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Tumor-associated macrophages (TAMs), derived from circulating monocytes recruited to tumor sites via chemotactic signals such
as C-C motif ligand 2 (CCL2) and colony-stimulating factor-1 (CSF-1), are pivotal components of the tumor microenvironment (TME).
Functionally polarized into distinct subtypes, TAMs play dual roles: proinflammatory M1-type TAMs enhance antitumor immunity
through the secretion of cytokines such as interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-a) and direct tumor cell
cytotoxicity, whereas M2-type TAMs promote tumor progression by facilitating angiogenesis, metastasis, and immunosuppression.
This polarization is dynamically regulated by different cytokines, various signaling pathways, and metabolic cues within the TME.
Spatial distribution analyses revealed that M2-like TAMs predominantly infiltrate hypoxic and stromal regions, where they secrete
factors such as vascular endothelial growth factor (VEGF), transforming growth factor beta (TGF-B), and matrix metalloproteinases
(MMPs) to remodel the extracellular matrix and suppress immune responses via programmed death-ligand 1 (PD-L1) and arginase-1
upregulation. Crucially, TAMs interact extensively with immune cells; M2-TAMs secrete interleukin-10 (IL-10) and TGF- to inhibit
cytotoxic T lymphocytes while expanding regulatory T (Treg) cells and impairing natural killer (NK) cell function via altered antigen
presentation. Conversely, M1-TAMs synergize with dendritic cells to enhance T-cell priming. Therapeutically, targeting TAMs offers
promising strategies, including colony-stimulating factor-1 receptor (CSF-1R) inhibitors, CCL2 antagonists, and nanoparticle-
mediated repolarization of M2-TAMs toward the M1 phenotype. Emerging genetic approaches, such as clustered regularly
interspaced short palindromic repeat-CRISPR-associated protein 9 (CRISPR-Cas9) editing, aim to disrupt protumorigenic pathways in
TAMs. Additionally, TAM-related biomarkers (e.g., CD206 and CD163) are being evaluated for their prognostic and predictive utility
in immunotherapies. Despite progress, challenges persist owing to TAM plasticity and TME heterogeneity across cancers. This
review synthesizes TAM biology, immune crosstalk, and therapeutic advancements, providing a foundation for novel oncology

strategies aimed at reprogramming TAMs to overcome treatment resistance and improve clinical outcomes.
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INTRODUCTION

The tumor microenvironment (TME) is a complex ecosystem in
which dynamic interactions between malignant cells, stromal
components, and immune populations affect disease progression
and therapeutic efficacy. Among these components, tumor-
associated macrophages (TAMs) have emerged as key regulators
of tumor biology and, depending on their phenotypic polarization
and spatial distribution, act as a double-edged sword, both
inhibiting and promoting malignancy. TAMs are a subpopulation
of macrophages present in the tumor microenvironment. They
originate from monocytes in the peripheral blood and move
through the circulatory system to the tumor tissue, where they
play important biological roles." The presence and development
of TAMs in tumors are closely related to the interaction of the
immune system with the tumor. The number and activity of TAMs
in the tumor microenvironment are regulated by a variety of
factors, including cytokines, chemical signals, and other immune
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cell interactions®® At the same time, their functional plasticity
allows them to regulate the immune response, angiogenesis, and
metastasis, making them important in cancer biology and
therapeutic resistance.””

Recent studies have shown that TAMs contribute to immuno-
suppression by limiting the function of CD8+T cells through
collagen deposition and metabolic reprogramming. For example,
in breast cancer, TAMs synthesize collagen in response to
transforming growth factor beta (TGF-f) signaling, consume
arginine and produce metabolites such as ornithine that impair
cytotoxic T-cell activity.®> This mechano-metabolic interaction
highlights how fibrosis and TAM-driven extracellular matrix
(ECM) remodeling create an unfavorable microenvironment for
antitumor immunity.* In particular, metabolic reprogramming is a
characteristic of TAMs. M1-like macrophages depend on glycolysis,
whereas M2-like TAMs preferentially utilize oxidative phosphor-
ylation (OXPHOS) and fatty acid oxidation (FAO).S Lipid
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metabolism, including the processing of cholesterol and phos-
pholipids, further determines TAM polarization and protein
functions, such as the secretion of immunosuppressive cytokines.”
Interestingly, the glucose consumption of TAMs generally exceeds
that of cancer cells, and glycolysis supports their proangiogenic
and stroma remodeling activities.® TAMs can also promote
epithelial-mesenchymal transformation (EMT) in cancer cells and
enhance their invasion and metastasis. In pancreatic ductal
adenocarcinoma (PDAC), TGF-3 secreted by TAMs activates the
Smad2/3/4-Snail axis, driving EMT and liver metastasis.* Similarly,
TAMs from cancer stem cells (CSCs) contribute to tumor
heterogeneity and treatment resistance, suggesting that there is
bidirectional crosstalk between CSCs and TAMs in TME
maintenance®

Our theoretical motivation to study TAMs stems greatly from
their central role in bridging innate and adaptive immunity. TAMs
interact with virtually all immune cell types, including T cells,
natural killer (NK) cells, and dendritic cells (DCs), to regulate
effector responses through cytokine secretion, checkpoint ligand
expression, and metabolic competition. For example, M2-polarized
TAMs secrete interleukin (IL)-10 and TGF-3, which inhibit cytotoxic
T-cell activity while recruiting regulatory T (Treg) cells via C-C motif
ligand 22 (CCL22), thereby establishing an immunosuppressive
mechanism. In contrast, proinflammatory M1-like TAMs enhance
antigen presentation and secrete tumor necrosis factor (TNF)-a or
IL-12 to stimulate antitumor immunity. This plasticity, driven by
signals such as interferon (IFN)-y or IL-4, highlights the need to
investigate the molecular pathways that govern TAM polarization.
Indeed, TAMs are associated with resistance to chemotherapy,
radiotherapy, and immunotherapy, making the modulation of
TAMs a key strategy for improving clinical outcomes. For example,
colony-stimulating factor-1 receptor (CSF-1R) inhibitors and CD47-
blocking antibodies targeting TAM recruitment or phagocytosis
have entered clinical trials, reflecting their translational potential.

Although there has been continuous progress in the course of
TAM research, there are still several major controversies that
compel us to organize, reflect and summarize systematically. The
traditional M1/M2 dichotomy, although useful, oversimplifies the
heterogeneity of the TAM. Single-cell RNA (scRNA-seq) sequencing
has revealed distinct TAM subpopulations, such as C1Q+
macrophages in hepatocellular carcinomas and FN1+ TAMs in
gliomas, which define traditional classification and exhibit unique
functional characteristics. Furthermore, there is conflicting evi-
dence regarding the prognostic value of TAMs: high infiltration of
TAMs is usually associated with poor survival in patients
with breast and lung cancers, but in some cases, such as those
with colorectal cancer, there is a paradoxical relationship with
improved prognosis. These differences may stem from spatial
heterogeneity, as TAMs at the tumor margins exhibit a different
phenotype than do TAMs in the tumor core, or from differences in
marker selection methods. In addition, the optimal treatment
strategy continues to be debated; should we eliminate TAMs
completely or reprogram their polarization? Or can specific
signaling axes be disrupted without exacerbating systemic
immunosuppression? These questions are waiting to be discussed
and resolved.

In this review, we first trace the historical milestones of TAM
research, from early observations linking inflammation to cancer
to modern discoveries of TAM plasticity. We then delineated the
TAM subtypes, their distributions in the TME, and the clinical
implications of their heterogeneity. We also dissected the
signaling pathways and multilayered regulatory mechanisms that
govern TAM function and explored TAM interactions with other
immune cells. On the basis of these findings, we discuss the
therapeutic potential of antibody-drug conjugates (ADCs) that
target TAMs and critically evaluate strategies to modulate TAMs,
ranging from pharmacological interventions to gene editing. The
present review organizes TAM biology within a historical and
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cutting-edge framework, aiming to foster innovative research and
translate mechanistic insights into transformative therapies,
ultimately bridging the gap between clinical discovery and clinical
practice.

TAM RESEARCH HISTORY AND MILESTONES

Origin and early discovery of TAM research

Since the 19th century, scientists have improved their under-
standing of the relationship between inflammation and cancer. In
1863, Rudolf Virchow first described the connection between
inflammation and tumors, and the roles of these two cell types
were previously described, suggesting that inflammation may be
causally related to cancer’ In the late 19th century, Elie
Metchnikoff began studying phagocytic cells in the lymphatic
and reticuloendothelial systems, which later became known as
macrophages,'® and won the Nobel Prize in 1908. In 1923, the
concept of the reticuloendothelial system was introduced,
distinguishing macrophages from other small phagocytic cells,
such as neutrophils.'’ By the 1970s, scientists had discovered the
clonal stimulating factors that induce macrophage differentiation,
with colony stimulating factor-1 (CSF-1) being the first such factor
discovered.'? In 1972, research revealed the prevailing theory that
the immune system may promote cancer growth.'* The develop-
ment of monoclonal antibody technology in the 1980s made it
possible to identify and isolate macrophages. The use of
genetically engineered mouse models in the 1990s further
advanced cancer research. Therefore, the inhibitory effect of the
TME on malignant tumors was explored after the 1990s. In the
21st century, studies have shown that the depletion of macro-
phages can inhibit tumor growth and metastasis while promoting
angiogenesis. In 2012-2013, scientists discovered that resident
macrophages in tissues originate from the yolk sac.'® In 2018,
research confirmed that tumor-associated macrophages (TAMs)
can be reprogrammed into an antitumor state. In 2019, a CSF1R
inhibitor was approved for the treatment of certain types of
tumors. Recent research has revealed an association between
TAMs and poor prognosis, providing a new perspective for cancer
treatment'” (Fig. 1).

Key findings of TAM research

Tumor-associated macrophages play a pivotal role in the tumor
microenvironment, as extensively studied, highlighting their
contribution to tumor progression and metastasis. These cells
exert immunosuppressive effects through various mechanisms
and are associated with the invasion and metastasis of cancer
cells. The phenotypic diversity of TAMs has been observed across
different tumor types, with multiple TAM subtypes identified,
some of which are linked to poor prognosis. The subtypes of TAMs
associated with poor prognosis mainly include M2 TAMs. M2 TAMs
promote the antiapoptotic ability of tumor cells by secreting IL-6,
IL-10 and other cytokines and increase the resistance of tumor
cells to chemotherapy drugs. For example, M2 TAMs in breast
cancer tissue promote resistance to doxorubicin in tumor cells
through the paracrine circuit of IL-6.'® Additionally, M2 TAMs can
inhibit the activation and proliferation of cytotoxic T lymphocytes
(CTLs), weaken their antitumor immunity, and reduce the
antitumor effect of cytotoxic drugs.'’Transcriptome-wide profiling
of TAMs has revealed their complex roles in the tumor
microenvironment, including immunosuppression and promotion
of angiogenesis.'®'® Single-cell RNA sequencing studies have
provided insights into the heterogeneity of TAMs, revealing
distinct phenotypes and functions within tumors. The investiga-
tion of TAMs has propelled the consideration of macrophages as
targets for cancer therapy, particularly in clinical trials targeting
CD47.%° The origin and dynamics of TAMs have been elucidated
through fate mapping techniques, shedding light on their
differentiation process within the tumor microenvironment. TAMs
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Fig. 1 Historical advances and therapeutic insights into macrophages and tumor biology. Key milestones in macrophage and tumor biology
research. Starting in 1863, Virchow linked inflammation to tumors. Metchnikoff’'s macrophage studies earned a Nobel Prize (19th century),
followed by the reticuloendothelial system concept (1923). In the 1970s-90s, breakthroughs in CSF1 discovery, monoclonal antibodies, and
genetically engineered mice for tumor microenvironment (TME) research were reported. Later, macrophage depletion inhibited tumors (21st
century), and TAMs were reprogrammed to antitumor states (2018). CSF1R inhibitors gained approval (2019), identifying TAMs as key

therapeutic targets. (created with BioRender)

have demonstrated immunosuppressive and proangiogenic prop-
erties in both in vitro and in vivo experiments, which are closely
related to tumor growth and metastasis. The clinical importance of
TAMs is underscored by their correlation with poor prognosis in
various human cancers, indicating their potential significance in
cancer therapy.

TYPES AND DISTRIBUTION OF TAMS

Comparison of M1-type macrophages and M2-type macrophages
Definitions of M1 and M2. Macrophages are white blood cells
located in tissues and are derived from monocytes, which in turn are
derived from precursor cells in the bone marrow. Macrophages are
involved in both nonspecific and specific immunity and are immune
cells with a variety of functions. M1 and M2 cells are two distinct
subpopulations of macrophages and are classified according to their
activation status and function. M1 macrophages are classically
differentiated and activated by interferon-y*' and LPS (cytoplasmic
polysaccharides), whereas M2 macrophages are selectively differen-
tiated and activated by Th2 (helper cell 2) cytokines and inflammatory
factors such as IL-4 and IL-13.2 In terms of function, M1 macrophages
secrete mainly proinflammatory factors and phagocytose pathogens
and apoptotic cells, whereas M2 macrophages secrete mainly
inhibitory inflammatory factors that suppress inflammatory responses
and act on tissue repair and remodeling.

