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Evidences increasingly indicate the involvement of gene network rewiring in disease
development and cell differentiation. With the accumulation of high-throughput gene
expression data, it is now possible to infer the changes of gene networks between
two different states or cell types via computational approaches. However, the distribution
diversity of multi-platform gene expression data and the sparseness and high noise rate of
single-cell RNA sequencing (scRNA-seq) data raise new challenges for existing differential
network estimation methods. Furthermore, most existing methods are purely rely on gene
expression data, and ignore the additional information provided by various existing
biological knowledge. In this study, to address these challenges, we propose a general
framework, named weighted joint sparse penalized D-trace model (WJSDM), to infer
differential gene networks by integrating multi-platform gene expression data and multiple
prior biological knowledge. Firstly, a non-paranormal graphical model is employed to tackle
gene expression data with missing values. Then we propose a weighted group bridge
penalty to integrate multi-platform gene expression data and various existing biological
knowledge. Experiment results on synthetic data demonstrate the effectiveness of our
method in inferring differential networks. We apply our method to the gene expression data
of ovarian cancer and the scRNA-seq data of circulating tumor cells of prostate cancer,
and infer the differential network associated with platinum resistance of ovarian cancer and
anti-androgen resistance of prostate cancer. By analyzing the estimated differential
networks, we find some important biological insights about the mechanisms underlying
platinum resistance of ovarian cancer and anti-androgen resistance of prostate cancer.

Keywords: single-cell RNA sequencing, differential network analysis, prior information, graphical model, gene
regulatory network

1 INTRODUCTION

Biological systems often involve the complex regulatory relationships between genes, which could
change substantially in different states or developmental stages. Inferring the changes of gene
regulatory networks between two different states or cell types is important for revealing the
regulatory mechanisms relevant to disease development and cell differentiation (Tian et al.,
2016; Zhang et al., 2017). With the accumulation of state-specific gene expression data, a great
number of computational approaches have been proposed for estimating gene regulatory networks
as well as their difference between two distinct states from gene expression data (Danaher et al., 2014;
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Ha et al., 2015; Lichtblau et al., 2016; Tian et al., 2016; Zhang et al.,
2016; Ou-Yang et al., 2017; Uppal et al., 2018).

Due to the ability in capturing the conditional dependencies
among genes, Gaussian graphical models have been widely used
to infer gene regulatory networks (Danaher et al., 2014; Zhang
et al., 2016; Yuan et al., 2017; Ou-Yang et al., 2019). Existing
Gaussian graphical model-based differential network
estimation methods can be roughly divided into two
categories, i.e., indirect estimation models (Danaher et al.,
2014; Zhang et al., 2016) and direct estimation models (Tian
et al., 2016; Yuan et al., 2017). Indirect estimation models first
estimate each state-specific network separately and then infer
the differential network by calculating the difference between
two state-specific networks (Danaher et al., 2014). Whereas
direct estimation models directly estimate the difference
between two state-specific networks without the need to
estimate individual state-specific networks (Tian et al., 2016).
As the number of parameters that needs to be estimated in
direct estimation models is half of that in indirect estimation
models, direct estimation models usually achieve better
performance than indirect estimation models in differential
network estimation, especially in the case of small sample
size (Yuan et al., 2017).

Although the above models have been successfully used to
infer differential networks (Danaher et al., 2014; Tian et al., 2016;
Yuan et al., 2017), they are mainly designed for bulk tissue gene
expression data collected from a single data platform. Recently,
with the development of high-throughput experimental
technologies, we are able to collect bulk gene expression data
of same samples from multiple data platforms. As the gene
expression data collected from different data platforms may
provide some shared and specific information about the
regulatory relationships between genes, integrating multi-
platform gene expression data could help to improve the
accuracy of differential network estimation (Zhang et al., 2016,
2017). Moreover, the advance of single-cell RNA sequencing
(scRNA-seq) techniques offers a great opportunity for
inferring the regulatory relationships between genes at single
cell resolution. The accumulation of scRNA-seq data paves the
way to infer cell-type-specific gene networks, which could help to
explore the heterogeneity between different cell types (Pratapa
et al., 2020). However, due to technical limitations of existing
scRNA-seq technologies, a truly expressed gene may not be
identified in some cells, which leads to excess of false zeros in
scRNA-seq data (i.e., dropout events) (Stegle et al., 2015). Existing
differential network estimation models usually assume that the
observed data are complete, and rarely consider missing value
problem. To handle the distribution diversity of multi-platform
gene expression data and the sparseness of single-cell RNA
sequencing (scRNA-seq) data, Ou-Yang et al. (2021) proposed
an indirect differential network estimation model, which can
integrate the gene expression data collected from multiple data
platforms and tackle the missing value problem. Moreover, their
model can take into account the changes in gene expression levels
when inferring differential networks.

