised learning methods to automatically
classify BCC, SCC, and related diagnoses from free-text
pathology reports.

METHODS

We obtained pathology reports from participants of the
QSkin study who had a skin cancer excised between re-
cruitment in 2011 and June 30, 2014.12 Details of the
QSkin study have been described previously.13 Medically
trained staff reviewed each pathology report (n = 25,786
reports) and entered diagnostic information for each lesion
into a database (n = 41,356 lesions). This manually
extracted data set was considered the gold standard and
provided the training data set to develop the supervised
learning algorithm. After data cleaning and exclusion of
diagnoses with insufficient examples, there were 36,281
lesions in the final data set.

Supervised machine learning algorithms are developed
using training data sets (typically numbering in the thou-
sands of independent records) that contain the variables
along with the relevant outcomes. A machine learning al-
gorithm is applied to the training data set and iteratively
improved to reduce the error of outcome prediction using
optimization techniques.14 The larger the training data set,
the more examples there are with which to develop the
algorithm, thereby reducing the degree of error in pre-
diction. The training data set used in this study included the
free-text as well as the known outcome for a large number

of pathology reports to which we applied supervised
learning methods to develop an algorithm to classify di-
agnosis (BCC, SCC, keratoacanthoma, and intraepidermal
carcinoma [IEC]), number of lesions, and site of lesions
from free-text pathology reports. Diagnosis and site were
modeled as separate multiclass classification problems in
which a single label can be assigned to each lesion text.
The training data set included all pathology reports for
participants (including nonskin lesions, benign skin le-
sions, and melanoma).

More than a third of the pathology reports in the training
data set contained descriptions and diagnoses for multiple
skin lesions that had been excised at the same visit; each
lesion required identification of a site and diagnosis. These
were processed asmultilabel classifications, where amodel
can return multiple labels, given a single text input. Using
regex, Python, and Python dictionaries, the report text was
split into lesion-specific text. The Web application first
processes the free-text within a pathology report to identify
and split multiple lesions, and then separate algorithms for
diagnosis and site are processed on individual lesions.

Development and Internal Validation

Separate linear support vector machines (LSVMs) were
developed for each classification task (ie, diagnosis and
site). The data set was split into randomly shuffled train/test
splits of 70/30, equating to 25,397 lesions used to derive
and train the algorithm and 10,884 lesions used to test the
algorithm. Term frequency-inverse document frequency
matrix was created using word-based n-grams of length 1
or length 2 (short, 1- or 2-word phrases). Words contained
within , 10% or . 90% of the reports were ignored, as
were common, information-poor stop words (eg, “the,” “a,”
“in”). A hyperparameter GridSearch was performed, opti-
mizing for the best F1-Macro score (a function of both
precision and recall; Table 1). Each parameter combination
was evaluated using 3-fold cross-validation. The best-
performing LSVM model was then evaluated against the
held-out test data set. The test evaluation tested for
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completeness of predicting the classification (sensitivity,
or recall), and the resulting evaluation retested for mis-
classifications (positive predictive value, or precision).

The trained models for each classification problem were
then used as the basis for a Web application to upload
pathology reports and analyze the free-text. The Web ap-
plication can parse and analyze reports across a range of
formats, commensurate with the different formats used by
various laboratories. The output variables are listed in
Table 2.

We developed the Web application using Python 3.6 on
a machine with Ubuntu Linux (Canonical, London, United
Kingdom) that has 16 cores with 8 G of memory. The
following libraries were used: Pandas, sklearn, spaCy,
various Python 3.6 standard libraries (including regex), and
Jupyter notebooks.

External Validation

To assess the real-world performance of the algorithm
beyond the historical data set used for training, we com-
pared the classifiers’ predictions on 3 independent samples
of pathology reports: a random sample of 400 new pa-
thology reports from QSkin participants; 2,345 pathology
reports for QSkin participants from pathology laboratories
not represented in the training data set; and 42 pathology
reports from high-risk transplantation recipients enrolled in
the Skin Tumors in Allograft Recipients (STAR) study.15

The text reports were first reviewed by a medically trained
staff member who entered diagnosis and site details into
a database; we considered these summary measures to be
the gold standard data with which to compare the algo-
rithm-derived measures. Separately and independently of
this review, the first author (B.S.T.) uploaded the same
reports in their various formats (Excel, comma-separated
values, PDF, and Word) into the Web application. The
manually extracted data were not always entered in nu-
merical order; therefore, we could not match on lesion, but
rather matched on reports including counts of histologic-
specific lesions. We calculated standard measures of
agreement (kappa score) between manually extracted and
algorithm-derived classifications for histology (at least one
correct classification for each diagnosis) and for histologic-
specific lesion count (0, 1, 2, and ≥ 3 lesions occurring
within a single report). Agreement was calculated for each
of the 3 independent validation samples.