Differential significance of M1- and M2-type macrophages
in TAMs. M1 and M2 macrophages are two subtypes of macro-
phages that differ in their significance and roles in tumorigenesis and
progression (Fig. 2). M1-type macrophages mainly perform antitumor
functions, whereas M2-type macrophages mainly promote tumor cell
genesis and metastasis, inhibit the immune effects of other immune
cells (e.g., T cells and B cells), promote tumor angiogenesis, and assist
in tissue reconstruction as well as in the repair of injuries, thereby
promoting tumorigenesis and metastasis.>*

M1-like macrophages inhibit tumor cell survival and metas-
tasis in three main ways: first, antibody-dependent cell-
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mediated cytotoxicity (ADCC) action; second, antibody-
dependent cellular phagocytosis (ADCP) action; and third,
indirectly modulating immunity through proinflammatory fac-
tors; for example, M1-like macrophages can release proinflam-
matory factors such as IL-1B3, IL-6, IL-12, IL-23, C-X-C motif
chemokine ligand 9 (CXCL9), CXCL10, TNF-a and major
histocompatibility complex (MHC) molecules. Through a con-
structed mouse model, Elsas et al. demonstrated that late
activated M1-type macrophages are critical for effective tumor
control. The expression of M1-type macrophage surface proteins
(e.g., CD68 and CD80) and the intracellular protein SOCS3 are
also upregulated when M1-type macrophages perform anti-
tumor functions. Therefore, the main role of M1-type macro-
phages is to kill tumor cells and inhibit their growth and
metastasis.>> In contrast, M2-type macrophages promote tumor
cell proliferation and metastasis by secreting a variety of
proliferation-inducing and immunosuppressive cytokines and
chemokines, such as epidermal growth factor (EGF), platelet-
derived growth factor (PDGF), TGF-f1, and basic fibroblast
growth factor (bFGF).>* Moreover, M2-type macrophages also
inhibit CD8+ T cells and promote the growth and proliferation of
tumor cells, as well as tumor metastasis, by secreting matrix
metalloproteinases (MMPs), serine proteases and histones to
destroy the stromal membranes of tumor endothelial cells, as
well as by secreting proangiogenic factors and enzymes
involved in the regulation of angiogenesis, thus ensuring that
tumor tissues have sufficient oxygen and nutrients to promote
tumor growth.®

In recent years, M2 macrophages have been classified into four
subtypes, M2a, M2b, M2c, and M2d, according to the differences
in cytokines and signaling pathways involved in macrophage
activation,”’3° and these four subtypes differ in tumor micro-
environments and have their own unique functions, which will be
described next. Next, we describe the differences and functions of
each of these four macrophage subtypes.

In M2a macrophages, IL-4 and IL-13 are the main cytokines that
can polarize macrophages to the M2a phenotype;®' M2b

SPRINGER NATURE
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Fig.2 Macrophage polarization states and functional diversity in the tumor microenvironment. This figure illustrates the distinct polarization
states of macrophages and their roles in the tumor microenvironment. M1 macrophages, which are activated by TLR ligands, secrete
proinflammatory cytokines such as IL-6 and TNF-a, which exhibit antitumor activities and rely on OXPHOS for energy. In contrast, M2
macrophages, which are polarized by IL-4 and IL-13, promote tissue remodeling, tumor cell growth, and anti-inflammatory responses.
Regulatory macrophages, which are induced by immune complexes, produce IL-10 and IL-12 to suppress immune responses and support
tumor progression. Glucocorticoid-induced macrophages secrete anti-inflammatory cytokines such as IL-10 and promote angiogenesis, which
relies on anaerobic glycolysis. Tumor-associated macrophages (TAMs) facilitate tumor growth by releasing factors such as VEGF and MMP2 to
promote angiogenesis and immune evasion. These diverse phenotypes highlight the dynamic and dual roles of macrophages in cancer
progression and their potential as therapeutic targets. (created with BioRender)

macrophages are activated primarily by the expression of high
levels of anti-inflammatory cytokines in response to combined
exposure to IgG immune complexes and Toll-like receptor (TLR)
agonists;>>**> and M2c macrophages are activated by either
glucocorticoid or IL-10-dependent  macrophage colony-
stimulating factor (M-CSF) signaling, which induces an M2
macrophage subtype.?® Unlike the first three subtypes, M2d
macrophages are derived from polarized M1 macrophages® and
are induced by IL-6, TLR, and A2 adenosine receptors.?’** In
addition, M2b, M2¢, and M2d macrophages produce more ATP
through anaerobic glycolysis than do M2a macrophages, which are
more dependent on the tricarboxylic acid (TCA) cycle and OXPHOS
for energy supply.

Each of the four isoforms also has a unique function in the
tumor microenvironment. CD206, CD209, Dectin-1, and CCL22 are
known to be surface markers of M2a macrophages and are highly
expressed on their surface.’®*> The main roles of M2a macro-
phages are mainly in tissue reconstruction and remodeling and in
the inflammatory response,®*? and their functions can be
summarized in the following six aspects: 1. M2a macrophages
are able to promote tissue reconstruction and remodeling through
the release of a variety of cytokines and chemokines by M2a
macrophages, and the released factors include IL-10, TGF-§,
CCL17, CCL18, etc.?® In addition, some chitinase-like substances
play major roles in the mechanism of reorganization;*' 2. M2a
macrophages can promote the growth of tumor cells. M2a
macrophages produce a variety of growth factors and cytokines,
such as vascular endothelial growth factor (VEGF) and PDGF,
which promote angiogenesis and, in turn, promote the growth of
tumors.?® 3. M2a macrophages produce a variety of proteases,
such as MMPs and histone proteases, which degrade the ECM and
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thus promote tumor cell invasion and migration;?® 4. M2a
macrophages play a role in anti-inflammatory and antitumor
immunity. This role is dependent on the inhibition of T-cell and NK
cell activation and proliferation by anti-inflammatory factors and
chemokines produced by M2a macrophages;”® 5. M2a macro-
phages release IL-4, which further promotes the polarization of
more M2 macrophages toward M2a, which in turn produces more
IL-4, creating a positive feedback pathway;*' 6. In response to
lgG4, M2a macrophages can also repolarize to M2b
macrophages.””

The function of M2b macrophages is reflected mainly in their
inhibitory effect on immune responses,”® and they are referred
to as regulatory macrophages with immunomodulatory activ-
ity.>®* M2b macrophages play an immunomodulatory role
through the release of many anti-inflammatory and proinflam-
matory cytokines, such as IL-6, IL-10, and IL-12,>” and they are
able to activate Th2 cells,?”*> promoting naive T-cell differentia-
tion into Treg cells. In addition, a marker of M2b cells is the high
expression of CCL1, which is important for the maintenance of
the M2b cell subtype.?83'38 CCL1 is a chemokine that recruits
NK cells, DCs, and other cells by interacting with chemokine
receptor 8 (CCR8) on the cell surface?® and attracts CCRS-
expressing Th2 and Treg cells,®® which promotes an immuno-
suppressive microenvironment that promotes tumor cell pro-
liferation, migration, and metastasis.>**° M2b macrophages
have an autocrine proliferative capacity, which allows the cells
to survive without the need for exogenous growth factors; this
capacity is mediated by CCL1 signaling. This ability also allows
M2b macrophages to survive longer in the tumor microenviron-
ment and thus be able to sustain the suppression of antitumor
immune responses.?®38
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M2c macrophages are a subtype of anti-inflammatory M2
macrophages induced by glucocorticoid- or IL-10-dependent
M-CSF signaling,?®*° with CD206, CD163, and Mer tyrosine kinase
(MerTK) as the main markers and highly expressed on the surface
of M2c macrophages.>>*' M2c macrophages are capable of
releasing large amounts of IL-10 and TGF-f, resulting in their
anti-inflammatory activity. In addition, M2c macrophages are able
to produce a sustained anti-inflammatory response, which is due
to the ability of M2c macrophages to produce GAS6, which is a
ligand for MerTK, and when the two combine, they amplify the
production of IL-10, and the large amount of IL-10 production
causes M2c macrophages to exhibit anti-inflammatory activity; in
addition to its anti-inflammatory activity, the release of IL-10 and
the overexpression of MerTK promote its phagocytosis, removal of
apoptotic cells and cell debris, etc.’®*? The removal of apoptotic
cells not only promotes the release of anti-inflammatory factors,
e.g., IL-10, from macrophages but can also trigger an anti-
inflammatory response, which enhances the anti-inflammatory
response; M2c macrophages also play a proangiogenic role, which
is realized by M2c macrophages through the upregulation of
genes, such as SPPX2 and VCAN;?**** and M2c macrophage-
released IL-10 released by M2c macrophages exerts a series of
matrix remodeling, phagocytosis, and other effects by participat-
ing in signal transducer and activator of transcription 3 (STAT3)-
mediated signaling, mitogen-activated protein kinase (MAPK), and
other pathways.'**** In terms of tumorigenicity, M2c macro-
phages play similar roles as M2a macrophages do, e.g., both exert
anti-inflammatory effects, promote angiogenesis and thus tumor
metastasis and invasion, promote stromal remodeling, etc.?’!

Unlike other subtypes, M2d-type macrophages are derived from
polarized M1 macrophages, and a key factor in the polarization of
M2d macrophages is an increase in extracellular adenosine levels,
in addition to M2d macrophages being induced by IL-6 and
TLRs.?”?° Both apoptotic and necrotic cells can secrete adenosine,
resulting in increased extracellular adenosine levels, which induce
the polarization of M2d macrophages.?® On the surface of M2d
macrophages, phenotypes such as CD14, CD163, and CD86 are
highly expressed, and CCL17 and CCL22 are expressed at lower
levels.>"*> The protumorigenic effects of M2d macrophages are
manifested in two main aspects: anti-inflammatory effects and
proangiogenic effects. The anti-inflammatory effect is realized
mainly through the IL-10 signaling pathway, which is activated to
promote mucosal and epithelial cell healing and inflammation. In
addition, IL-10 can inhibit the excessive proinflammatory response
through the MAPK pathway; IL-10 also inhibits the synthesis of
proinflammatory mediators, such as IL-1, IL-6, and IL-8.273%4¢ |n
terms of proangiogenic effects, M2d macrophages secrete growth
factors (e.g., VEGF and PDGF) and matrix metalloproteinases (e.g.,
MMP2 and MMP9), which promote angiogenesis and extracellular
matrix elaboration and promote tumor metastasis and
growth.®314> There is also potential communication between
M2d macrophages and M1 macrophages through the VEGF and
CCL3-CCR1 signaling pathways, and the polarization of M1
macrophages to M2d macrophages is facilitated through this
pathway.?’4¢

In summary, the four subtypes of M2 macrophages, although
differing in polarization mode and surface markers, promote
tumor growth and metastasis mainly by exerting similar effects,
such as anti-inflammatory and angiogenesis-promoting effects.

Chen et al. investigated the effect of M2 macrophages on
cancer cell metastasis. They cocultured M1 and M2 macrophages
with gastric cancer cells, breast cancer cells and melanoma cells
and reported that the number of migrated cancer cells cocultured
with M2 macrophages increased significantly and that coculture of
M1 macrophages with cancer cells did not affect the number of
migrated cancer cells, suggesting that M2 macrophages play an
important role in the migration of gastric cancer and breast cancer
cells. Migration of gastric cancer and breast cancer. In addition,
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this research team experimentally reported that the CHI3L1
protein secreted by M2 macrophages may play an important role
in promoting cancer cell metastasis.*’

Macrophages can differentiate into two types, M1 and M2, due
to the influence of different cytokines and metabolites in the TME.
This classification was initially proposed on the basis of the
stimulatory response of macrophages to type 1 or type 2
cytokines in in vitro experiments,*®** but with the continuous
development of technology and the deepening understanding of
macrophages, we have shown that macrophages have a high
degree of plasticity and heterogeneity and that they can
reregulate their phenotype in response to different bits of
environmental stimuli. Therefore, it is overly simplistic to
categorize them as M1 and M2 only.>%""

Single-cell sequencing is a technology that sequences and
analyzes genomes, transcriptomes and epigenomes at the single-
cell level. Single-cell sequencing technology has been widely
utilized because it is a good solution to the problem of loss of
information on cellular heterogeneity caused by the traditional
technique of sequencing on a multicellular basis. In recent years,
many researchers have discovered new tumor-associated macro-
phage subtypes via single-cell sequencing technology, and these
subtypes play important roles in tumor growth and proliferation,
which affects the prognosis of patients. Q. Zhang, Y. He et al.
collected six macrophage clusters in hepatocellular carcinoma and
reported that among them, THBS1+ macrophages (myeloid-
derived suppressor cell (MDSC)-like macrophages) and C1QA+
macrophages (TAM-like macrophages) were enriched in tumor
tissues; these features are similar to those of TAMs but more
complex than those of the classical M1/M2 model is, thus
identifying these two types of macrophages as new subtypes.>?
Zhang et al. also used single-cell sequencing to identify a new
macrophage subtype, FABP4+C1g+, in which two genes, fatty acid
binding protein 4 (FABP4) and the complement C1gA chain, are
highly expressed and serve as marker genes. In addition, the team
reported that FABP4+Cl1g+ macrophages focus on positive
regulation of cytokine production, the inflammatory response,
chemokine production, neutrophil activation, leukocyte chemo-
taxis and migration and have increased proinflammatory cytokine
secretion, phagocytosis, and antiapoptotic functions. These
effects may constitute one of the main mechanisms by which
FABP4+C1g+ macrophages exert antitumor effects. The antitumor
capacity of FABP4+C1g+ macrophages was also verified by a team
that used tumor tissues from non-small cell lung cancer (NSCLC)
patients and reported that there was a better prognosis with
FABP4+C1g+ macrophage enrichment.>® In glioma cells, Xu et al.
identified a macrophage subtype with high FN1 gene expression,
defined it as FN1+ TAMs, and reported that FN1+ TAMs play a key
role in glioma recurrence.*® In addition, in melanoma, Wu et al.
identified and obtained a subpopulation of MerTK+ macrophages
and reported that this subpopulation has potent immunosup-
pressive activity that promotes tumor growth.>*

Using single-cell sequencing technology, multiple novel macro-
phage subpopulations can be identified, and they influence tumor
progression through different signaling pathways; for example,
aryl hydrocarbon receptor (AHR)-ALKAL1 signaling is a key
regulator of the MerTK+ macrophage subpopulation,®® and in-
depth studies of these novel macrophages may be able to identify
new targets for tumor therapy.