The above models only use gene expression data to infer
differential networks. However, since the number of samples are

usually much smaller than the number of genes, and scRNA-seq
data are much sparser and noisier than bulk RNA-seq data, it is
difficult to infer differential networks accurately only based on
gene expression data. Besides gene expression data, existing
knowledge of genes and knowledge of the regulatory
relationships among genes may also help to improve the
accuracy of differential network estimation (Xu et al., 2018).
For example, we can collect some literature-curated gene
regulatory interactions from public database (Han et al.,
2015). As the changes of regulatory relationships between
two different states is more likely to occur between genes
that are known to have regulatory interactions, considering
prior gene regulatory interactions may help to improve the
accuracy of differential network estimation. Moreover,
researchers have found that genes within same pathways
usually interact with each other to carry out their biological
functions, and genes belong to different pathways seldom
interact with each other (Wu et al., 2019). Thus, taking into
account pathway information may also facilitate the inference of
differential networks.

In this study, to address the above problems and provide a
differential network estimation method that can generally work
well on different types of data, we propose a novel method
named Weighted Joint Sparse penalized D-trace Model
(WJSDM). Our model can directly estimate the differential
networks between two different states by integrating multi-
platform gene expression data with additional biological
knowledge. Similar to (Ou-Yang et al., 2021), based on non-
paranormal graphical model and revised Kendall’s tau
correlation, our model can tackle non-Gaussian data with
missing values, which make it able to deal with multi-
platform gene expression and scRNA-seq data. By using
D-trace loss function, our model can estimate the differential
network directly, which reduce the number of parameters that
need to be estimated. To integrate various prior biological
knowledge and take into account changes in gene expression
levels, we propose a weighted group bridge penalty. Our model
can be solved by using an accelerated proximal gradient method.
Simulation studies are first conducted to evaluate the
performance of our model. According to the experiment
results, our model can always achieve better performance
than other state-of-the-art differential network estimation
models, which demonstrate the effectiveness of our model in
integrating prior information and handling gene expression
data with missing values. Extensive experiments on two real
data sets also demonstrate the advantages of our model in
inferring differential networks and revealing the underlying
mechanisms of disease developments. The source code of our
proposed model is available at https://github.com/Yunhuang85/
WJSDM.

2 METHODS

In this section, we will first review the non-paranormal
distribution and D-trace loss. Then we will introduce our
weighted joint sparse penalized D-trace model.
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2.1 Non-paranormal Distribution
Let X � (X1, X2, . . . , Xp) denote a p-dimensional random vector
which follows a multivariate normal distribution X ∼ N(0, Σ),
where Σ ∈ Rp×p is the covariance matrix. For multivariate
normal distributions, Xi is independent of Xj given the other
variables if and only if the corresponding entry in the inverse
covariance matrix (precision matrix) Θ � Σ−1 is equal to zero,
i.e., Θij � 0. Thus, the conditional dependence relationships
among p random variables in X can be obtained by identifying
the nonzero elements in Θ. However, the normal distribution
assumption is too restrictive in practice. To relax the normal
distribution assumption, non-paranormal distribution is
proposed. X � (X1, X2, . . . , Xp) is said to follow a non-
paranormal distribution X ∼ NPN(f, Σ) if there exists a set
of monotone and differentiable functions {fj}pj�1 such that
f(X) � (f1(X1), . . ., fp(Xp)) ∼ N(0, Σ). It has been proven that
Θ � Σ−1 encodes the conditional dependence relationships
among X. That is, Xi is independent of Xj given the other
variables if and only if Θij � 0.

2.2 D-Trace Loss
Given the gene expression data X(c){ }c�1,2 of two different states.
Each data set X(c) ∈ Rnc×p includes nc samples and p common
genes. Suppose the nc samples within each data set are from the
same non-paranormal distribution NPN(f(c), Σ(c)), where
Σ(c) ∈ Rp×p is the covariance matrix. The conditional
dependence relationships between these p genes can be
inferred from the precision matrix Θ(c) � (Σ(c))−1. Thus, the
difference between two state-specific networks can be
presented as Δ � Θ(2) − Θ(1). To estimate the differential
network Δ efficiently, we can utilize the following D-trace loss
function (Yuan et al., 2017), which could directly estimate the
difference between two precision matrices without separate
estimation of each precision matrix:

arg min
Δ�ΔT

LD Δ;Σ(1),Σ(2)( ) � 1
4

〈Σ(1)Δ,ΔΣ(2)〉 + 〈Σ(2)Δ,ΔΣ(1)〉( )
− 〈Δ,Σ(1) − Σ(2)〉.

(1)

where (A, B) � tr(ABT). In practice, we need to use the sample
covariance matrices Σ̂(c)

and minimize LD(Δ; Σ̂(1)
, Σ̂(2)) with

respect to Δ to calculate the estimator of Δ. For non-paranormal
distribution, the sample non-paranormal covariance matrix can
be computed via rank-based correlation estimator, e.g.,
Kendall’s tau correlation, without estimating the univariate
transformation functions f (c).