RESULTS

Development

The algorithm achieved high recall (. 0.9), precision, and
F1 scores in the evaluation of the parameter combinations
for BCC and SCC within the train/test splits. Agreement
measures for diagnosing keratoacanthoma and IEC were
slightly less with F1 scores of 0.89 and 0.86, respectively
(Table 3). See Appendix Tables A1 and A2 and Appendix
Figures A1 and A2 for detailed results.

Validation

We observed high accuracy for classifying histologic sub-
types of skin cancer across the 3 validation data sets.
Kappa scores for validation data sets 1 and 2 were almost
perfect for BCC, SCC, and keratoacanthoma (. 0.9) and
were high for IEC (0.89; Table 4). However, approximately
7% of pathology reports from validation data set 2 could not
be processed because of formatting irregularities.

Although agreement indices were slightly lower for vali-
dation data set 3 (the cohort of organ transplantation re-
cipients with high incidence and multiplicity of skin
cancer), kappa scores were high for BCC (0.82), SCC

TABLE 1. Calculations Used in the Experiment and Validations

Actual Classification

Predicted Classification

Negative Positive

Negative True negative False positive All actual negative

Positive False negative True positive All actual positive Sensitivity positive = True
positive/All actual positive

All predicted negative All predicted positive

PPV = True positive/All predicted positive

F1 scorea = 2 × [(PPV × sensitivity)/(PPV + sensitivity)]

Abbreviation: PPV, positive predictive value.
aF1 score can range between 0 (no accuracy) and 1 (perfect accuracy).

TABLE 2. Data Fields in Output Data From Pathology Classifier Web Application
Data Field Description

UID Study-specific person identification number

ReportText All text as presented within the pathology report

Datecoll Reported date that the specimen was collected for pathology

LesionID Identification number for count of individual lesions within a report

LesionText Text extracted across all sections of the report for the
individual lesion

Site The anatomic site of the lesion

Diagnosis The algorithm-derived diagnosis for an individual
lesion

SiteFace Face-specific site of lesion where Site is face
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(0.90), and IEC (0.89). A lower sensitivity was found for
BCCs in this data set (83%), largely because the application
could not separate 8 BCCs diagnosed in one pathology
report.

Across all 3 validation data sets, accuracy of histology-
specific lesion counts was slightly lower than for histologic
classification. Even so, kappa scores generally remained
higher than 0.8 (Appendix Table A3).

Kappa scores for site of lesion were high for validation data
set 1 but lower for some sites in validation data set 2 for
head and neck (0.89 v 0.78, respectively), torso (0.83 v
0.69, respectively), and limbs (0.91 v 0.74, respectively).
Further agreement calculations and agreement for face-
specific sites are provided in Appendix Table A4. A gold
standard for site of lesion was not available for validation
data set 3.

DISCUSSION

We developed a Web application to automatically extract
diagnostic information from free-text pathology reports. The
application underwent extensive validation and was found to
be highly accurate for classifying diagnoses of keratinocyte
cancers within a large, prospective study. Its utility among
transplantation patients with complex pathology reports was
slightly lower. However, it must be noted that the reports in
this group frequently described . 10 lesions in a single
report. In addition to overall accuracy, sensitivity and positive
predictive value for BCC and SCC were particularly high,
indicating high ascertainment and few false negatives.

TABLE 3. Accuracy of Final Algorithm for Diagnosis Classification in Test Split of
Training Data Set in Development

Diagnosis

Agreement

F1 Score Recall (sensitivity) Precision (PPV)

BCC 0.93 0.94 0.93

SCC 0.91 0.92 0.89

Keratoacanthoma 0.89 0.91 0.88

Intraepidermal carcinoma 0.86 0.87 0.85

Abbreviations: BCC, basal cell carcinoma; PPV, positive predictive value; SCC,
squamous cell carcinoma.