The difference in the surface markers of TAMs is also one of the
reasons why M1 and M2 macrophages play different roles in
tumor tissues. Notably, although there are some common TAM
surface markers, such as CD11b, CD11¢, and CD64, in humans and
mice, there are still differences. In humans, the TAM marker is the
universal marker CD68, whereas in mice, it is the specific universal
marker F4/80.>> Qiao T et al. reported that F4/80 TAMs are close to
neovascularization and tumor vessels and are prone to angiogen-
esis in vivo. It also strongly promoted the activation of vascular
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endothelial growth factor A (VEGFA), Ki67 and other key
angiogenesis markers in endothelial cells in vitro.>® H.H. Lin
et al. reported that the F4/80 molecule plays a crucial role in the
development of Ag-specific regulatory T cells that can inhibit Ag-
specific immunity, providing direct evidence for its role in the
induction of Ag-specific tolerance.’” By searching the relevant
data, we summarized and drawn a table of the main types of
surface markers of M1 and M2 macrophages, the different roles of
different surface markers and the related pathways (Table 1) so
that we can further explore the mechanisms underlying the
different meanings.

Distribution of TAMs in the tumor immune microenvironment
TAMs are the most abundant cell population in the tumor immune
microenvironment, and TAM infiltration is closely associated with
tumor stage and metastasis. Zheng et al. studied 104 lung cancer
patients and reported that the density of M1-type TAMs was greater
than that of M2-type TAMs and that the density of M2 invasive
margin (IM)}-TAMs was significantly greater® There was no
significant difference in the density of M1 TAMs between the tumor
center (TC) and IM regions. TAMs infiltrated more of the stroma than
the parenchyma in both the M1 and M2 types. Patients with high-
density M1 TAMs had greater overall survival (OS) benefits, whereas
M2 TAM density was not significantly associated with overall
survival. The probability of metastasis significantly increased with
increasing proximity of the tumor to M2 TC-TAMs or M2 IM-TAMs,
and tumor size was correlated with the proximity of M2 IM-TAMs,
with larger tumors being closer to each other.

Every adult tissue contains a rich population of resident macro-
phages; for example, in the breast, there are at least two resident
macrophage populations: stromal and ductal macrophages (SM and
DM, respectively). Laviron et al.>® identified several TAM subpopula-
tions in breast tumors that exhibit different ecological niches from
those of macrophage subpopulations prior to tumor development
and reported that the TAM composition shifts between proliferative
and malignant neoplastic lesions; for example, the expression of
CD11b is significantly elevated in malignant neoplastic lesion-
associated enhanced green fluorescent protein (EGFP) cells compared
with that in proliferative lesions, which is consistent with the CD11b
phenotype of macrophages in the pretumor tissue epithelium. The
classification of M1, M2-type macrophages has already been widely
used for the classification of TAMs; however, a growing body of
research and evidence now suggests that this classification is
oversimplified and that macrophages exhibit different transcriptomes
in response to different external stimuli, and TAM heterogeneity has
been described in different tumor models. Huang et al. investigated
the relationship between the tumor environment and the hetero-
geneity of TAMs via multiplex immunohistochemistry in 56 gastric
cancer (GQ) cases.®® There was an increase in M2-type TAMs at the
edge of the tumor and an increase in M1-type TAMs in the core. The
study classified TAMs into seven populations and revealed that
CD68+, CD68+CD206++ and CD68+CD163+CD206+ cells were
enriched in all regions of interest. CD68+CD163+CD206+ cells
accumulated the most at the margins, decreasing toward the core,
whereas the opposite was true for CD68+IRF8+ cells. CD68+CD163+
and CD68+CD206+ cells were more densely packed in tumors than in
normal tissue. These findings suggest that TAMs polarize according to
their location. In addition, the macrophage count was correlated with
patient recurrence-free survival (RFS) and OS. These findings indicate
that the distribution of TAMs is different in different tumor immune
microenvironments and that the different distributions of TAMs affect
tumorigenesis and progression, which in turn affects the prognosis of
patients. We may be able to treat tumors by regulating the spatial
distribution and number of TAMs in the TME.

Heterogeneity of TAMs exerting antitumor and protumor effects

Macrophages are highly heterogeneous, functionally plastic
immune cells, and their complexity and heterogeneity increase
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accordingly with tumor progression.®’®> Depending on the
microenvironment in which they reside, they can play either an
immune-supportive or a tumor-supportive role.®*%* This antitumor
and protumor heterogeneity of TAMs is reflected mainly in the
fact that macrophages can be polarized into two phenotypes
depending on the environment in which they live: M1-type
macrophages and M2-type macrophages. These two subtypes
represent the two extremes of the macrophage functional
spectrum,®® and the differences in the role and distribution of
these two cell types were mentioned earlier. Since macrophages
can change their M1 and M2 status according to different stimuli
in the different environments in which they find themselves,®
studies have been conducted to convert macrophages from the
protumorigenic M2 type to the antitumorigenic M1 type via
pharmacological or other methods, thereby improving the
immunotherapeutic effect on tumors.®”

TAM SIGNALING PATHWAYS AND MULTILAYERED
REGULATORY MECHANISMS

TAMs have dual influences as both promoters of tumorigenesis
and designers of immunosuppressive tumor microenvironments,
which allows them to fight against tumor cells and, at the same
time, may promote tumor growth and spread (Fig. 3). This dual
role depends mainly on the two subtypes of TAMs: type M1 and
type M2. Type M1 TAMs are usually associated with an antitumor
immune response, with the ability to promote inflammation and
kill tumor cells. In contrast, M2-type TAMs are usually associated
with the suppression of immune responses, the promotion of
tumor growth, and the support of angiogenesis.

TAM signaling pathways

Tumor-associated macrophages are important immune cells in the
tumor microenvironment, and they play a key role in tumorigen-
esis, progression, and metastasis. TAMs interact with tumor cells
through a variety of signaling pathways to promote tumor
progression. The following are some of the key signaling pathways
associated with the function of TAMs.

Proinflammatory signaling pathway. The macrophage phenotype
is plastic and can change in response to cytokines, cell—cell
interactions and tissue-specific signals. Immunosuppressive mole-
cules and inhibitory pathways, including mechanistic targets of
the NF-kB and rapamycin (mTOR) signaling pathways, are involved
in macrophage differentiation. TAMs respond to sufficient
upstream activation signals to produce abundant reactive oxygen
species (ROS), which subsequently mediate immunosuppressive
activity via the NF-kB pathway. It is hypothesized that the NF-«kB
pathway manipulates signal activation in cancer cells and tumor-
infiltrating leukocytes to promote inflammatory responses in the
TME. For example, Clec4e molecules can activate the NF-kB
signaling pathway via Syk kinase, which in turn promotes the
protumorigenic effects of TAMs.%® Therefore, blocking TNF-a with
anti-TNF-a antibodies may be therapeutically useful.® IFN-y is an
anti-inflammatory factor that inhibits the production of TAMs,
thereby reversing the immunosuppressive and tumorigenic
properties of TAMs,”® whereas the NF-kB signaling pathway is
involved in the regulation of macrophage activation, which
mediates cytotoxicity against tumor cells.”’

Another pathway that promotes inflammation and tumor cell
proliferation is the STAT pathway. TAMs have multiple effects on
the STAT signaling pathway, and they can activate or inhibit the
STAT signaling pathway by secreting cytokines and growth
factors, thereby affecting tumor growth and progression. TAMs
can secrete a variety of cytokines, such as IL-6 and IL-10, which
can activate Janus kinase (JAK), which phosphorylates STAT3,
causing it to form a dimer and translocate to the nucleus,
initiating the transcription of downstream genes. The activation
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Fig. 3 Distribution and density of tumor-associated macrophages in the tumor microenvironment. The spatial distribution of TAMs in tumor
tissues, with a focus on the contrasting densities of M1 and M2 TAMs in various tumor regions. The figure shows that M1 TAMs are generally
found at higher densities in central tumor regions, promoting antitumor immunity, whereas M2 TAMs are more prevalent in the periphery,

assisting in tumor growth and metastasis. (created with Figdraw)

of STAT3 promotes the expression of a variety of genes, including
VEGF, MMPs, and cyclin D1, which are associated with tumor
angiogenesis, invasion, and progression. tumor angiogenesis,
invasion and proliferation. Studies have shown that STAT3 can
also promote the expression of programmed death-ligand 1 (PD-
L1), which inhibits the antitumor activity of T cells. One study
revealed that in ovarian cancer, STAT3-activated TAMs can
express PD-L1 and bind to programmed cell death protein 1
(PD-1) receptors on T cells, leading to T-cell inactivation.”? The
activation of STAT5 can promote the expression of various genes,
including Bcl-xL and Mcl-1, which are related to cell survival and
proliferation.

Proangiogenic signaling pathway. Angiogenesis is an important
process in tumor biology and plays a key role in promoting tumor
nutrition and oxygen supply; metabolism and growth; invasion
and metastasis; and remodeling of the tumor microenvironment.
Among them, the VEGF pathway and hypoxia-inducible factor 1a
(HIF-1a) pathway are strongly influenced by TAMs, which can
secrete VEGF, activate the VEGF pathway, and promote tumor
angiogenesis. Moreover, HIF-1a is upregulated in TAMs, which can
increase VEGF expression and further promote angiogenesis.
Therefore, inhibiting the angiogenic process has become an
important strategy in tumor therapy, by which angiogenesis can
be inhibited to slow or stop tumor growth and metastasis. For
example, antiangiogenic drugs such as Avastin and Sorafenib have
been used to treat certain types of cancer.

Extracellular matrix remodeling signaling pathway. MMPs are a
group of protein hydrolases capable of degrading the ECM; they
play a key role in tumor invasion, metastasis, and angiogenesis,
and the action of TAMs on the MMP pathway involves a variety of
mechanisms. TAMs can activate the production and secretion of
MMPs by secreting a variety of cytokines, such as TNF-q, IL-1(3, and
TGF-B, to activate the production and secretion of MMPs. One
study revealed that TAMs can induce the production of MMP-2
and MMP-9 via IL-1B.”®> Moreover, certain proteases secreted by
TAMs, such as histone B (Cathepsin B), can activate inactive pre-
MMPs (e.g., pre-MMP-2 and pre-MMP-9) to become active forms.

SPRINGERNATURE

Active MMPs can degrade the ECM, providing a pathway for tumor
cell invasion and metastasis. TAM-mediated activation of the MMP
pathway also promotes the invasion and metastasis of breast
cancer tumor cells.

Immunosuppressive signaling pathways. First, TAMs can express
PD-L1, one of the ligands for PD-1. PD-L1 binds to the PD-1
receptor on T cells and inhibits T-cell activation and function. One
study revealed that in ovarian cancer, TAMs express PD-L1 and
bind to the PD-1 receptor on T cells, leading to T-cell
inactivation.”* TAMs also express the PD-1 receptor. The activation
of PD-1 can inhibit the phagocytosis and clearance of TAMs, which
can affect the immunosurveillance role of TAMs. A previous study
revealed that the inhibition of PD-1 enhances the phagocytosis of
TAMs, thereby prolonging survival time in a mouse model of colon
cancer.”” In addition, TAMs can interact with T cells and inhibit the
antitumor immune response of T cells through the PD-1/PD-
L1 signaling pathway. This interaction can lead to T-cell depletion
and dysfunction, thereby promoting tumor growth and
metastasis.

Second, the action of TAMs on the cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) pathway involves multiple mechan-
isms. CTLA-4 is an immune checkpoint molecule that is expressed
on tumor cells and immune cells and inhibits the activation and
proliferation of T cells. TAMs can express CTLA-4 and bind to the
CTLA-4 ligands B7.1 and B7.2 on T cells, which inhibits T-cell
activation and proliferation.”® This inhibition reduces the killing of
tumor cells by T cells, thereby promoting tumor growth. TAMs can
also secrete immunosuppressive molecules, such as IL-10 and
TGF-B, which can act synergistically with the CTLA-4 pathway to
further enhance the immunosuppressive effect.

Other pathways. In terms of cell survival and proliferation, TAMs
promote cell survival and proliferation by activating the PI3K/Akt
pathway while inhibiting apoptosis.”” TAMs also activate the Ras/
ERK pathway, which is involved in cell proliferation and
differentiation.”® In terms of the cell—cell interaction signaling
pathway, TAMs interact with the extracellular matrix via integrins
to influence cell adhesion and migration. In addition, TAMs have
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intrinsic signaling pathways, i.e., the CSF-1/CSF-1R pathway. CSF-1
binds to its receptor (CSF-1R) and is a key regulator of TAM
survival and function.”

The activation and regulation of these signaling pathways in
TAMs are very complex, and they are intertwined with each other,
not only affecting tumor growth and metastasis but also
participating in the development of the tumor microenvironment,
which plays an important role in immune escape and therapeutic
resistance. Therefore, an in-depth understanding of these signal-
ing pathways can help in the development of new tumor
therapeutic strategies to improve the efficacy of treatment by
regulating the function of TAMs.

Role of TAMs in tumorigenesis
Tumor promotion. During tumor progression, acute and chronic
inflammation, wound healing, and the female reproductive cycle,
the original vascular system teeth out epithelial cells to form new
blood vessels via a process called angiogenesis. During angiogen-
esis, factors such as VEGFs and placental growth factor (PIGF)
stimulate quiescent endothelial cells to release proteases such as
MMP-9, thereby reducing intercellular adhesion and degrading
the basement membrane. Disruption of intercellular adhesion and
the continuous basement membrane results in blood vessels that
are not in their normal state, become distorted or inflated, and are
more prone to invade the tumor microenvironment and become
locally hypoxic. Tumors require a vascular bed formed by
endothelial cells to provide nutrients and oxygen and carry away
waste and carbon dioxide.®

Tumor-associated macrophages are involved mainly in tumor
angiogenesis through the following three mechanisms: (1) the
hypoxic tumor microenvironment stimulates macrophages to
overexpress HIF, which acts as a transcription initiation factor that
binds to the promoters of target genes, such as VEGF-A, and
induces the expression of VEGF-A;2" macrophages express factors
such as IL-1B, TGF-B, and TNF-q, which stimulate fibroblasts and
adenocarcinoma cells to express VEGF;®? (2) macrophages are
capable of secreting proteases such as MMP-7,53 MMP-9,2* and
MMP-12;%> and (3) macrophages may also differentiate into
endothelial-like cells (expressing Tie2), which reside at sites of
intense angiogenesis and promote angiogenesis through the
expression of VEGF-A, MMP-9, and cyclooxygenase-2 (COX2).8557

In addition, TAMs can help tumors evade immune surveillance
by suppressing adaptive immune responses. Organisms can
inhibit tumorigenesis and development through natural and
acquired immunity, while tumor cells can evade recognition and
attack by the organism’s immune system through a variety of
mechanisms. The inhibition of antitumor immunity by TAMs
involves the following mechanisms: (1) tumor cells produce IL-10,
which induces the expression of PD-L1 on the surface of TAMs,®
binds to PD-1 on the surface of T cells in the TME, and inhibits
cytotoxic T-cell function; (2) TAMs produce CCL22, which recruits
regulatory T cells into the TME and inhibits the activation and
function of effector T cells;®® and (3) TAMs produce Arg-1, which
catalyzes the hydrolysis of L-arginine to urea and L-ornithine,
inhibits the upregulation of cytokinin D3 and cytokinin-dependent
kinase 4, and prevents the T-cell cycle from proliferating by
arresting in the G0/G1 phase.’® Overall, TAMs play dual roles as
“immune suppressors” and “tumor promoters” because they can
promote tumorigenesis and act as central drivers of the
immunosuppressive TME.