2.3 Notations and Problem Statement
Assuming that there are two different groups of samples. As
the gene expression data of same samples can be collected
from multiple data platforms, suppose we can observe the
expression levels of p common genes for these two groups
of samples from K different data platforms, and the cth
group contains nc samples, c � 1, 2. Let X(kc) ∈ Rnc×p

denote the gene expression matrix of the cth group
collected from kth platform, where nc and p denote the

number of samples and the number of common genes,
respectively. Suppose the nc samples are from the same
non-paranormal distribution NPN(f (kc), Σ(kc)), where
Σ(kc) ∈ Rp×p is the covariance matrix. Let {Θ(kc)}c�1,2k�1,...,K
denote the precision matrices for two groups of samples
collected from K platforms, where Θ(kc) � (Σ(kc))−1. For
samples collected from the kth platform, the difference
between two state-specific networks can be presented as
Δ(k) � Θ(k2) − Θ(k1). Our goal is to estimate K differential
networks {Δ(k)}k�1,...,K jointly. For the sake of convenience, we

denote {X(kc)}c�1,2k�1,...,K, {Σ(kc)}c�1,2k�1,...,K, {Θ(kc)}c�1,2k�1,...,K and

{Δ(k)}k�1,...,K as {X(kc)}, {Σ(kc)}, {Θ(kc)} and {Δ(k)}, respectively.

2.4 Weighted Joint Sparse Penalized
D-Trace Model
The above D-trace loss is designed to infer the differential
network between two different groups of samples from a
single data platform, and cannot utilize the common
information provided by gene expression data collected from
multiple data platforms. Thus, in this study, we extend D-trace
loss and develop a weighted joint sparse D-trace model
(WJSDM), which can draw support from gene expression data
collected frommultiple data platforms to estimate the differential
network between two different states.

According to the above D-trace loss, the loss function LKD of K
data platforms can be given by:

LKD Δ(k){ }( ) � 1
4
∑K
k�1

〈Σ̂(k1)Δ(k),Δ(k)Σ̂(k2)〉 + 〈Σ̂(k2)Δ(k),Δ(k)Σ̂(k1)〉( )
−∑K

k�1
〈Δ(k), Σ̂(k1) − Σ̂(k2)〉( ). (2)

where Σ̂(kc)
is the sample non-paranormal covariance matrix

for cth group and kth data platform, k � 1, . . . , K and c � 1, 2. As
gene expression data may include some missing values, similar to
(Wang et al., 2014; Ou-Yang et al., 2021), we adopt a rank-
based correlation, i.e., revised Kendall’s tau correlation, to

estimate Σ̂(kc)
. In particular, let n(kc)ij � ∑

1≤l≤nkc
d(kc)li d(kc)lj denote

the number of samples in the cth group and kth platform that
have nonzero expression values for ith and jth genes
simultaneously, where d(kc)lj � 1 if X(kc)

lj ≠ 0 and d(kc)lj � 0 if
X(kc)

lj � 0. The revised Kendall’s tau correlation between ith
and jth genes are defined as follows:

τ̂(kc)ij � 1

n(kc)ij n(kc)ij − 1( ) ∑
l≠l′

d(kc)
li d(kc)

l′i
d(kc)
lj d(kc)

l′j

sign X(kc)
li −X(kc)

l′ i( ) X(kc)
lj −X(kc)

l′j( )( ) (3)

As Kendall’s tau correlation are invariant under strictly
monotone marginal transformations (Liu et al., 2012), Σ(kc)

ij

can be estimated by the following definition of Σ̂(kc)
ij

Σ̂(kc)
ij � sin

π

2
τ̂(kc)ij( ), if i≠ j,

1, if i � j.

⎧⎪⎨⎪⎩ (4)
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In this study, each sample non-paranormal covariance matrix
Σ̂(kc)
ij is computed according to the revised Kendall’s tau

correlation and transformation function defined in Eqs 3, 4.
To ensure Σ̂(kc)

is positive semidefinite, following Zhang et al.
(2021) and Higham (1988), we compute the nearest

positive semidefinite matrix S(kc) of Σ̂(kc)
and use it to

replace Σ̂(kc)
.

Note that the differential networks inferred from gene
expression data collected from different data platforms may
share certain network structures, and the differential networks
between two different states may be sparse. Furthermore,
differentially expressed genes usually tend to change their
regulatory relationships with other genes. Thus, to jointly
estimate multiple differential networks and consider the
changes in expression levels of individual genes when inferring
differential networks, similar to (Ou-Yang et al., 2021), we
introduce the following group bridge penalty function:

P Δ(k){ }( ) � ∑
i,j

����������∑K
k�1

τ(k)ij |Δ(k)
ij |

√√
. (5)

where τ(k)ij � 1 − (1 − r(k)i )(1 − r(k)j ) can assign different weights
to different pairs of genes, and r(k)i ∈ [0, 1] denotes the parameter
which measures the differential expression level of ith gene,
inferred from the kth experimental platform. In this study,
following Ou-Yang et al. (2021), the p-value of Wilcoxon
rank-sum test is used to calculate r(k)i , which can reflect the
differential expression level of ith gene. With this penalty
function, the differential networks {Δ(k)} inferred from K
different data platforms may have similar patterns of sparsity
and have some shared and specific edges.