TABLE 4. Accuracy of Classifying at Least One Case of the Diagnosis in Each Report and Agreement Between Algorithm-Derived and Manual Review
(gold standard) Sample of Reports in QSkin Study Participants and External Study Participants (STAR study)

Source

No. of Reports With at
Least One Case of the

Diagnosis Agreement (95% CI)

Gold Standard AD Sensitivity (%) Specificity (%) PPV (%) κ

Data set 1: QSkin participants, new
pathology reports (n = 348)a

BCC 99 99 98 (92 to 99) 99 (97 to 100) 98 (93 to 100) 0.97 (0.94 to 1.0)

SCC 33 33 94 (80 to 99) 99 (98 to 100) 94 (80 to 99) 0.93 (0.87 to 1.0)

Keratoacanthoma 15 13 87 (60 to 98) 100 (99 to 100) 99 (75 to 100) 0.93 (0.82 to 1.0)

IEC 72 70 90 (81 to 96) 98 (96 to 99) 93 (84 to 98) 0.89 (0.83 to 1.0)

Data set 2: QSkin participants, skin
pathology reports from laboratories
not included in the training data
set (n = 2,159)a

BCC 932 937 98 (97 to 99) 98 (97 to 99) 97 (96 to 98) 0.96 (0.94 to 0.97)

SCC 295 317 98 (95 to 99) 98 (98 to 99) 91 (87 to 94) 0.93 (0.91 to 0.95)

Keratoacanthoma 50 55 96 (87 to 99) 100 (99 to 100) 87 (76 to 94) 0.91 (0.86 to 0.97)

IEC 348 322 88 (84 to 91) 99 (99 to 99) 95 (92 to 97) 0.89 (0.87 to 0.92)

Data set 3: STAR study participants,
skin pathology reports (n = 42 reports)a,b

BCC 12 11 83 (55 to 95) 97 (83 to 99) 91 (62 to 98) 0.82 (0.63 to 1.0)

SCC 16 16 94 (72 to 99) 96 (81 to 99) 94 (72 to 99) 0.90 (0.76 to 1.0)

IEC 25 22 88 (70 to 96) 100 (100 to 100) 100 (100 to 100) 0.89 (0.70 to 1.0)

Abbreviations: AD, algorithm derived; BCC, basal cell carcinoma; IEC, intraepidermal carcinoma; PPV, positive predictive value; SCC, squamous cell
carcinoma.

aThe count of reports for histologic diagnoses (BCC, SCC, keratoacanthoma, and IEC) does not sum to the number of reports processed. More than one
diagnosis could be counted on a single report, and some reports included other benign skin diagnoses not classified by the algorithm.

bDiagnosis of keratoacanthoma and site of lesion were not collected by the study dermatologist.
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Agreement between algorithm-derived and manually
extracted information on the site of lesion was slightly lower
than that observed for type of lesion. This is likely because
of inconsistencies in the collection of this data item. Expert
reviewers were required to allocate the site of a lesion from
an extensive, but not exhaustive, list. As an example,
a lesion on the lower neck or upper back region may have
been entered as neck, shoulder, or upper back. Similarly,
a lesion described as located on the hip could potentially be
entered as being on the buttock, torso, or thigh. This in-
consistency likely affected the ability of the algorithm to
accurately determine site.

To the best of our knowledge, this is the only automated
method for extracting diagnostic information from free-text
pathology reports for keratinocyte cancers. Eide et al9 used
natural language processing to identify incident cases of
keratinocyte cancers from pathology reports appropriate for
registration but did not extract pathology data using these
methods.

The automated extraction of information from cancer his-
topathology reports is complex. Free-text reporting by pa-
thologists results in large and complex variety in the
language used to describe a diagnosis (or lack of
diagnosis).16,17 The main challenge for the automated al-
gorithm arises from multiple lesions being described in
a single pathology report. To overcome this, we developed
rules in the application to separately extract information
specific for each lesion and then map the components
together again. Similar to Currie et al,18 the Web application
generates an alert to flag the small number of reports that
failed processing.

Strengths of the study include full manual reviews of. 25,000
pathology reports, yielding a training data set of sufficient
quality and size for supervised learning development. How-
ever, the application is limited in that it can only assign one
diagnosis to a single lesion. For example, “squamous cell
carcinoma arising in a keratoacanthoma” was classified as
SCC, whereas a medical reviewer would classify this lesion as
both SCC and keratoacanthoma. This occurred in approxi-
mately 1% of lesions classified by the application. For the
purposes of defining skin cancer incidence in a population, we
contend that the coding rules developed here are acceptable.