Tumor suppression. The process of specific recognition and
clearance of tumor cells by immune cells is complex, and
macrophages are among the most important members of this
process. TAMs are key components of leukocyte infiltration and are
widely observed in a variety of tumors. In most studies, the density
of TAMs has been found to be associated with poor prognosis in
cancer patients,”’ whereas very few studies have shown that the
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density of TAMs in the TME is associated with good prognosis.”® This
duality has been found in a variety of cancers, including prostate,
lung, and brain cancers.®® Other researchers have reported that
TAMs inhibit the growth and metastasis of osteosarcoma and are
associated with a favorable prognosis. Both the M1 and M2 isoforms
of TAM inhibit the growth of osteosarcoma cells under certain
conditions.”® The dual nature of the TME may be due to the
influence of other cell types present within the TME.

First, macrophage-mediated programmed cell removal (PrCR)
plays an important role in tumor elimination and monitoring. The
activation of the TLR pathway in macrophages induces the
activation of Bruton’s tyrosine kinase (Btk) signaling pathway,”
which dissociates from endoplasmic reticulum cell surface
calreticulin  (CRT) phosphorylation. The dissociated CRT is
expressed on the surface of macrophages, which then forms the
CRT/CD91/C1q compound, which targets cancer cells for phago-
cytosis.”® Second, activated macrophages can also defend against
tumors by directing tumor cytotoxicity and secreting cytokines.
For example, M-CSF and muramyl dipeptide (MDP) are added to
macrophages in in vitro culture to enhance macrophage
cytotoxicity, or immunomodulators are loaded by intravenous
injection of liposomes to increase macrophage toxicity. Molecules
of microbial agents and pathogens can also stimulate antitumor
cytotoxicity in macrophages, as in the case of the use of Bacillus
Calmette-Guerin (BCG) in the treatment of bladder cancer, which
increases macrophage cytotoxicity against certain bladder cancer
cell lines by stimulating macrophages.’” Moreover, many studies
have shown that TAMs have the ability to phagocytose and
remove damaged cells. In the early stage of tumorigenesis, TAMs
can phagocytose and remove abnormal or damaged cells,
preventing them from developing into tumor cells.®® Moreover,
TAMs can degrade the extracellular matrix by secreting MMPs, a
process that is usually promoted in tumorigenesis. However,
studies have demonstrated that under appropriate conditions,
MMPs can promote the clearance of tumor cells. Moreover, TAMs
may inhibit the self-renewal ability of tumor stem cells by
secreting antitumor factors, regulating metabolic pathways,
suppressing stemness gene expression, and modulating immu-
nosuppressive cells, thereby reducing tumorigenesis.”

Regulation of TAMs in the metastasis process
Wang et al."® reported that coculturing macrophages and several
non-small cell lung cancer cell lines in vitro increased the matrix
degradation activity and invasion ability of these lung cancer cells,
suggesting an important role for TAMs in the invasion and
metastasis of non-small cell lung cancer. Cell migration, which
generally refers to the movement of individual cells, consists of
4 steps: the cell front extends a lamellar pseudopod; the cell front
pseudopod and extracellular matrix form a new cell adhesion; the
cell body shrinks; and the cell tail and surrounding matrix
adhesion dissociates and the cell moves forward. Cancer cells
generally migrate in groups, called “collective cell migration”,
during which tumor cells form cell scaffolds at the front of the
migration site through cell adhesion molecules, such as integrins
and calcineurin, to pull other cells forward, a process that requires
the protein hydrolases MMP-14, MMP-2, and MMP-9 to play a
role.101'102

TAMs promote tumor migration and infiltration mainly through
these mechanisms. First, as mentioned earlier, TAMs promote
tumor angiogenesis, which involves the secretion of a variety of
proangiogenic factors, such as VEGF, bFGF, and PDGF, which
promote tumor vascularization and provide the necessary nutrients
and oxygen for tumor growth and metastasis. Second, TAMs can
remodel the extracellular matrix by secreting a variety of MMPs,
such as MMP-2, MMP-9, MMP-3, and MMP-7,'% which are enzymes
that degrade the extracellular matrix and make it easier for tumor
cells to invade and metastasize, and TAMs can also secrete TNF-a
and TGF-B, which induces EMT, which endows tumor cells with
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more loose cellular connectivity and accelerates the movement of
tumor cells.'® TAMs inhibit antitumor immune responses by
secreting immunosuppressive factors such as IL-10, TGF-f3, and
prostaglandin E2 (PGE2), which contributes to the immune escape
and metastasis of tumors. Moreover, M2-type macrophages have
significant immunosuppressive effects and have been found to
secrete immunosuppressive molecules, including IL-10, TGF- and
human leukocyte antigen G (HLA-G), into the TME.'®® In addition,
M2-type cells interact directly with MDSCs and actively inhibit T-
cell-mediated antitumor responses.'®® Immunosuppressive cells,
such as Treg cells, indirectly inhibit T-cell activity. Furthermore,
TAMs can directly inhibit the proliferation of CD8+T cells by
metabolizing L-arginine via arginase-1, inducible nitric oxide
synthase (INOS), oxygen-free radicals, or nitrogen species.'”’

More importantly, when macrophages express CSF-1R, tumor cells
secrete M-CSF to attract TAMs,'® and after TAMs are attracted to
tumor cells, they secrete EGF, which activates the epidermal growth
factor receptor (EGFR) signaling pathway in tumor cells, and the
activation of the EGFR pathway results in the extension of more
pseudopods in tumor cells.'®" Since myeloid cells are highly mobile
and less compact, tumor cells combined with TAMs can gain stronger
metastatic ability and are more likely to metastasize to the distal end.

Recently, researchers have reported that TAMs, which are
characterized by an M2-polarized phenotype, can promote the
metastasis of gastric cancer cells through exosomes.'®® TAMs can
deliver exosomes to tumor cells, which are enriched in miRNAs,
IncRNAs, and specific proteins that promote tumor metastasis.''°
Therefore, in malignant tumors, exosomes serve as important
carriers for the exchange of substances and information in the
tumor microenvironment, are involved in different stages of
cancer cell survival and growth as well as tumor metastasis, and
can be used as targets for tumor immunotherapy.'"’

In summary, TAMs play multiple facilitating roles in the process of
tumor metastasis, helping tumor cells evade immune surveillance,
invade surrounding tissues, enter the blood circulation and colonize
distant organs to form metastatic foci through multiple mechanisms.

Regulation of TAMs by organelle signaling

Cell signaling plays a crucial role in regulating macrophage
function, particularly in tumor immunity and disease progression.
Studies have shown that pyroptosis induced by photocatalytic
carbon dots can significantly increase the antigen-presenting
capacity of macrophages, thereby triggering specific tumor
immune responses and providing new insights for tumor
immunotherapy.’'? Furthermore, clusterin (CLU) promotes the
polarization of macrophages toward the M1 phenotype by
inducing mitochondrial damage and activating the type |
interferon pathway, thus enhancing their antitumor capabilities.''
This mechanism further highlights the central role of organelle
signaling in tumor immune responses.

With respect to the metabolic regulation of macrophages, M1
macrophages exhibit downregulation of c-Myc expression under
proinflammatory stimuli, which inhibits proliferation while upregulat-
ing HIF-1a and glycolysis. In contrast, M2 macrophages upregulate c-
Myc, promoting their differentiation toward the anti-inflammatory
phenotype."'* These metabolic changes determine the immune
function of macrophages in the tumor microenvironment, thereby
influencing the aggressiveness and metastatic potential of tumors.

In addition, the mechanism by which LC3-associated phagocy-
tosis (LAP) regulates macrophage phagocytic function in acute
myeloid leukemia (AML) has been elucidated. Loss of LAP leads to
increased tumor burden and shortened survival, whereas activa-
tion of the stimulator of interferon genes (STING) signaling
pathway inhibits tumor growth by increasing the phagocytic
potential of macrophages. In AML, the antitumor effect of STING
differs from its role in solid tumors; STING primarily exerts its
antitumor effect by enhancing the phagocytic ability of
macrophages.'"®
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Moreover, Caspase-1 enhances the protumor function of TAMs
by specifically cleaving Peroxisome proliferator-activated receptor
gamma (PPAR-y), while tumor cells counteract phagocytosis by
overexpressing glutamine-fructose-6-phosphate transaminase 2
(GFPT2), thereby inhibiting macrophage mitochondrial fission.'"®
These studies not only underscore the importance of organelle
function and signaling pathways in the interaction between
macrophages and tumor cells but also reveal the potential of
these pathways as therapeutic targets for cancer treatment.

Role of TAMs in tumor recurrence and resistance to therapy
Drug resistance is a challenge for many tumor chemotherapy
regimens. In pancreatic ductal adenocarcinoma (PDA), TAMs can
release deoxycytidine, which inhibits gemcitabine at the level of
drug uptake and metabolism through molecular competition,
leading to resistance to gemcitabine in PDA.""” Similarly, TAMs
can secrete large amounts of IL-13 under stimulation with cisplatin
(CDDP), a neoadjuvant chemotherapeutic agent for osteosarcoma,
which reduces osteosarcoma cell sensitivity to CDDP and leads to
drug resistance.''® Therefore, TAM-mediated tumor cell resistance
may be an important reason for the stagnation of neoadjuvant
chemotherapy.'"®

CSCs, also known as tumor-initiating cells or tumor-maintaining
cells, constitute a stem cell-like subpopulation within the tumor
cell population.’® CSCs are highly resistant to chemotherapy and
radiotherapy. The removal of CSCs reduces tumor resistance and
thus prevents tumor recurrence.'”' TAMs can directly interact with
CSCs and maintain the stem cell-like characteristics of CSCs,
thereby triggering tumorigenesis and tumor progression.'*? In
addition, CD209-positive M2-type TAMs were found to activate
CSCs and promote osteosarcoma formation, whereas all-trans
retinoic acid (ATRA) inhibited in vitro osteosarcoma cell colony
formation and spheroidogenic capacity as well as TAM-induced
osteosarcoma formation in mice in vivo by decreasing the activity
of CSCs and inhibiting M2-type TAMs.'*?

There is also substantial evidence that TAMs promote tumor
growth by promoting angiogenesis, immunosuppression, and
chronic inflammation and can influence tumor resistance after
conventional anticancer therapy, thus further promoting tumor
recurrence. TAMs can inhibit antitumor immune responses through
the secretion of immune-suppressive factors such as IL-10 and TGF-
B, thus providing an opportunity for tumor cells to survive and
recur after treatment. In a study on melanoma, researchers
reported that the number of TAMs was associated with an
increased rate of tumor recurrence. TAMs reduce the likelihood of
tumor clearance by inhibiting the activity of CD8+ T cells.'**

In addition, TAMs can increase the resistance of tumor cells to
chemotherapy and targeted therapy by secreting antiapoptotic
factors, regulating the cell cycle, promoting DNA repair, etc. IL-10
secreted by TAMs can inhibit Fas/FasL-mediated apoptosis, thus
protecting tumor cells from being killed by chemotherapeutic
drugs. Moreover, TGF-B secreted by TAMs can inhibit the
expression of the cell cycle protein-dependent kinase (CDK)
inhibitor p27, leading to an uncontrolled cell cycle and increased
drug resistance in tumor cells. A study on lung cancer revealed
that TAMs promote the migration and invasion of tumor cells
through the secretion of cytokines such as IL-6 and IL-8 and
simultaneously increase the resistance of tumor cells to EGFR
inhibitors,'® reducing the efficacy of chemotherapeutic drugs.
Therefore, therapeutic strategies targeting TAMs, such as inhibit-
ing their immunosuppressive activity or promoting their anti-
tumor function, may help reduce tumor recurrence and improve
the effectiveness of cancer therapy.

TAMS INTERACT WITH IMMUNE CELLS
As major components of TME, TAMs interact with immune cells
including T cells, dendritic cells, Tumor-associated neutrophils, B
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Fig. 4

Immune interactions of tumor-associated macrophages in the tumor microenvironment. Schematic representation of the interactions

between tumor-associated macrophages (TAMs) and various immune cells within the tumor microenvironment (TME). TAMs polarize into M1
(proinflammatory, antitumor) or M2 (anti-inflammatory, protumor) phenotypes, which are influenced by cytokines such as IFN-y and IL-10.
They interact with CD4+ T cells, CD8+ T cells, and regulatory T (Treg) cells through cytokines and immune checkpoints such as PD-L1,
modulating immune responses. TAMs also affect dendritic cells (DCs), neutrophils (TANs), B cells, and Kupffer cells by altering their activation,
recruitment, and polarization states. These interactions collectively contribute to the suppression of antitumor immunity and the promotion

of tumor growth and metastasis. (created with BioRender)

cells, Kupffer cells. The interaction between TAMs and other
immune cells is briefly illustrated in Fig. 4.