Besides gene expression data, there are usually some prior
biological knowledge that can help to improve the accuracy of
differential network estimation, such as pathway information and
prior gene interactions. To incorporate these prior information
when inferring differential networks, we extend the above group
bridge penalty function to the following weighted group bridge
penalty function:

P Δ(k){ }( ) � ∑
i,j

Wij

����������∑K
k�1

τ(k)ij |Δ(k)
ij |

√√
. (6)

Here,W � [Wij] is the weight matrix defined by prior knowledge.
In this study, the prior information we used includes pathway
information and gene interactions that have been verified from
other biological studies. Let G ∈ {0,1}p×p and F ∈ {0,1}p×p denote
the prior gene interaction and co-pathway indication matrices,
respectively, where Gij � 1 if the ith and jth genes are known to
have regulatory relationship andGij � 0 otherwise, Fij � 1 if the ith
and jth genes belong to at least one common pathway and Fij � 0
otherwise. To assign different weights to different pairs of genes,
we define Wij as follows:

Wij �
wg, if Gij � 1,
1, if Gij � 0 and Fij � 1,
wf, if Gij � 0 and Fij � 0.

⎧⎪⎨⎪⎩ (7)

where wg and wf are two predefined weight parameters. In
reality, the differential edges are more likely to take place
between gene pairs that are known to have interactions, and
the differential edges are less likely to occur between genes
that belong to different pathways. Thus, to assign
small penalties to gene pairs that are known to have
interactions and large penalties to gene pairs that belong
to different pathways, the value of wg should be less than 1
and the value of wf should be larger than 1. Following
previous studies (Xu et al., 2018), in this study, we fix wg � 0.3
and wf � 10.

By combining (2) and (6), the objective function of our
Weighted Joint Sparse penalized D-trace Model (WJSDM) is
given by:

Δ̂(k){ } � arg min
Δ(k)� Δ(k)( )T{ } LKD Δ(k){ }( ) + λ∑

i,j

Wij

����������∑K
k�1

τ(k)ij |Δ(k)
ij |

√√
.

(8)

where λ is a non-negative tuning parameter to control the
sparsity levels of the estimated differential networks. We use
an iterative approach based on local linear approximation
(Zou and Li, 2008) and the accelerated proximal gradient
method (Parikh and Boyd, 2014; Xu et al., 2018) to solve
problem (Eq. 8).

According to (Yuan et al., 2017), the gradient of the
D-trace loss function with respect to Δ takes the following
form:

▽LD(Δ) � 1
2

Σ̂(1)ΔΣ̂(2) + Σ̂(2)ΔΣ̂(1)( ) − Σ̂(1) − Σ̂(2)( ). (9)

Following the proximal gradient method (Parikh and
Boyd, 2014), LKD can be approximated by the following
function:

~LKD Δ(k){ }; Δ̂(k)( )(t){ }, lk{ }( ) � ∑K
k�1

LD Δ̂(k)( )(t)( )[
+ tr ▽LD Δ̂(k)( )(t)( )Δ(k) − Δ̂(k)( )(t)( )( )+ 1

2lk
‖Δ(k) − Δ̂(k)( )(t)‖2F].

(10)

where (Δ̂(k))(t) is the estimation of Δ(k) at tth iteration, lk > 0 and
‖A‖2F � ∑p

i,j�1 Aij. We rewrite the ~LKD function as:

~LKD Δ(k){ }; Δ̂(k)( )(t){ }, lk{ }( ) � ∑K
k�1

1
2lk

‖Δ(k)[
− Δ̂(k)( )(t) − lk▽LD Δ̂(k)( )(t)( )( )‖2F + φ Δ̂(k)( )(t)( )]. (11)

where φ((Δ̂(k))(t)) is a function of (Δ̂(k))(t).
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Algorithm 1. Complete Algorithm for WJSDM (8)

According to local linear approximation (Parikh and Boyd,
2014), Eq. 6 can be approximated as:

P Δ(k){ }( ) ≈ λ∑K
k�1

∑
i,j

ϕijWij|Δ(k)
ij |. (12)

where ϕij �
τ(k)ij

2

������������∑K

k�1 τ
(k)
ij |(Δ̂(k)

ij )(t) |
√ . Therefore, at (t + 1)-th iteration,

problem (Eq. 8) can be decomposed into the following K
individual optimization problems:

Δ̂(k)( )(t+1)
� arg min

Δ(k)� Δ(k)( )T
1
2
‖Δ(k)

− Δ̂(k)( )(t)
− lk▽LD Δ̂(k)( )(t)( )( )‖2F

+ λlk ∑
i,j

ϕijWij|Δ(k)
ij |. (13)

The solution of our WJSDM is summarized in Algorithm 1. The
computational complexity of each iteration in Algorithm 1 is
O(Kp3 + Kp2), where K is the number of data platforms and p is
the number of genes.