Unlike other attempts to automate the extraction of in-
formation from pathology reports,16,18 we report our detailed
methods and used open-source software. Thus, although
the findings in this report are specific to the format and
language used in pathology reports for keratinocyte can-
cers in the study population, the preprocessing rules can be
easily adapted to suit different text formats and the su-
pervised learning methods could be applied to a different
training data set.

In conclusion, a supervised learning Web application can
process large numbers of pathology reports and classify
and count diagnoses of keratinocyte cancers described in
free-text histopathology reports with a high degree of ac-
curacy. This tool was developed primarily for compiling
statistical summary information in settings where such data
are not currently able to be recorded as a result of the
volume and complexity of data. Similar applications could
be implemented into cancer registries and hospitals, which
would enable the measurement of histology type–specific
keratinocyte cancer incidence rates.
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APPENDIX

TABLE A1. Test Results for Accuracy of Algorithm Prediction for Diagnosis
Label namea Histologic Name PPV Sensitivity F1 Scoreb Test Data Count

diagnosis_11 BCC 0.93 0.94 0.93 2,343

diagnosis_12 SCC 0.89 0.92 0.91 809

diagnosis_13 Melanoma 0.83 0.88 0.85 163

diagnosis_21 Keratoacanthoma 0.88 0.91 0.89 193

diagnosis_22 IEC 0.85 0.87 0.86 1,581

diagnosis_24 Solar keratosis 0.77 0.74 0.75 976

diagnosis_44 Lentigo maligna 0.58 0.65 0.61 40

diagnosis_61 BCC re-excision 0.78 0.72 0.75 96

diagnosis_62 SCC re-excision 0.62 0.52 0.57 54

diagnosis_63 IEC re-excision 0.61 0.40 0.48 43

diagnosis_64 Melanoma re-excision 0.84 0.92 0.88 107

diagnosis_65 Squamoproliferative lesions 0.61 0.49 0.54 35

diagnosis_88 Nonmalignant 0.91 0.90 0.91 2,310

Micro average 0.88 0.88 0.88 8,750

Macro average 0.78 0.76 0.76

Weighted average 0.88 0.88 0.88

Abbreviations: BCC, basal cell carcinoma; IEC, intraepidermal carcinoma; PPV, positive predictive value; SCC, squamous cell carcinoma.
aLabel names are machine derived, were assigned in the development process, and identify discrete classification categories that mapped to

histological diagnoses.
bF1 score is a measure of accuracy and represents the harmonic mean of PPV and sensitivity.
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FIG A1. Test results for agreement (F1 score) and discordance of diagnoses between the predicted labels (algorithm
derived classification) and true labels (actual diagnosis). Histologic names for labels are detailed in Table A1.
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TABLE A2. Test Results for Accuracy of Algorithm Prediction for Site
Label Namea Anatomic Site PPV Sensitivity F1 Scoreb Test Data Count