T cells

CD4+ T cells. In the early stages of tumor development, since
free radicals produced by macrophages often lead to DNA
damage, which in turn causes mutations and host cell transforma-
tion, it is widely believed that in the early stages of cancer
development, macrophages exist in a form similar to classically
activated macrophages with an inflammatory phenotype, con-
tributing to the early eradication of transformed cells.'*® However,
as the tumor progresses and grows, the tumor microenvironment
significantly influences the onset/development of TAMs, and these
macrophages take on a phenotype that more closely resembles
that of regulatory macrophages.’?® Regardless of the stimulus, this
new class of macrophages produces high levels of IL-10 to inhibit
immune responses to neoantigens expressed by tumor cells and
can inactivate neighboring macrophages.’”'?® It has also been
demonstrated that regulatory macrophages promote angiogen-
esis, which in turn promotes tumor growth.

Some studies have classified mouse Th lymphocytes into Th1
and Th2 cells on the basis of their respective cytokine production
(IFN-y and IL-4)."° These cytokines have cross-regulatory proper-
ties that are critical for triggering IFN-y production and Th1 cell
development or IL4/IL-13 secretion and Th2 cell proliferation.8''3'
IL-12 or IL-10 production likewise sets the stage for M1/M2-type
cell polarization.8%'3%7134

IFN-y is the only type Il IFN that is recognized by a receptor
consisting of two ligand-binding IFN-y receptor 1 (IFNGR1) chains
and two signaling IFNGR2 chains.'*” It is now well established that
IFN-y is involved in macrophage “initiation” by increasing
macrophage responses to inflammatory molecules such as Toll-
like receptor ligands and tumor necrosis factor.'*® Muller et al.
demonstrated that IFN-y synergized with Toll-like receptor ligands
to induce tumor-killing activity in preconditioned macrophages
and enhanced the expression of TNF-a and IL-12 family
cytokines."®” Furthermore, in the TME, IFN-y produced by
cytotoxic immune cells increases the number of iNOS(+)CD206(-)
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Mil-type macrophages, thereby inhibiting tumor growth.'*®

iNOS(+)CD206(-) M1-type macrophages have been shown to be
correlated with a favorable prognosis in a variety of tumors, such
as breast, lung, ovarian, and gastric cancers.'**"'*> On the other
hand, M1-type TAMs in the TME secrete CXCL9, CXCL10, and
CD86, which stimulate CTL recruitment to the TME and its
activation, and recruit CTLs to produce IFN-y, which is equally
important for maintaining M1-type TAM activity and tumor
suppression.'® However, IFN-y also induces the apoptosis of
CD4+T cells and reduces secondary antitumor immune
responses.'**

While the immunity of Th2 cells to parasites and the pathogenic
role of allergic diseases are well established, the regulation and
function of Th2 cells in the TME remain largely neglected and
controversial. In general, Th2 cell immunity to tumors is mediated
by Th2 cytokines and acts synergistically with macrophages
through secondary recruitment of tumor-killing myeloid cells,
such as eosinophils."*%¢ It has been demonstrated that mice
deficient in the Th2 cytokines IL-2 and IL-4 show reduced tumor
clearance.'*” Neutralization of IL-4 by monoclonal antibodies may
also help restore tumor growth."*®7'>2 The possible mechanism
involves the secretion of the cytokines IL-4 and IL-13 by Th2 cells,
which prompts the transformation of TAMs into M2-type
macrophages, which in turn promotes tumor growth.

Th2 cytokine production and type 2 immunity are also
mediated by type 2 intrinsic lymphocytes (ILC2s). ILC2s also
secrete Th2 cytokine and are dependent on the Th2 cell
transcription factor GATA binding protein 3 (GATA3) but lack
TCR expression.’>>™ %> Notably, Th2 cells in the TME correlate with
the progression of breast and cervical cancers.'*®"'>8 In addition,
type 2 immunity, largely driven by Th2 cells, has been shown to
promote tumor metastasis in breast, colorectal, and lung
cancers.'*™!

Th17 cell development is distinct from that of Th1, Th2, and
Treg cells, and a number of mouse models have shown that Th17
cells can promote CD8+ T-cell-mediated antitumor immune
responses.’®® In addition, the polarization of CD8+T cells to
Tc17 cells also increases antitumor immunity.'®*
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CD8+ T cells. CD8+T cells are cytotoxic T lymphocytes whose
main role is to kill tumor cells directly. As mentioned previously,
TAMs release immunosuppressive cytokines such as IL-10 and
TGF-B, which directly inhibit the function of CD8+ T cells. Studies
of the immunomodulatory function of TAMs have shown that they
can inhibit CTLs and reduce their tumor-killing capacity in a
number of ways.'®> For example, the expression of PD-L1 and B7-1
(or CD80), which are ligands for the inhibitory checkpoint
receptors PD-1 and CTLA4 expressed by activated T cells, leads
to T-cell functionality by binding to PD-1 on CD8+T cells
“exhaustion”. Additionally, TAMs can reduce the bioavailability of
L-arginine through the production of arginase 1 (ARG1), which is
critical for T-cell function.'®>1%8

Regulatory T cells/Tregs. CCL17 (also known as thymic and
activation-regulated chemokine TARC) and CCL22 (also known
as macrophage-derived chemokine MDC) are ligands for
CCR4."°7"" The expression of CCL17 and CCL22 is elevated in
breast cancer tumors'’2 and the expression of CCL22 is increased
in colorectal adenocarcinomas.'”® CCL22 secreted by M2-type
TAMs and other chemotactic factors can attract Tregs into the
tumor microenvironment by attracting CCR4, the receptor for
CCL22, to be highly expressed on Tregs; cytokines secreted by
TAMs, such as IL-10 and TGF-f, can promote the proliferation and
activation of Tregs; and at the same time, Tregs can in turn
counteract macrophages, which tend to differentiate into M2-type
macrophages, thus further supporting tumor growth. Recent
findings have emphasized the integration of M2-polarized
macrophages with immunostimulatory pathways to induce the
differentiation of Treg cells.'”*

Natural killer T (NKT) cells. Natural killer T cells are a hetero-
geneous lymphoid population that may have both immune-
enhancing and immune-suppressive effects, and in tumor
immunity, the two NKT subpopulations (type | and type Il) play
opposing roles, which not only cross-modulate each other but also
influence the innate immune cell population. In liver-lung
metastasis models, type | NKT cells can rapidly release large
amounts of Th1-type cytokines, such as IFN-y, upon recognition of
specific lipid antigens on the surface of tumor cells or
macrophages.'’>"'”® As mentioned previously, IFN-y can induce
polarization of TAMs toward the M1 type (antitumor phenotype)
to enhance tumor immunity; CXCL16 is classified into a chemokine
a subfamily and is induced by a variety of cells.'”® CXCL16 is
important for monocyte polarization to become macrophages in
the tumor microenvironment, and when CXCL16 attracts mono-
cytes, it is involved in recruiting them into the tumor ecotone,
which then differentiates them into TAMs.'®%'8" Studies have
shown that soluble CXCL16 (sCXCL16) may also be a macrophage-
polarizing factor. sSCXCL16 may also be a macrophage polarizing
factor, and such polarized macrophages display characteristics of
the M2 macrophage subpopulation: increased expression of
CD163 and decreased expression of CD80, CD86, and HLA-DR. In
addition, the secretion of large amounts of IL-10 and IL-15 by
these macrophages also inhibits normal NK cell function.'®?

NK cells. The escape of tumor cells from immune surveillance is
one of the key events regulating tumor growth, survival and
metastasis. TAMs in an M2 macrophage-like state have poor
antigen presentation capacity and suppress the immune response
of T cells by releasing the immunosuppressive factors IL-10 and
TGF-B, which include the inhibition of the cytotoxic function of NK
cells.'®® Kuang and colleagues reported that TNF-a and IL-10
secretion by activated monocytes strongly induced PD-L1 expres-
sion in an autocrine manner and that PD-L1-positive monocytes
induced T-cell dysfunction, which was defined as low cytotoxicity
against tumor cells and reduced T-cell proliferation.'®* TAMs can
bind to inhibitory receptors on NK cells, such as PD-1, through the
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expression of such inhibitory receptor ligands, which can in turn
inhibit NK cell function.

Dendritic cells (DCs)

The inflammatory nature of many cancers and the resulting tumor
infiltration of various leukocytes (especially myeloid MDSCs and
TAMs) combine to create an immunosuppressive environment
that results in the suppression of the CD4+ and CD8+ T-cell
response effects of DCs."®>'8¢ This immunosuppression is usually
mediated by cytokines secreted by tumor or tumor-infiltrating
MDSCs and/or TAMs.'®” For example, inhibitory cytokines secreted
by TAMs, such as IL-10 and TGF-f3, may inhibit the maturation of
DCs, thereby reducing their antigen presentation capacity.
Importantly, both MDSCs and TAMs in the tumor microenviron-
ment can upregulate nitrogen oxide synthase expression and
increase the production of NO and ROS, which affects the antigen-
presenting function of DCs.'”” Certain chemotactic factors and
MMPs secreted by TAMs may also affect the migration of DCs.
Owing to their properties, DCs are also known as “natural
adjuvants”. It is used as a natural target for antigen delivery and
acts as a bridge between the innate and adaptive immune
responses, controlling tolerance and the immune response.'® IFN-
y and other cytokines secreted by DCs upon activation may
promote the polarization of TAMs toward the M1 type (anti-
tumorigenic type), and DC infiltration into tumors may also induce
tumor growth and metastasis by modulating angiogenesis, host
immunity, and tumor metastasis.'®’

Recent advancements in single-cell RNA sequencing have
provided profound insights into the intricate interactions between
TAMs and DCs within the TME. In hypopharyngeal squamous cell
carcinoma (HPSCC), scRNA-seq analysis revealed a collaborative
interplay between TAMs and LAMP3+ DCs, leading to the
establishment of an immunosuppressive milieu that facilitates
tumor progression by recruiting regulatory T cells while inhibiting
CD8+ T-cell function. This interaction highlights the concerted
efforts of TAMs and LAMP3+ DCs in promoting immune evasion
mechanisms within tumors.'®® Similarly, scRNA-seq profiling in
early lung adenocarcinoma (LUAD) demonstrated an increased
presence of both TAMs and CD1C+ DCs, which correlated with
accelerated tumor progression. Although no distinct M1 or M2
polarization was observed, these cellular components likely
contribute to immune evasion and tumorigenesis within the
TME."" These findings underscore the intricate interplay between
TAMs and DCs in modulating both antitumor immunity and
disease progression.

Tumor-associated neutrophils (TANs)

TANs can secrete CXCL1, CXCL2, CXCL5, and other cytokines that
may attract macrophages into the tumor microenvironment and
affect their polarization.””®™'®® In parallel, chemotactic factors
secreted by TAMs, such as CXCL8, may attract neutrophils into the
tumor microenvironment.'”®  Studies involving the systemic
inflammatory cascade of breast tumors triggered by IL-13
secretion by associated macrophages have shown that IL-17
expression by y& T cells subsequently increases systemic
granulocyte colony-stimulating factor (G-CSF) levels. Subsequent
G-CSF stimulates neutrophil expansion and converts neutrophils
into immunosuppressive cells, thereby blocking the antitumor
function of CD8+ T cells and allowing disseminated cancer cells to
evade immune detection.’®’

B cells

There is also a close association between TAMs and B cells in the
TME, where certain chemotactic factors secreted by TAMs may
attract B cells into the TME and affect the balance of B-cell subsets.
Cytokines (e.g., IL-6 and IgG) and immunomodulatory molecules
produced by B cells may also affect the M1 and M2 polarization
status of TAMs.'?® Activated B cells can secrete chemokines, which
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increase the recruitment of TAMs to the tumor microenvironment
and collectively influence T-cell responses, and can also promote
tumor progression through degradation of the extracellular matrix
and enhancement of angiogenesis in a granulocyte- and
macrophage-dependent manner.'

Kupffer cells

Tumor-associated macrophages and Kupffer cells are closely
related in both physiological and pathological states. Kupffer
cells, liver macrophages with M1 characteristics, can clear
pathogens from the blood. Moreover, Kupffer cells exhibit the
same phenotype, suggesting that TAMs and Kupffer cells undergo
a dynamic transformation process in the tumor microenviron-
ment.>® TAM receptors, particularly phosphatidylserine receptors
such as Tim-4, are crucial for Kupffer cell phagocytosis of apoptotic
cells. These receptors help Kupffer cells eliminate apoptotic cells
and inflammatory mediators, reduce liver injury and inflammation,
and modulate the inflammatory and immunomodulatory func-
tions of Kupffer cells, which are crucial for liver health and disease
treatment.?®®?®" Overall, the TAM-Kupffer cell interrelationship
spans phagocytosis regulation, tumor microenvironment
dynamics, and liver modulation.

ROLE OF ANTIBODY-DRUG CONJUGATES IN TAM-BASED
TUMOR THERAPY

In previous studies, monoclonal antibodies have been shown to
be effective in the diagnosis and treatment of hematologic
malignancies and various solid tumors,?°*?°® and they act by
targeting tumor-associated antigens, which can inhibit cell growth
and angiogenesis or stimulate a lasting immune response against
tumors to achieve antitumor effects.?°*?%> ADCs have emerged as
needed,?®® which combines the targeting method of monoclonal
antibodies with the ability of chemotherapy to kill tumor tissues
while protecting healthy tissues, leading to major breakthroughs
in the field of cancer treatment.’®’% To date, ADCs have become
an important approach in cancer treatment. Infiltrating immune
cells have been shown to play important roles in promoting
tumorigenesis and progression,” and TAM infiltration is usually
associated with poor prognosis in cancer patients, which
inevitably affects tumor therapy.?®® TAMs are potent effectors of
antibody-dependent cytotoxicity, contributing to the antitumor
activity of anticancer monoclonal antibodies such as anti-CD20
and anti-HER-2.2"° In fact, TAMs have been previously shown to be
associated with the response to targeted anticancer drugs,?'' and
many studies have confirmed that trastuzumab can trigger the
phagocytosis of human epidermal growth factor receptor 2
(HER2)-positive cells by macrophages,?'?'® which suggests a
potential role for TAMs in the antitumor activity of antibody
therapy. The interaction between TAMs and ADCs is mediated by
the Fcy receptor (FcyR), which leads to the internalization of ADCs
and treatment by TAMs, followed by the release of the payload in
the TME.2'* For further validation, Li et al. compared the antitumor
activity and intratumoral drug concentration of targeted and
nontargeted (hlgG-vcMMAE) monomethyl auristatin E (MMAE)
conjugates and reported that nontargeted ADCs could bind to F4/
80+TAMs, and their abundance correlated with the in vivo
antitumor activity of nontargeted ADCs in lymphoma and breast
cancer models. These findings demonstrated the ability of TAMs
to internalize ADCs with FcyR and subsequently process ADCs to
release their payload.?'> Their study was the first to demonstrate
this phenomenon even in the absence of antigen binding. TAMs
can also interact with therapeutic ADCs. A study by Selby et al.
demonstrated that anti-CTLA-4 antibodies act through macro-
phages expressing Fcy receptors.?'® They demonstrated in mouse
model experiments that macrophage-mediated elimination of
Treg cells by ADCC is an important component of anti-CTLA-4
therapeutic activity.?'® Many previous studies have demonstrated
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that the development of ADC drugs that target TAMs may provide
a new therapeutic approach for cancer treatment.