2.5 Parameter Selection
There is a tuning parameter λ in WJSDM, which affects the
sparsity level of the estimated differential networks. In this study,
following previous studies (Zhang et al., 2016), we use a stability
approach, named StARS method (Liu et al., 2010; Meinshausen
and Bühlmann, 2010), to determine the value of λ. The detailed
procedure of our parameter selection method is summarized in
Algorithm 2.

Algorithm 2. Tuning Parameter Selection for WJSDM

3 RESULTS

In this section, we first perform simulation studies to assess the
performance of our proposed WJSDM. Then we apply our model
on real data sets.

3.1 Simulation Studies
To demonstrate the effectiveness of our WJSDM in inferring
differential networks, we compare WJSDM with five state-of-the-
art differential network estimation models, i.e., FGL (Danaher
et al., 2014), TDJGL (Zhang et al., 2016), WDNE (Ou-Yang et al.,
2021), GGL (Danaher et al., 2014) and D-trace (Yuan et al., 2017).

3.1.1 Data Generation
In this simulation study, we consider two groups of samples and
their observations on p common genes collected from K � 3 data
platforms, and generate six scale-free networks for the two groups
of samples and three data platforms. Here, we set p � 100 and
generate n1 � n2 � n ∈ {50, 100, 200} observations for each data
platform. Each network includes three pathways with 0.4p genes
per pathway, and there are 0.2p genes shared by the second and
third pathway. For each pathway, we choose 10% edges as
differential edges. To model the heterogeneity between
different data platforms, we choose 10% of differential edges
to be platform-specific. Since differentially expressed genes tend
to change their regulatory relationships with other genes, we
select 30% genes as differentially expressed genes and the edges
connected to differentially expressed genes are more likely to be
differential edges. There are no differential edges between genes
belong to different pathways. To make a fair comparison with
Gaussian graphical model-based methods, the gene expression
levels of each cell are simulated by using a multivariate normal
distribution. To generate the prior gene interaction networkG, we
select a prior rate δ of nonzero elements from the above six scale-
free networks randomly and connect the corresponding genes in
G. Note that gene expression data may include missing values. In
this study, the expression values of a gene may be lost randomly,
and the missing rate is set to τ ∈ {0.6, 0.8}.
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3.1.2 Simulation Results
Let Δ̂(k)

(for indirect estimation methods: Δ̂(k) � Θ̂(k1) − Θ̂(k2)
)

denote the estimated differential network between two states for
the kth platform, and Δ(k) denote the real differential network for
the kth platform.We use the following twometrics to evaluate the
performance of various algorithms:

TPR �
∑K

k�1∑i<jI Δ̂(k)
ij ≠ 0 and Δ(k)

ij ≠ 0( )∑K
k�1∑i<jI Δ(k)

ij ≠ 0( ) ,

FPR �
∑K

k�1∑i<jI Δ̂(k)
ij ≠ 0 and Δ(k)

ij � 0( )∑K
k�1∑i<jI Δ(k)

ij � 0( ) .

where TPR denotes true positive rate, FPR denotes false positive
rate, and I(·) is an indicator function.

As all methods have some hyper-parameters that need to be
predefined, we generate a series of solutions for each model with
different values of hyper-parameters, and assess their
performances. In particular, for FGL, GGL, TDJGL and
WDNE, there are two parameters λ1 and λ2. While for D-trace
and ourWJSDM, there is one parameter λ. To ease interpretation,
following Danaher et al. (2014), the tuning parameters for GGL
are reparameterized as ω1 � λ1 + 1�

2
√ λ2 and

ω2 � 1�
2

√ λ2/(λ1 + 1�
2

√ λ2). The experiment results of all methods
are averaged over 10 random generations of synthetic data.
Figures 1–3 show the performance of various methods on
synthetic data. The columns of each figure show the results of
various methods with different values of prior rate δ, and the rows

of this figure show the results with different values of missing rate
τ. In this figure, each plot shows the TPR − FPR curves of various
methods. Within each plot, different colored lines present the
performances of different methods and different points in each
line indicate the results with respect to different values of hyper-
parameters. The colored lines for D-trace and WJSDM indicate
their results as the values of λ varied. The colored lines for FGL,
GGL, TDJGL and WDNE are obtained by fixing the value of λ2
(or ω2 for GGL) and varying the values of λ1 (or ω1 for GGL). For
λ1 and ω1, we choose 15 values ranging from 0.01 to 10 (for
WDNE, the value of λ1 is ranging from 0.01 to 100).