site_face_1 Skin of orbit/eyelid 0.72 0.81 0.76 199

site_face_2 Nose 0.91 0.92 0.92 481

site_face_3 Lips 0.86 0.90 0.88 117

site_face_4 Cheeks 0.82 0.81 0.81 495

site_face_5 Chin/jaw 0.69 0.55 0.61 125

site_face_6 Forehead 0.86 0.78 0.82 357

site_face_7 Temple 0.87 0.79 0.83 221

site_face_8 Face (not specified) 0.54 0.80 0.65 46

site_2 Scalp 0.87 0.87 0.87 216

site_3 Ears 0.86 0.90 0.88 264

site_4 Neck 0.88 0.88 0.88 362

site_5 Shoulders 0.81 0.82 0.81 484

site_6 Upper chest/sternoclavicular 0.73 0.80 0.76 338

site_7 Breast 0.66 0.49 0.56 125

site_8 Abdomen 0.88 0.81 0.84 69

site_9 Back (not specified) 0.59 0.61 0.60 209

site_11 Upper arm 0.86 0.84 0.85 397

site_12 Forearm, elbow, or wrist 0.93 0.90 0.92 780

site_13 Back of hand 0.87 0.93 0.90 345

site_14 Palmar skin, fingers 0.80 0.78 0.79 86

site_16 Thigh 0.91 0.90 0.91 201

site_17 Lower leg, ankle, knee 0.93 0.94 0.93 1,017

site_18 Top of feet 0.88 0.93 0.90 55

site_31 Upper back 0.69 0.74 0.71 417

site_32 Lower back 0.66 0.60 0.63 174

site_99 Nonskin 0.93 0.89 0.91 44

Micro average 0.84 0.84 0.84 7,624

Macro average 0.81 0.81 0.81

Weighted average 0.84 0.84 0.84

Abbreviation: PPV, positive predictive value.
aLabel names are machine derived, were assigned in the development process, and identify discrete classification categories that mapped to

anatomical site.
bF1 score is a measure of accuracy and represents the harmonic mean of PPV and sensitivity.
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FIG A2. Test results for agreement (F1 score) and discordance of site between the predicted labels (algorithm-
predicted site) and true labels (actual site). Anatomic site names for labels are detailed in Table A2.
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TABLE A3. Count of Each Diagnosis for Each Person and Agreement Between Algorithm-Derived Extraction and Manual Review (gold standard)
From 3 Validation Sources

Algorithm-Derived Diagnosis Count

Diagnosis Count by Manually Reviewed Gold
Standard

Weighted κ (95% CI)0 1 2 ‡ 3 Total

Data set 1: Random sample of 400 new reports for QSkin
participants

BCC 0.94 (0.90 to 0.98)

0 247 2 0 0 249

1 2 73 1 2 78

2 0 2 15 0 17

≥ 3 0 0 0 4 4

Total 249 77 16 6 348

SCC 0.92 (0.84 to 1.0)

0 313 2 0 — 315

1 1 29 0 — 30

2 1 0 2 — 3

Total 315 31 2 — 348

Keratoacanthoma 0.93 (0.83 to 1.0)

0 333 2 0 — 335

1 0 12 0 — 12

2 0 0 1 — 1

Total 333 14 1 — 348

Intraepidermal carcinoma 0.88 (0.81 to 0.95)

0 271 6 0 1 278

1 4 52 0 0 56

2 1 1 9 1 12

≥ 3 0 0 0 2 2

Total 276 59 9 4 348

Data set 2: Reports from other laboratories for QSkin
participants

BCC 0.85 (0.83 to 0.86)

0 1,177 20 0 0 1,197

1 21 577 2 0 600

2 2 129 97 1 229

≥ 3 2 26 22 58 108

Total 1,202 752 121 59 2,134

SCC 0.80 (0.77 to 0.83)

0 1,810 7 0 0 1,817

1 28 199 2 0 229

2 1 58 11 0 70

≥ 3 0 14 3 1 18

Total 1,839 278 16 1 2,134

Keratoacanthoma 0.84 (0.78 to 0.91)

0 2,077 2 0 0 2,079

1 7 39 1 0 47

(Continued on following page)
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TABLE A3. Count of Each Diagnosis for Each Person and Agreement Between Algorithm-Derived Extraction and Manual Review (gold standard)
From 3 Validation Sources (Continued)

Algorithm-Derived Diagnosis Count

Diagnosis Count by Manually Reviewed Gold
Standard

Weighted κ (95% CI)0 1 2 ‡ 3 Total

2 0 6 1 0 7

≥ 3 0 1 0 0 1

Total 2,084 48 2 0 2,134

Intraepidermal carcinoma 0.83 (0.81 to 0.86)

0 1,770 42 0 0 1,812

1 16 223 3 0 242

2 0 45 20 1 66

≥ 3 0 2 5 7 14

Total 1,786 312 28 8 2,134

Data set 3: Reports from participants from the STAR study

BCC 0.83 (0.66 to 1.0)

0 29 2 0 0 31

1 1 7 0 0 8

2 0 1 1 0 2

≥ 3 0 0 0 1 1

Total 30 10 1 1 42

SCC 0.91 (0.78 to 1.0)

0 25 1 0 — 26

1 1 14 0 — 15

2 0 0 1 — 1

Total 26 15 1 — 42

Intraepidermal carcinoma 0.88 (0.77 to 0.99)