CLINICAL APPLICATIONS AND PERSPECTIVES

TAMs as biomarkers for prediction and intervention

TAMs, as important immune cells, can interact with various factors
in the TME.>'” As an increasing number of studies have explored
the relationship between TAMs and tumors, we have shown that
TAMs have unique characteristics during tumor progression to
malignancy. Many studies have shown that TAMs in tumor tissues
tend to polarize to the M2 type once they affect or interact with
the tumor extracellular matrix,*'®'° suggesting an important role
for TAMs in early tumor prediction, therapeutic intervention and
even prognosis prediction.

Jiao et al.**° The methylation and mRNA expression of Septin 9
(SEPT9) in different cervical tissues were detected via methylation-
specific PCR and qRT-PCR, which revealed that SEPT9 methylation
promoted tumorigenesis and radioresistance in cervical cancer by
targeting the HMGB1-RB axis and affected the resistance of
cervical cancer to radiotherapy by mediating the ability of miR-375
to promote M2 polarization. These findings suggest that it may be
a potential marker for early screening and intervention in patients
with cervical cancer. Inagaki et al.?*' used double immunofluor-
escence with CD68 and CD163 to evaluate the number,
phenotype, and distribution of TAMs in 53 colorectal cancer
(CRC) patients and reported that M2 macrophages increase with
tumor progression, suggesting that M2 macrophages may play an
important predictive role at the frontiers of tumor invasion, where
the M2/M1 ratio is more predictive of lymphatic metastasis in CRC
patients. Other related studies have also revealed a positive
correlation between CD163 expression and the degree of
lymphatic metastasis in either serum or CRC tissues,*> making it
a novel biomarker with potential. Li et al. analyzed the cellular
diversity and microenvironment heterogeneity of 91,394 single-
cell transcriptomes from 18 clinical samples of non-atrophic
gastritis (GS), intestinal metaplasia (IM), and GC patients and
reported that TAMs exhibited a dominant M2-like phenotype,
suggesting their immunosuppressive role in the tumor micro-
environment and suggesting that TAMs may be potential
predictors of GC.>%3

In recent years, targeted therapies for TAMs have focused on
inhibiting the recruitment of TAMs, depleting TAMs, reprogramming
TAMs into antitumor macrophages, and reversing the polarization of
TAMs.??* The blockade of chemokines serves as a key to inhibiting
the recruitment of TAMs, with CCL2/CCR2 being a popular target for
recent studies. Using a mouse model, Yin et al. reported that
stabilizing protein-1 interacting chitinase-like protein (SI-CLP) inhibits
the cytoskeletal response to CCL2, alters the cellular composition of
the TME, and ultimately prevents cytokine-induced recruitment of
TAMs. Thus, it reduces macrophage infiltration in the mammary
gland and achieves the effect of targeted therapy for breast
cancer?® In triple-negative breast cancer (TNBC), commonly used
TNBC chemotherapeutic agents can activate TAMs and induce
immune tolerance, which in turn affects the efficacy of chemother-
apy.??® Plasticity is one of the key features of TAMs, which means that
they can change their phenotype in the tumor microenvironment;
therefore, reprogramming TAMs into antitumor macrophages is a
very promising targeted therapeutic modality. Wang et al?*’
reported that intravesical PA-MSHA (Pseudomonas aeruginosa
mannose-sensitive hemagglutinin) treatment promoted an antitu-
mor immune environment in a bladder cancer model characterized
by an increase in mature TAMs, which indicated a shift toward M1-
like macrophage polarization. Wang et al.*?® investigated synthetic
nanoparticles loaded with IL-12, which could functionally modulate
TAMs for cancer immunotherapy. Umiker et al. developed a highly
efficient and selective antagonistic monoclonal antibody (JTX-8064),
which could be used to block the binding of leukocyte
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immunoglobulin-like receptor subfamily B member 2 (LILRB2) to its
cognate ligand, thereby allowing human TAMs to be reprogrammed
to drive T-cell activation in tumors to treat cancer.’?®

In addition, TAMs are closely related to tumor prognosis. Studies
have shown that hypoxia is a typical feature of solid tumors,?*°
and in most solid tumors, the infiltration of high-density
macrophages is correlated with poor prognosis. Wang et al.
performed immunohistochemical staining of tumor tissues for
TAMs and reported that patients with higher pathological grades
of TNBC tended to have higher levels of TAMs, and their overall
survival and disease-free survival were significantly shorter than
those of patients with lower infiltration of TAMs.*" Among them,
breast cancer patients with concomitant CD163+ and
CD204 + TAM infiltrates tend to have a poor prognosis, as these
TAMs are associated with rapid proliferation and poor differentia-
tion.2*2 CD163, a specific tumor macrophage receptor, plays an
important role in tumor progression. Ma et al.”** examined the
expression levels of CD163 in patients with CRC versus healthy
individuals, screened for four related genes and finally revealed
that CD163 was differentially expressed in CRC tissues and was a
poor prognostic factor. Yang et al?** evaluated TAM markers
(CD68 and CD163) in 81 CRC patients via immunohistochemistry
and compared the survival rates of patients with high CD163+/
CD68+ ratios with those of patients with low CD163+/CD68+
ratios. Patients with low ratios and patients with high CD163+/
CD68+ ratios had a worse prognosis. However, Koelzer et al.
analyzed 205 CRC patients in a study published in 2015 and
reported that high CD163 + TAM infiltration implied a lower tumor
grade and fewer lymphatic metastases, which predicted a better
prognosis for CRC patients. Khaliq AM et al. performed droplet-
based scRNA-seq on 16 racially diverse, treatment-naive CRC
patient tissue samples and seven adjacent normal colonic tissue
samples and found that the number of CAFs and C1Q+ TAMs was
sufficient to stratify CRC patient prognosis with greater
precision.?*

Discovery and application of CAR-Ms

Chimeric antigen receptor (CAR) T-cell therapy is not effective in
solid tumor treatment, mainly because of the limited penetration
and infiltration capacity of tumor cells, the presence of an
immunosuppressive tumor microenvironment, and therapy-
related adverse events such as targeted nontumor toxicity and
cytokine release syndrome (CRS).2*® To overcome the limitations of
CAR-T cells in the treatment of solid tumors, researchers have
explored the introduction of CAR technology into other innate
immune cells, among which macrophages are an ideal choice
because of their high proportion and versatility in the tumor
microenvironment. In 2016, CAR-T-cell therapy specialists Saar Gill
and Michael Klichinsky founded CARISMA Therapeutics, a company
focused on developing CAR-macrophage therapies (CAR-Ms) for
the treatment of tumors. In 2020, they published a research paper
reporting that treatment with HER2-targeted CAR-M cells resulted
in good tumor-killing effects in a mouse model and that it was able
to transform M2 macrophages into M1 macrophages, induce an
inflammatory TME, and enhance the antitumor cytotoxicity of
T cells.>*” Subsequent studies have shown that CAR-M cells have a
significant therapeutic effect on a variety of different tumors. Two
clinical trials based on CAR-M strategies have already been
approved by the FDA. The first is CT-0508, a drug candidate from
Carisma Therapeutics that treats patients with relapsed/refractory
HER2-overexpressing tumors. On March 20, 2021, the Carisma team
announced that it had completed the first patient administration of
the phase 1 clinical study of CT-0508, which was the first CAR-M-
cell therapy to enter the clinic, indicating that the new era of CAR-
M-cell therapy officially opened. Another is MaxCyte's drug
candidate, MCY-M11, which uses Mesothelin-targeted CAR-M to
treat patients with relapsed/refractory ovarian cancer and perito-
neal mesothelioma and is currently recruiting volunteers for a
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phase | clinical trial.>3*?*° Another study constructed chimeric
antigen receptor-macrophage (CAR-M) based on human peritoneal
macrophage (PM) gene modification, namely, HF-CAR-PMS expres-
sing HER2-Fc €R1-y-CAR (HF-CAR). Through a variety of in vitro and
in vivo gastric cancer model experiments, HF-CAR-PMs were found
to specifically target HER2-expressing gastric cancer cells and
trigger phagocytosis, significantly promoting HER2-positive tumor
regression and prolonging overall survival in mouse models of
peritoneal cancer, providing promising treatment options for
HER2-positive gastric cancer patients.>*> CAR-Ms have also shown
significant potential in the treatment of brain tumors, with CAR-Ms
targeting specific antigens such as HER2, EGFRuvIII, IL-13Ra2, MSLN,
B7-H3, and GPC-1 showing potent antitumor effects. Targeted
therapy with HER2 and EGFRVIII has improved survival in preclinical
models and is expected to breach the blood-brain barrier, whereas
IL-13Ra2 and MSLN have been shown to be potential targets for
tumor clearance in brain tumors such as glioblastoma (GBM).
Overall, CAR-M cells show promise in the treatment of brain tumors
by targeting these key antigens*' Although CAR-M cells have
shown good results in clinical studies, they face several challenges
in clinical application, including the high risk of gene transfer, the
problem of cell origin is still unresolved, and the difficulty of
delivering CARs in vivo. In addition, treatment limitations include a
lack of tumor-specific antigens, low tumor invasion efficiency, and
high mutation risk.>*> However, the current research combined
with nano, crisper and other technologies is expected to overcome
this dilemma as soon as possible 24>%%

Future research directions and trends

TAMs are important components of the tumor microenvironment
and account for a high percentage of immune cells. They are
involved in the whole process of tumorigenesis, development and
metastasis by promoting the growth of blood vessels and
lymphatic vessels, inhibiting immune responses and regulating
immune responses. In view of the important role of TAMs in tumor
progression, TAM-based tumor prediction, prognostic assessment
and targeted therapy have emerged. In the future, the construc-
tion of models based on TAM-related genes for the prediction of
tumorigenesis and prognosis may be a very promising research
field. In addition, research related to the cooperation of TAM-
targeted therapy with immunotherapy, conventional chemother-
apy and adjuvant therapy in the interventional treatment of
patients with tumors is also a very promising option. Multimodal
prediction and intervention based on TAM may become a hot
research topic in the future.

STRATEGIES TO REGULATE TAMS

TAMs can contribute to tumor progression through a variety of
pathways. For example, TAMs can promote the proliferation of
fibroblasts and angiogenesis through high expression of
proteases and achieve immunoprotection through the immu-
nosuppression of T cells.?*> In addition, studies have shown that
TAMs are resistant to a variety of treatments and can impair the
effects of various therapies, including immunotherapy, che-
motherapy, radiotherapy and other therapeutic options.?*¢
Therefore, it is necessary to modulate TAMs to improve patient
prognosis and slow the progression of cancer. The general
strategy of TAM regulation focuses on two aspects. First,
regulating the number of TAMs, including reducing the
recruitment of TAMs and eliminating local TAMs; second,
altering the phenotype of TAMs and thus the function of TAMs,
including re-educating the TAM phenotype to M1, weakens the
tumor-promoting function of TAMs. (Fig. 5)

Regulating the number of TAMs

A significant strategy of immunotherapy is regulating the number
of TAMs. The following section will investigate this mechanism in
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detail. Table 2 summarizes the main target sites for TAMs
regulation.

Termination of macrophage recruitment. Clinical experiments
have confirmed that TAMs can help tumor cells form an
inflammatory environment after tumorigenesis, which is condu-
cive to the growth of tumor cells, while their ability to promote
angiogenesis enhances the migration and invasion ability of
tumor cells.?*” Tumor cells are able to secrete some cytokines to
recruit TAMs through their cellular pathways of action, further
constructing a tumor microenvironment that is conducive to the
growth of tumor cells and contributes to tumor development.®*®
Therefore, termination of macrophage recruitment in cancer
tissues can block macrophage growth and signaling pathways of
differentiation, thus reducing the ability of TAMs to promote
tumor development and spread.

CCL2/CCR2 signaling pathway: The CCR2 antagonist RDC018 can
target and block the CCL2/CCR2 signaling pathway, thereby
inhibiting TAM migration and aggregation. An examination of
mice with in situ hepatocellular carcinoma after administration of
the CCR2-blocking drug revealed a notable reduction in the
clustering of TAMs. As a result, the interaction between TAMs and

Signal Transduction and Targeted Therapy (2025)10:268

and modulation of the tumor microenvironment, ultimately affecting

tumor cells decreased. Additionally, M2-type TAMs show a
decrease in the production of cytokines and chemokines, while
there is a trend toward an increase in the number of CD8+ and
CD4+T cells, which have antitumor effects.?** These phenomena
suggest that CCR2 antagonists are able to reduce the infiltration of
intratumorally M2-type TAMs and increase the number of
CD8+T cells and CD8+ TILs with tumor-killing effects in the
microenvironment of peripheral blood. Small molecules capable
of influencing gene expression along this pathway can indirectly
impact TAM recruitment. For example, glioblastoma cells produce
kynurenine, which can activate AHR in TAMs. AHR has been
demonstrated to exhibit high expression and activity in multiple
cancer types.”*® Furthermore, AHR enhances CCR2 expression,
thereby promoting TAM recruitment.?®’ Additionally, the TLR9-
mediated NF-kB signaling pathway is activated during cytosolic
mitochondrial DNA (mtDNA) stress, leading to the production of
CCL2. This molecule facilitates TAM recruitment and is associated
with hepatocellular carcinoma (HCC) progression, indicating a
close interconnection between signaling pathways.>>?