We can find from these figures that our WJSDM outperforms
other compared methods in all cases. GGL can estimate multiple
networks that share common network structures, but it cannot
identify the differences between different networks. FGL and
D-trace can infer the changes between different networks, but
they cannot integrate the data collected from different data
platforms. TDJGL is an extension of FGL, which can integrate
multi-platform gene expression data. WDNE is an extension of
TDJGL, which can handle gene expression data with missing
values and take into account changes in gene expression levels. All
of the above methods cannot make use of the prior information
provided by additional knowledge when inferring differential
networks. WDNE is a indirect differential network estimation
model, which need to estimate the state-specific networks in
advance. Thus, when the sample size is small, it cannot estimate
differential network accurately. As shown in Figure 3, when the
sample size is large, WDNE can achieve good performance and
outperform other compared methods in most cases. The superior

FIGURE 1 | Performance of WJSDM, D-trace, GGL, FGL, TDJGL and WDNE with p � 100, K � 3, n � 50 and missing rate (A) τ � 0.6, (B) τ � 0.8. Within each plot,
each line presents the performance of a method with the value of λ (for WJSDM and D-trace), λ1 (for FGL, TDJGL andWDNE) or ω1 (for GGL) varying for a fixed value of λ2
(for FGL, TDJGL and WDNE) or ω2 (for GGL). Each curve is obtained by averaging the performance of a method over ten random generations of data.
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FIGURE 2 | Performance of WJSDM, D-trace, GGL, FGL, TDJGL andWDNEwith p � 100, K � 3, n � 100 and missing rate (A) τ � 0.6, (B) τ � 0.8. Within each plot,
each line presents the performance of a method with the value of λ (for WJSDM and D-trace), λ1 (for FGL, TDJGL andWDNE) or ω1 (for GGL) varying for a fixed value of λ2
(for FGL, TDJGL and WDNE) or ω2 (for GGL). Each curve is obtained by averaging the performance of a method over ten random generations of data.

FIGURE 3 | Performance of WJSDM, D-trace, GGL, FGL, TDJGL andWDNEwith p � 100, K � 3, n � 200 and missing rate (A) τ � 0.6, (B) τ � 0.8. Within each plot,
each line presents the performance of a method with the value of λ (for WJSDM and D-trace), λ1 (for FGL, TDJGL andWDNE) or ω1 (for GGL) varying for a fixed value of λ2
(for FGL, TDJGL and WDNE) or ω2 (for GGL). Each curve is obtained by averaging the performance of a method over ten random generations of data.
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performance of WJSDM over WDNE demonstrates the benefit of
inferring differential network directly and integrating multiple
additional knowledge.

3.2 Real Data Analysis
3.2.1 Ovarian Cancer Analysis
Platinum agents, represented by cisplatin, are the most active
cytotoxic drugs in ovarian cancer (Tapia and Diaz-Padilla, 2013).
Women with platinum-resistant ovarian cancer continue to have
poor survival rates, and effective treatment of platinum resistance
still remains the largest unmet need in ovarian cancer (van Zyl
et al., 2018). To explore the underlying mechanisms of platinum
resistance, we utilize WJSDM to infer the changes of gene
regulatory networks between platinum-sensitive and platinum-
resistant ovarian tumors. In particular, we collect three gene
expression datasets from TCGA database (Network, 2011), which
measure gene expression levels from three platforms, i.e., Agilent
244K Custom Gene Expression G450, Affymetrix HT Human
Genome U133 Array Plate Set and Affymetrix Human Exon 1.0
ST Array. The expression levels of 8,417 genes for 512 samples are
available for all these three platforms. Among the 512 samples, 97
samples are platinum-resistant and 243 samples are platinum-
sensitive. Following Zhang et al. (2017), we focus our analysis on
seven critical pathways involved in platinum resistance,
i.e., apoptosis, cell cycle, ErbB signaling pathway, mismatch
repair, nucleotide excision repair, p53 signaling pathway and
platinum drug resistance (Kanehisa and Goto, 2000). There are
315 genes in our datasets that belong to these seven pathways. The
prior gene interaction network is downloaded from the TRRUST
database (Han et al., 2015). There are 361 prior interactions
among the 315 genes.

According to the parameter selection strategy (i.e., StARS)
introduced above, the tuning parameter λ of our WJSDM is set
to λ � 2.5. The estimated differential network between platinum-
resistant and platinum-sensitive tumors, which describes the
changes of gene regulatory relationships associated with
platinum resistance, is shown in Figure 4. Since we are not
able to obtain the true differential network between platinum-
resistant and platinum-sensitive tumors, it is hard to measure
the accuracy of the estimated differential networks. In fact, a
common challenge in evaluating the performance of differential
network estimation on real data sets is the lack of reference data.
Hub genes in the differential network have more differential
edges, which means they may play more important roles in
driving the resistance of platinum. Thus, in this study, following
previous studies (Zhang et al., 2016, 2017; Ou-Yang et al., 2019),
we investigate the functions of the hub genes in our estimated
differential network. In particular, the top 10 genes with the
highest degree in our estimated differential network are
considered as hubs (Table 1). To verify whether our
identified hub genes are related to platinum resistance in
ovarian cancer, similar to (Zhang et al., 2017), we draw
support from six public datasets. In particular, we collect 161
cisplatin resistance-related genes and 758 drug resistance-
related genes from the database of Genomic Elements
Associated with drug Resistance (GEAR) (Wang et al., 2017),
548 experimentally verified ovarian cancer-related genes from

the ovarian cancer gene database (OCGene) (Liu et al., 2015),
116 anti-cancer drug targets from the cancer drug resistance
database (CancerDR) (Kumar et al., 2013), 572 cancer genes
from the Cancer Gene Census database (Futreal et al., 2004) and
3,545 regulator genes from (Grechkin et al., 2016). Among the
identified 10 hub genes, five of them are cisplatin resistance-
related genes, eight of them are drug resistance-related genes, six
of them are ovarian cancer-related genes, five of them are anti-
cancer drug targets, four of them are cancer genes and nine of
them are regulator genes.