0 17 3 0 0 20

1 0 11 0 1 12

2 0 1 1 0 2

≥ 3 0 0 0 8 8

Total 17 15 1 9 42

Abbreviations: BCC, basal cell carcinoma; SCC, squamous cell carcinoma.
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TABLE A4. Accuracy of Classifying at Least One Keratinocyte Cancer at Each Site in a Report and Agreement Between Algorithm-Derived Extraction and
Manual Review (gold standard) Sample of Reports

Source and Site

No. of Reports With
at Least One Lesion
Occurring in That

Site Agreement (95% CI)

Gold Standard AD Sensitivity (%) Specificity (%) PPV (%) κ

Data set 1: QSkin participants, new
pathology reports (n = 349)

Site (limited to confirmed BCC, SCC,
keratoacanthoma, or IEC; n = 199)a

Head and neck 92 97 97 (91 to 97) 93 (87 to 97) 92 (86 to 97) 0.89 (0.83 to 0.95)

Torso 39 44 92 (79 to 98) 95 (90 to 98) 82 (67 to 92) 0.83 (0.74 to 0.93)

Limbs 89 88 94 (87 to 98) 96 (91 to 99) 96 (89 to 99) 0.91 (0.85 to 0.97)

Face-specific site (n = 63)

Eye orbit and lid 9 7 78 (40 to 97) 100 (94 to 100) 100 (59 to 100) 0.86 (0.66 to 1.0)

Nose 18 17 94 (79 to 100) 100 (92 to 100) 100 (81 to 100) 0.96 (0.88 to 1.0)

Lips 2 2 100 (16 to 100) 100 (94 to 100) 100 (16 to 100) 1.0 (1.0 to 1.0)

Cheeks 8 11 100 (66 to 100) 95 (85 to 99) 73 (43 to 95) 0.82 (0.61 to 1.0)

Jaw and chin 3 2 33 (1 to 91) 98 (91 to 100) 50 (1 to 99) 0.38 (, 0.0 to 0.93)

Forehead 14 15 100 (68 to 100) 98 (93 to 100) 93 (77 to 100) 0.96 (0.87 to 1.0)

Temple 8 6 75 (35 to 97) 100 (94 to 100) 100 (54 to 100) 0.84 (0.62 to 1.0)

Face (not specified) 4 4 75 (19 to 99) 98 (90 to 100) 95 (19 to 99) 0.73 (0.38 to 1.0)

Data set 2: QSkin participants, skin pathology
reports from laboratories not included
in the training data set (n = 2,159
reports)

Site (limited to confirmed BCC, SCC,
keratoacanthoma, or IEC; n = 1,472)a

Head and neck 636 605 85 (82 to 88) 92 (90 to 94) 89 (87 to 92) 0.78 (0.75 to 0.81)

Torso 407 510 86 (82 to 90) 85 (83 to 87) 69 (64 to 73) 0.69 (0.65 to 0.73)

Limbs 549 544 84 (81 to 86) 91 (89 to 93) 86 (83 to 89) 0.74 (0.71 to 0.78)

Face-specific site (n = 473)

Eye orbit and lid 52 54 67 (54 to 78) 100 (93 to 97) 65 (51 to 76) 0.62 (0.50 to 0.73)

Nose 147 156 88 (82 to 93) 92 (89 to 95) 83 (77 to 88) 0.79 (0.73 to 0.85)

Lips 18 18 89 (67 to 97) 100 (98 to 100) 89 (67 to 70) 0.88 (0.77 to 1.0)

Cheeks 123 124 79 (71 to 85) 92 (89 to 95) 78 (70 to 85) 0.71 (0.64 to 0.78)

Jaw and chin 29 17 48 (31 to 66) 99 (98 to 100) 82 (59 to 94) 0.59 (0.42 to 0.76

Forehead 95 84 74 (64 to 81) 96 (94 to 98) 83 (74 to 90) 0.73 (0.65 to 0.81)

Temple 36 32 72 (56 to 84) 99 (97 to 99) 81 (65 to 91) 0.75 (0.63 to 0.87)

Face (not specified) 3 2 67 (21 to 94) 100 (100 to 100) 100 (100 to 100) 0.80 (0.41 to 1.0)

Abbreviations: AD, algorithm derived; BCC, basal cell carcinoma; IEC, intraepidermal carcinoma; PPV, positive predictive value; SCC, squamous cell
carcinoma.

aThe count of reports for site does not sum to the number of reports processed because . 1 site could be counted on a single report.
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