Several drugs have been demonstrated to have ancillary effects
on TAM recruitment. Total glucosides of paeony (TGPs) have been
found to inhibit the release of inflammatory factors, and there is
evidence of their anti-inflammatory and immunomodulatory
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effects.*>%>* Jin et al.?>® revealed the great role and therapeutic

potential of TGP in altering the inflammatory microenvironment of
tumors, revealing that TGP can be used to inhibit the release of
inflammatory factors via the NF-kB/CCL2 signaling pathway and
thus reduce the recruitment of TAMs in the tumor microenviron-
ment, as well as to inhibit M2-type polarization by decreasing the
expression of mRNAs in lipopolysaccharide-stimulated macro-
phages (LPS-stimulated macrophages), ultimately exerting a
regulatory effect on TAMs. A reduction in the release of
inflammation-related factors (e.g., CCL2) further reduces the
infiltration of TAMs. It improves the inflammatory microenviron-
ment of the tumor, ultimately inhibiting tumor growth and
metastatic processes.

CSF-1/CSF-1R signaling pathway: Targeting the CSF-1/CSF-1R
signaling pathway, a pathway closely associated with TAM
proliferation and differentiation, has also been shown to
effectively halt TAM recruitment. Several macrophage-targeting
agents targeting this pathway are currently under clinical
evaluation.”® In glioma patients undergoing radiotherapy, TAM
accumulation has been observed posttreatment in mice. TAMs can
interfere with therapeutic outcomes by modulating interactions
between tumor and stromal cells.”>’ Leila Akkari et al. reported an
increase in total TAM populations in glioblastoma-bearing mice
treated with ionizing radiation (IR), which was inhibited by the
CSF-1R tyrosine kinase inhibitor BLZ945. Notably, administering
BLZ945 post-IR treatment did not significantly affect total TAM
numbers, as pretreatment with BLZ945 prevented IR-induced TAM
population changes. Post-IR administration of BLZ945 reversed
only TAM-related transcriptional signatures induced by IR
therapy.®>®

Other signaling pathways: NT157, a small-molecule inhibitor of
immunotherapeutic drugs, can exert its antitumor effects mainly
through two signaling pathways, the IGF-1R-IRS and JAK-STAT3
pathways. Sanchez-Lopez et al.?*° found that NT157 reduces the
aggregation of TAMs in tumor cells, mainly by blocking the JAK-
STAT3 signaling pathway. Cytokines such as IL-6, which has the
ability to protect intestinal epithelial cells from apoptosis, are
inducible to STAT3. By blocking the expression of these cytokines,
NT157 can block the activation of STAT3, which further achieves
the goal of inhibiting the recruitment of TAMs and reducing the
number of TAMs.

Removal of TAMs. The expression of cytokines within tumors
promotes the proliferation of TAMs. For example, the signaling
pathway hosted by CSF-1/CSF1R plays an essential role in the
recruitment of TAMs and the promotion of polarization of TAMs
toward the M2 type.®® CSF1R inhibitors promote the depletion of
M2-type TAMs in a tissue-specific manner, revealing the potential
of CSF1R as a therapeutic target for cancer treatment. Strachan
et al.?®! investigated a small molecule inhibitor of CSF1R, BLZ945,
and found that tumor volume was reduced in the model treated
with BLZ945. Further experiments revealed that BLZ945 exhibits
tissue specificity in the clearance of TAMs, with incomplete
clearance of macrophages from neoplastic lesions and the
surrounding cervical stroma observed in a cervical cancer model
after treatment with BLZ945. Similar results were obtained in the
breast. Notably, in a mouse model of microglia,®®® instead of
removing TAMs, BLZ945 inhibited the polarization of TAMs toward
the M2 phenotype, thereby affecting tumor progression. These
findings suggest that the effect of BLZ945 on TAMs is tissue
specific. Another CSF1R inhibitor, pexidartinib (PLX3397), also has
a depleting effect on the removal of TAMs upon acceptance and
dose-dependently downregulates the expression of genes related
to polarization toward M2 and upregulates the expression of
genes related to polarization toward M1, which is similar to the
action of BLZ94.263264

Signal Transduction and Targeted Therapy (2025)10:268

Dual roles and therapeutic targeting of tumor-associated macrophages in...

Xu et al.

In addition, both BLZ945 and PLX3397 were able to modulate
the immune cell infiltration profile. For example, increasing the
immune infiltration of CD8+ T cells into tumor sites. In combina-
tion therapy with monoclonal antibodies, this can further promote
the polarization of TAMs toward the M1 type.?®® These findings
suggest that CSF1/CSF1R is a viable therapeutic target and may be
used in combination with other therapies. These discoveries
provide promising therapeutic approaches and treatment ideas
for immunotherapy.

Release of immunostimulatory capacity

One way to regulate TAMs is by increasing their immunostimu-
latory capacity. TAMs can be polarized into M1-type and M2-type
TAMs, where M1-type TAMs have antitumor and immune-
promoting effects,*® whereas M2-type TAMs promote tumor
development by suppressing the immune system. In recent years,
M2-type TAMs have also been shown to be strongly associated
with weaker immunotherapeutic efficacy and other adverse
clinical outcomes, such as drug resistance in patients during
anti-PD-1/PD-L1 immunotherapy.”®” Therefore, the activation of
M1-type TAMs with antitumor activity, or the promotion of TAM
polarization to the antitumor type, can enhance the ability of
TAMs to phagocytose and kill tumor cells. Reeducation of M2
TAMs can effectively achieve this goal. Reprogramming TAMs to
release their immunostimulatory capacity could be achieved via
three main strategies: signaling pathway regulation, cytokine
regulation and metabolite regulation, which reverse the pheno-
type of TAMs to remodel the tumor microenvironment.

Signaling pathway regulation

CCL2/CCR2 signaling pathway: The CCL2/CCR2 pathway is a
critical regulator of TAMs. When the intergenic noncoding RNA
LINC00330 specifically binds to CCL2, it acts as an inhibitor of
CCL2/CCR2 and its downstream factors through autocrine
signaling. This interaction mediates TAM reprogramming, promot-
ing the polarization of M2-type TAMs to M1-type TAMs.2®

OX40/0X40L signaling pathway: OX40L, a molecule expressed
on macrophages, participates in the OX40/0X40L signaling
pathway. OX40L-overexpressing M1-like macrophage exosomes
derived from M1-like macrophages overexpressing OX40L can
bind to OX40-expressing T cells and activate this pathway.
Coculture of these exosomes with M2 TAMs in vitro resulted in
a reduction in the M2 marker CD206 and a significant increase in
the M1 marker CD86, indicating that M2-type TAMs are
reeducated into M1-type TAMs via the IFN-y secreted by
CD8+T cells. This finding highlights the critical role of cytokines
in reprogramming TAM polarization.?*®

The CD47-SIRPa signaling pathway: Tumor cells evade macro-
phage phagocytosis by overexpressing CD47, which binds to SIRP-
a on macrophages, transmitting a “do not eat me” signal.
Consequently, the CD47-SIRPa axis is now recognized as an
immune checkpoint for macrophages and a potential target for
immunotherapy. Research has shown that blocking the CD47-
SIRPa signaling pathway could actively shift TAMs toward an
antitumor profile by reeducating the M2 type and enriching the
M1 type to restore phagocytic function. Tang et al.”’® reported
M1-macrophage-derived hybrid nanovesicles (SPI@hEL-RS17) with
RS17, a CD47-specific antitumor peptide that effectively inhibits
CD47-SIRPa signaling. Blockade of CD47 enabled M1 TAMs to be
enriched in the TME and produce greater tumor-phagocytosing
effects. Similar effects were observed in Zhao's research, which
constructed a stimuli-responsive multifunctional nanoplatform
(ZIF-PQ-PDA-AUN) to increase the phagocytotic abiIitX of macro-
phages, reversing M2-type TAMs into M1-type TAMs.2’" Although
direct mechanistic evidence for TAM re-education is limited, these
findings, which succeeded in reversing the TAM phenotype,

SPRINGER NATURE

17



Dual roles and therapeutic targeting of tumor-associated macrophages in...

Xu et al.

18

provide a feasible and promising strategy for improving the
therapeutic index with low-toxicity immunotherapy.

Other signaling pathways: TAMs can participate in antibody-
dependent cellular phagocytosis (ADCP) by mediating the
phagocytosis pathway and eliminating target cells through
specific antibodies. Li et al.*’? reported that resiquimod (R848)
promotes ADCP by stimulating M1-type macrophages and shifting
TAMs from the M2 phenotype to the M1 phenotype. Compared
with monotherapy, combination therapy with TLR7/8 agonists
resulted in more efficient TAM re-education. Figueiredo et al.?”3
M2-type TAMs were targeted with mUNO peptides on lignin
nanoparticles (LNPs) carrying a dual agonist of the Toll-like
receptor TLR7/8 (Resiquimod, R848), achieving effective low-dose
treatment and re-educating M2-type macrophages to M1-type
macrophages, enhancing the antitumor immune response.

The Wnt signaling pathway was demonstrated to be a driver of
the immunosuppressive phenotype of M2 TAMs, which could also
affect the communication between tumor cells and TAMs.2’# Thus,
drugs that affect Wnt signaling may exert an indirect effect on
TAMs. Andrographolide (ADE), a drug that can directly promote
the apoptosis of tumor cells through cytotoxicity and inhibit
tumor proliferation and metastasis, has recently been demon-
strated to play an important role in regulating TAMs. Li et al.*”>
reported that ADEs significantly inhibited the polarization of TAMs
toward the M2 phenotype and promoted the polarization of the
M1 phenotype, ultimately inhibiting triple-negative breast cancer.
Further research on the underlying mechanism by transcriptome
sequencing revealed that ADEs act mainly on the Wnt signaling
pathway, inhibiting the expression of the Wnt5a, B-catenin, MMP-
9 and MMP-2 proteins in the signaling pathway in a dose-
dependent manner, thus reducing the invasion, metastasis and
angiogenesis of tumor cells.

Cytokine regulation. Cytokine intervention can influence TAM
polarization and offer new immunotherapy possibilities.?*®. Sun
et al.?’® found that the combination of monophosphoryl lipid A
(MPLA) and interferon-gamma increased the expression of M1
markers (iNOS and CD40) and decreased the expression of an M2
marker (CD206), indicating TAM polarization toward the M1
phenotype. This therapy alters the immune microenvironment by
secreting chemokines, increasing oxidative stress in tumor cells,
and stimulating MHC class Il gene transcription, thus killing tumor
cells. Ahirwar et al.?”” found that Slit2, a tumor suppressor, could
regulate TAMs in the breast cancer tumor microenvironment,
including increasing the recruitment of M1-type TAMs and
increasing their phagocytosis of tumor cells, which demonstrated
that Slit2, a tumor suppressor, could effectively play an antitumor
role and revealed the potential of Slit2 as an immunotherapeutic
agent. Metformin was reported to be able to reeducate the M2
type to the M1 type. Wei et al.’’® used mannose-modified
macrophage-derived microparticles (Man-MPs), which exhibit a
stronger repolarization ability than free metformin, to load
metformin. This is achieved through the AMPK-NF-kB signaling
pathway, which regulates the expression of M1- and M2-type
cytokines.?”®

Metabolite regulation. As mentioned above, evidence demon-
strating the potent effects of small metabolic molecules on the
CCL2/CCR2 pathways highlights their ability to modulate TAM
recruitment, underscoring the intricate crosstalk between meta-
bolic pathways and TAMs. The polarization state of TAMs can
reprogram metabolic processes, thereby influencing disease
progression.?#%?8" Conversely, metabolic changes within the body
can also affect TAM polarization.?®*%®3 This concept is supported
by evidence across various biological processes. 3-Oxoacid CoA-
transferase 1 (OXCT1), a key enzyme in ketolysis, has been
identified as a regulator of TAM polarization. Elevated OXCT1
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expression in TAMs promotes the production of succinate, a
byproduct with TAM-reprogramming capabilities, which functions
via the H3K4me3-Arg1 axis. Notably, in OXCT1mKO mice, OXCT1
deficiency in TAMs does not affect their proliferation, indicating
that OXCT1 has no significant effect on the overall TAM
population. However, inhibition or deletion of OXCT1 activity, for
example, via the use of pimozide (PZ), can reprogram M2-type
TAMs into the M1 phenotype, thereby enhancing antitumor
immunity. 283284

Strategies for regulating TAMs via gene editing techniques
CRISPR/Cas9 system to regulate TAMs.  CRISPR/Cas9 is a commonly
used gene editing technology that enables the editing and
regulation of specific genes in TAMs, allowing for precise
alteration of their phenotype and function.?®® Zhao et al.?®® used
bacterial protoplast-derived nanovesicles to deliver CRISPR-Cas9,
which targets Pik3cg in TAMs. This suppressed PI3Ky signaling,
reducing the expression of M2 markers (CD206 and IL-10) and
increasing the expression of M1 markers (CD86 and TNF-a), which
inhibited tumor growth by reprogramming TAMs in 4T1 and MC38
mouse models. The success of this practice provides a viable
option to achieve the regulation of TAMs by effectively silencing
genes that promote TAMs. In glioblastoma, a tumor suppressor
gene, the phosphatase and tensin homolog (PTEN) gene, is
deleted, leading to increased secretion of galectin-9 (Gal-9), which
induces polarization of TAMs toward the M2 type. Knockdown of
the CCR2 gene effectively reduces the level of infiltration of TAMs
and achieves the clearance of TAMs.?%? (Fig. 6).