Note that the above six public datasets are still far from
complete. Thus, we also draw support from literature search
to explore whether our identified hub genes are related to
cisplatin resistance in ovarian cancer. Among these genes,
BBC3 has been reported to be associated with cisplatin
resistance in ovarian cancer (Zhang et al., 2012; Grozav et al.,
2015), and has been proposed as a chemosensitizer in platinum
compounds-based ovarian cancer therapy (Yuan et al., 2011).
PARP1 have been shown to involved in cisplatin resistance in
ovarian cancer, and could be treated as a potential sensitizer in
cisplatin chemotherapy (Liu et al., 2018). TP73 has been found to
be associated with clinical responsiveness to platinum-based
chemotherapy in advanced non-small cell lung cancer
(NSCLC) (Yuan et al., 2006). Researches have found that
TP73 could be a genetic marker for ovarian response (Bakay
et al., 2021). Thus, it is interesting to study the association
between TP73 and platinum resistance in ovarian cancer.

We can also find from Table 1 that our identified hub genes
include both differentially (in this study, genes whose p-values are
less than 0.05 are treated as differentially expressed genes) and
non-differentially expressed genes. For example, MAPK8,
CCND1, TP53, CDKN1A and BCL2 are related to cisplatin
resistance in ovarian cancers. None of these five genes showed
differential expression between platinum-resistant and platinum-
sensitive tumors. Thus, our model can identify functional
important genes that cannot be found by differential
expression analysis, which demonstrate the superiority of our
model over differential expression analysis.

3.2.2 Prostate Cancer Analysis
Enzalutamide is a second-generation anti-androgen medication
which has been used in the treatment of prostate cancer (Scher
et al., 2012). However, the mechanisms underlying the resistance
of enzalutamide remain vague. We then apply WJSDM to the
scRNA-seq data of circulating tumor cells of prostate cancer, and
investigate the changes of gene regulatory relationships that
associated with enzalutamide-resistant. In particular, we collect
a scRNA-seq data set of prostate circulating tumor cells from
GEO database with accession number: GSE67980 (Miyamoto
et al., 2015). There are 77 samples isolated from 13 patients,
where 41 samples are enzalutamide-naive and 36 samples are
enzalutamide-resistant (Chiu et al., 2018). Among 21,696 genes,
7,508 genes have no sequencing reads in all the 77 samples. We
focus our analysis on three critical pathways download from the
Kyoto Encyclopedia of Genes and Genomes database (Kanehisa
and Goto, 2000), i.e., Notch signaling pathway, Wnt signaling
pathway and PI3K-AKT signaling pathway. By removing genes
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with no sequencing reads, there are 234 genes in the scRNA-seq
data that belong to these three pathways. The prior gene
interaction network is downloaded from the TRRUST
database (Han et al., 2015). There are 178 prior interactions
among the 234 genes.

According to the parameter selection strategy (i.e., StARS)
introduced above, the tuning parameter λ of our WJSDM is
set to λ � 0.7197. The estimated differential network
between enzalutamide-resistant and enzalutamide-naive
samples, which describes the changes of gene regulatory
relationships associated with enzalutamide resistance, is
shown in Figure 5. Hub genes in the differential network
have more differential edges, which means they may play more
important roles in driving the resistance of enzalutamide.
Thus, we investigate the functions of the hub genes in our
estimated differential network. In particular, the top 10 genes

with the highest degree in our estimated differential network
are considered as hubs (as shown in Table 2). We can find
from Table 2 that all of these 10 hub genes are related to
prostate cancer and five of them are associated with
enzalutamide-resistant.

Among these genes, MYC has been reported to be implicated
in the development of enzalutamide resistance and the increase of
MYC expression is correlated with shorter progression free
survival in patients undergoing enzalutamide treatment
(Handle et al., 2019; Furlan et al., 2021). However, this gene
does not show differential expression between enzalutamide-
resistant and enzalutamide-naive samples. Thus, it cannot be
found by differential expression analysis. RAC1, which has been
demonstrated to be upregulated in enzalutamide-resistant
prostate cancer cells, plays a crucial role in enzalutamide
resistance and could be a potential target for the treatment of

FIGURE 4 | The differential network between platinum-resistant and platinum-sensitive tumors identified by WJSDM. Here, yellow nodes denote the top-10 hub
genes in the differential network.

TABLE 1 | Top-10 hub genes in the estimated differential gene network between platinum-resistant and platinum-sensitive tumors.

Rank Gene Degree p-value CR DR OCG ADT CG RG

1 BBC3 9|38|35 0.023|0.016|0.024 √
2 MAPK8 9|21|23 0.306|0.853|0.495 √ √ √ √ √
3 PIK3CD 7|23|21 0.005|0.006|0.001 √
4 PARP1 7|19|20 0.058|0.028|0.003 √ √ √ √
5 CCND1 8|10|21 0.125|0.462|0.071 √ √ √ √ √
6 TP53 4|16|16 0.702|0.681|0.957 √ √ √ √ √
7 CDKN1A 4|10|21 0.519|0.557|0.146 √ √ √ √
8 TP73 9|11|15 0.073|0.854|0.270 √ √
9 BCL2 5|13|16 0.592|0.493|0.167 √ √ √ √ √ √
10 NTRK1 11|16|4 0.011|0.098|0.945 √ √ √ √

If a gene is a cisplatin resistance-related gene (CR), drug resistance-related gene (DR), ovarian cancer gene (OCG), anti-cancer drug target (ADT), cancer gene (CG) or regulator gene (RG),
there is an √ in the corresponding entry. a|b|c§ represents the degree and p-values (computed by Wilcoxon rank-sum test) of genes in the differential networks inferred from three
platforms, respectively.
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castration-resistant prostate cancer (Chen et al., 2020).
Knockdown of TSC1 and TSC2 have been shown to promote
the proliferation of prostate cancer cells Lin et al. (2015). LPAR5
has been reported to be involved with immune response
inhibition and cancer progression Geraldo et al. (2021).
Researches have found that GRB2 is associated with shorter
survival of patients with aggressive prostate cancer (Iwata et al.,
2021). The activation of the IL-6R/JAK/STAT3 pathway has

been found to be involved with the development of
hormonerefractory prostate cancer (Tam et al., 2007). The
combined inhibition of IL6R and HMGB1 has been reported
to be a new treatment for enzalutamide resistance in patients
with advanced prostate cancer (Wang et al., 2018).

The above results demonstrate the effectiveness of our
WJSDM in inferring the difference between the gene networks
of different disease states, and provide important insights about
the underlying regulatory mechanisms of the platinum resistance
in ovarian cancer and the enzalutamide resistance in prostate
cancer.

4 CONCLUSION

Increasing evidences indicate the changes of gene
regulatory relationships between different cell states or
developmental stages, which motivate the development
of computational models to infer differential networks.
In this paper, based on gene expression data and
additional biological knowledge, we propose a novel
differential network estimation method named weighted
joint sparse penalized D-trace model (WJSDM), to infer the
changes of gene regulatory networks between two different
states. By employing D-trace loss function and using a
revised Kendall’s tau correlation, our method can
directly infer the differential network between two
different states from gene expression data with missing

FIGURE 5 | The differential network between enzalutamide-resistant and enzalutamide-naive samples identified byWJSDM. Here, yellow nodes denote the top-10
hub genes in the differential network.

TABLE 2 | Top-10 hub genes in the estimated differential gene network between
enzalutamide-resistant and enzalutamide-naive samples.

Rank Gene Degree p-value PCa ER

1 MYC 35 0.15 ○ ○
2 RAC1 18 5.60e-5 ○ ○
3 CDK4 10 7.84e-4 ○ ○
4 TSC2 9 0.005 ○ ○
5 IL2RB 8 0.005 ○
6 LPAR5 8 0.027 ○
7 GNB2 7 0.010 ○
8 GNG12 7 0.024 ○
9 IL6R 7 0.031 ○ ○
10 TSC1 7 0.010 ○

If the gene is associated with prostate cancer (PCa) or enzalutamide-resistant (ER)
according to literature search (Wu et al., 2006; Tam et al., 2007; Lin et al., 2015;
Wang et al., 2018; Handle et al., 2019; Chen et al., 2020; Kase et al., 2020;
Balijepalli et al., 2021; Dickson et al., 2021; Furlan et al., 2021), a ○ is placed in the
corresponding entry. The p-value of each gene is computed by Wilcoxon rank-
sum test.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 76015510

Liu et al. WJSDM

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


values. Furthermore, to integrate the gene expression data
collected from different data platforms and utilize the
information provided by various prior biological
knowledge, we propose a weighted group bridge penalty
function, which enable our model to draw support from
multiple related data sets. Experiment results on synthetic
data sets show that compared with other state-of-the-art
differential network estimation methods, our method can
infer differential networks more accurately. We also apply
our method to the gene expression data of ovarian tumors
and circulating tumor cells of prostate cancer, and estimate
the differential network associated with platinum
resistance of ovarian cancer and anti-androgen resistance
of prostate cancer. By analyzing our estimated differential
networks, we find some important biological insights about
the mechanisms underlying platinum resistance of ovarian
cancer and anti-androgen resistance of prostate cancer.

With the development of single-cell sequencing techniques, an
increasing number of single-cell multi-omics data are becoming
available. How to efficiently integrate single-cell multi-omics data
is an interesting future work. We will try to extend our model to
handle this problem.
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