RNA interference technology. Targeted gene silencing technology
mediated by siRNA or shRNA is able to inhibit or reduce the
expression of target genes, thus altering the phenotype or
function of TAMs and regulating them. Targeting the CSF-1/CSF-
1R signaling pathway to disrupt CSF-1R expression has demon-
strated significant therapeutic potential across various cancers. In
prostate cancer (PCa), a study utilizing M2 macrophage-targeting
peptides for the delivery of siRNA specifically to M2 TAMs reported
an increase in M1 TAM expression, accompanied by a decrease in
the expression of M2-specific markers (CD68+/CD206+). These
findings indicate the successful reprogramming of M2 TAMs into
the M1 phenotype via siRNA-mediated modulation.?®” Similarly, in
pancreatic cancer (PC), siRNA-mediated interference targeting the
same pathway in combination with the PI3K-y inhibitor BEZ235
yielded comparable outcomes. Notably, BEZ235 alone demon-
strated the ability to modulate TAM phenotypes through the
suppression of the phosphorylated AKT (pAKT) pathway. More-
over, the combination therapy exhibited synergistic effects,
significantly enhancing TAM phenotype reprogramming com-
pared with single agent treatments, with markedly reduced
production of IL-6, a signature cytokine of M2 macrophages that is
also closely associated with pancreatic cancer progression. In
experiments where IL4RPep-1 was modified on the surface for
targeted transfection of NF-kBp50 siRNA as well as miR-511-3p
into M1-type exosomes, significant downregulation of the
expression of M2 markers and cytokines (Arg1, TFG-, IL-10, and
IL-4) was observed, whereas M1 cytokines (IL-12p40 and IFN-y)
were upregulated, suggesting the ability to reprogram the M2
type to the M1 type.”®® Researchers have designed nanoparticles
(NPs), which include trimethyl chitosan (PEG = MT) and citraconic
anhydride-grafted poly(allylamine hydrochloride) (PC) (PEG = MT/
PC NPs). The NPs were then double modified with polyethylene
glycol (PEG) and mannose (MT) and internally wrapped with VEGF
siRNA (siVEGF)/PIGF siRNA (siPIGF) for targeted delivery to M2-
type TAMs. These NPs then aggregated at high concentrations in
the tumor cells and effectively silenced the target genes after their
contents were released. This ultimately repolarizes the M2 type to
the M1 type and achieves the regulation of TAMs.?®® Selective
silencing of genes related to M2-type TAMs can effectively reduce
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highlighting their potential. (created with BioRender)

the aggregation of M2-type TAMs. However, to achieve this goal,
the targeting ability and effectiveness of siRNA transfer into target
cells need to be improved, and the combination of nanotechnol-
ogy may be a promising solution.

FDA-approved drugs and clinical studies based on TAM regulation
Macrophages exhibit dual protective and pathogenic effects on
cancer development. As macrophages, especially TAMs, are
essential immune cell components in the TME, the distribution
of TAMs is closely associated with cancer progression, therapeutic
response and prognosis. As mentioned above, proper modulation
of macrophages can increase their antitumor ability. Thus,
unraveling the antitumor potency of M1 macrophages through
several regulatory strategies to leverage their phagocytic function
has now become the main strategy in cancer therapy and has
already been proven in several preclinical and clinical studies. The
FDA has approved several macrophage-based therapies, and more
drugs are now in the clinical trial stage.

CD47-SIRPa signaling pathway. Employing the strategies dis-

cussed earlier in the CD47-SIRPa signaling pathway could reveal
the potential of identifying and phagocytosing macrophages.

Signal Transduction and Targeted Therapy (2025)10:268

Several drugs that block this pathway have been tested for
therapeutic efficacy and toxicity in clinical trials (Table 3).

Monoclonal antibodies: Immunotherapy uses humanized 1gG4
anti-CD47 antibodies (Abs) or anti-SIRPa antibodies. First-
generation Abs, including CC-90002 and Magrolimab, exhibit off-
target effects, which lead to relatively severe hematotoxicity.
Moreover, the next-generation Abs Lemzoparlimab and Ligufali-
mab reduce off-target binding to red blood cells (RBCs), which
does not cause substantial hematotoxicity. Both generations block
CD47, which has been shown to enhance antitumor effects on
hematological malignancies and solid tumors. These drugs are
currently in clinical trials, with promising outcomes in the next-
generation group.

The first generation of anti-CD47 antibodies appears to have a
high incidence of off-target adverse effects. This is because CD47
is widely expressed in somatic cells, especially red blood cells
(RBCs), which cause adverse hematologic events, including
anemia and thrombocytopenia, and hematotoxicity seems to be
Fc dependent. Several clinical trials have been terminated because
of intolerable treatment-related adverse effects (TRAEs).??°2%?
With respect to the Fc portion of anti-CD47 monoclonal antibodies
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(mAbs), researchers have reported that the Fc-FcyR interaction is
required to fully trigger macrophage phagocytosis and maximize
antitumor effects.®> However, current anti-CD47 mAbs are mainly
humanized 1gG4, which lacks Fc-FcyR interaction. This finding
reveals the need for restructuring the Fc portion to achieve AE
alleviation and increased therapeutic efficacy.

Next-generation antibodies are targeted to minimize off-target
effects by reducing the binding of anti-CD47 Abs to RBCs and
platelets. Compared with previous anti-CD47 mAbs, significant
alleviation of AEs was observed in clinical trials. Patients with
CD20-positive non-Hodgkin's lymphoma in the relapsed and
refractory (R/R) state have a 100% disease control rate (DCR) with
manageable TRAEs, mainly Grade 1 or 2 TRAEs, after receiving
Lemzoparlimab.?** In addition, the strong tumor-targeting effect
indicates the effectiveness of RBC-sparing therapy. This provides a
new strategy for R/R patients and reveals the potential of
differentiated Abs.

Bispecific targeting antibodies: Anti-CD47 mAbs exhibit limited
therapeutic efficacy when combined with other therapies. This
limitation arises because, compared with conventional mono-
clonal antibodies that bind to a single antigen, bispecific
antibodies (bsAbs) can engage two distinct epitopes on the same
cell, increasing their affinity and activating or restraining diverse
signaling pathways.”®> This also helps shape the TME into an
antitumorigenic state with alterations in immune cell infiltration
and immune-related gene regulation.?®® The use of bsAbs enables
Fc-FcyR interactions, which traditional monoclonal antibodies’ IgG
portion cannot achieve, thereby activating key biological pro-
cesses such as antibody-dependent cell-mediated cytotoxicity
(ADCC) and antibody-dependent cellular phagocytosis (ADCP).
These processes significantly improve the efficacy of both
monotherapy and combination therapy, particularly in tumors in
which multiple ligands are expressed.?”” Furthermore, the design
of bsAbs with low CD47 affinity can reduce hematotoxicity,
addressing one of the major side effects associated with CD47
targeting.”®® Current co-targeting strategies with CD47, including
PD-L1, CD20, CD19, HER2, and 4-IBB (CD137), are being actively
investigated in multiple clinical trials. Moreover, additional targets,
including CD24, CD33, CD38, CD70, CD123, EGFR, and receptor
glypican-3 (GPC3), are under investigation in preclinical studies.
For signal-regulatory protein alpha (SIRPa), co-targeting with
4-1BB is also being studied, highlighting the promising future of
bsAbs in oncology, which has shown effective repolarization of
the TAM phenotype, promotion of phagocytosis, and a potent
ability to enhance immunotherapeutic effects?**%7 (Table 3).

CSF-1/CSF-1R signaling pathway.  As inhibiting CSF-1R could block
the CSF-1/CSF-1R signaling pathway, which is responsible for
macrophage differentiation and proliferation, re-education of
TAMs could lead to therapeutic therapy for advanced
tumors.3°83%° The FDA approved PLX3397 (pexidartinib), a CSF-
1R inhibitor, in 2019 as the first and only drug to target CSF-1R for
the treatment of malignant fibrous histiocytoma (TGCT), with
more drugs being in clinical trials. PLX3397 inhibition of CSF-1R
selectively impacts the viability and polarization processes of M2
macrophages, which also enhances cytotoxic CD8+ T-cell infiltra-
tion, thereby achieving a tumor-suppressive microenvironment by
halting the tumorigenic effects of crosstalk between tumors and
M2 TAMs without interfering with the antitumor effects of M1
macrophages.®'®*"" Preclinical evidence has shown that this
preferentiality could enhance the therapeutic effects of other
treatments, supporting the promising role of CSF-1/CSF-1R in
cooperation with other therapeutic drugs and its ability as a
prognostic factor.>'>*'? However, the hepatic toxicity of PLX3397
cannot be ignored and may be induced by the depletion of
resident macrophage Kupffer cells in the liver, resulting in
impaired physiological enzymatic clearance>'**'* Strategies
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targeting CSF-1/CSF-1R have focused mainly on CSF-1R inhibitors,
including small molecules and antibodies, while the latter seem to
be more likely to have immune-related adverse effects.'”

The current systematic administration of PLX3397 may cause
off-target adverse effects, which introduces the need for targeted
delivery. Nanotechnology enables precise drug delivery, enhances
therapeutic outcomes and reduces off-target effects. Codelivery of
CSF-1R inhibitors with other agents or cytokines via nanocarriers
can further reshape the immune microenvironment and
strengthen antitumor immunity. Hu et al.>'® used nanotechnology
to co-deliver IL-12-expressing genes and the CSF-1R inhibitor
PLX3397, effectively activating T-cell-mediated immunity and
reducing the number of M2-type TAMs more significantly than
single-drug delivery. This approach induced substantial changes in
the tumor microenvironment, demonstrating superior efficacy in
impeding M2 polarization.

CONCLUSION

Tumor-associated macrophages (TAMs), which act as both allies
and adversaries during cancer progression, are central players in
the tumor microenvironment. This review synthesizes decades of
research to unravel their complex biology, clinical relevance, and
therapeutic potential. TAMs, derived from circulating monocytes
or tissue-resident macrophages, are highly adaptive, polarizing
into different functional states—inflammatory M1 or immunosup-
pressive M2 phenotypes—according to signals from their
surroundings. M1 TAMs fight tumors through phagocytosis and
cytokine release, and M1 TAMs fight tumors through phagocy-
tosis, cytokine release, and immune activation, whereas M2 TAMs
drive tumor growth, angiogenesis, and immune evasion. However,
this M1/M2 dichotomy is oversimplified. Advances in single-cell
technology have led to the discovery of multiple TAM subpopula-
tions, such as thrombospondin-1+ (THBS-14+) macrophages in
hepatocellular carcinoma and FN1+ TAMs in gliomas, each with
unique transcriptional profiles and clinical significance. These
findings challenge traditional classification methods and empha-
size the need for a nuanced understanding of TAM heterogeneity.

The dual role of TAMs is governed by complex signaling
pathways. For example, the NF-kB and STAT3 pathways drive
protumorigenic functions such as angiogenesis and immunosup-
pression, whereas the CSF-1/CSF-1R axis regulates TAM recruit-
ment and survival. The CD47-SIRPa signaling pathway, a key “do
not-eat-me” signal utilized by tumors, has emerged as a key
therapeutic target. Blocking CD47 enhances phagocytosis by
macrophages, a strategy currently being tested in clinical trials.
Macrophages also interact dynamically with other immune cells:
M2 TAMs recruit regulatory T (Treg) cells via CCL22, suppress
CD8+ T cells via PD-L1, and inhibit NK cell activity, thus collectively
creating an immunosuppressive environment. Conversely, repro-
gramming M2 TAMs to an M1-like state via cytokines such as IFN-y
or TLR agonists restores antitumor immunity, highlighting their
plasticity and therapeutic potential.

In the clinical setting, TAM represents both a burden and an
opportunity. High M2 TAM infiltration is associated with poor
prognosis in cancers such as breast, colorectal and pancreatic
cancer, making it a valuable biomarker. For example, CD163+ TAMs
are predictive of shorter survival in triple-negative breast cancer
patients, while spatial distribution patterns provide additional
prognostic insights. Therapeutic strategies targeting TAMs aim to
eliminate TAMs, block their recruitment, or reprogram their
function. CSF-1R inhibitors such as PLX3397 reduce the number
of immunosuppressive M2 TAMs in preclinical models, whereas
anti-CD47 antibodies disrupt “do not-eat-me” signaling to promote
phagocytosis. Combining these approaches with chemotherapy or
immunotherapy holds promise for overcoming resistance.

Emerging therapies such as CAR-M cells represent a paradigm
shift. By modifying macrophages to express chimeric antigen
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receptors, researchers have created cells capable of selectively
targeting tumors, such as HER2+ cancers, while reprogramming
the TME. Early trials, such as those involving CT-0508, which
targets HER2-positive solid tumors, demonstrated its feasibility
and antitumor activity. Similarly, nanotechnology-driven delivery
systems can precisely reprogram TAMs in situ, minimizing off-
target effects. These innovations emphasize the potential of TAM-
focused therapies to complement existing therapies.

However, significant challenges remain. The M1/M2 framework,
while useful, fails to capture the full scope of TAM diversity
observed in human tumors. Single-cell studies have revealed
environmentally relevant subpopulations that cannot be simply
categorized; thus, multidimensional classification systems are
needed. For example, Kupffer cell-like TAMs in hepatocellular
carcinoma differ functionally from microglia-derived TAMs in
glioblastoma, reflecting tissue-specific adaptations. In addition,
therapeutic strategies that are successful in mice tend to fail in
humans because of compensatory mechanisms. CSF-1R inhibitors,
although effective at depleting M2 TAMs in preclinical models,
have limited clinical efficacy as monotherapies, in part because
tumors recruit alternative myeloid cell populations to maintain
immunosuppression. The metabolic flexibility of TAMs compli-
cates targeted therapies. M1 TAMs rely on glycolysis, whereas M2
TAMs favor oxidative phosphorylation, a dichotomy that is
affected by metabolites such as succinate and itaconic acid.
Drugs targeting metabolic enzymes can reprogram TAMs by
altering metabolite levels, but their effects vary by tumor type.
Similarly, organelle-specific interventions, such as modulating
mitochondrial fission in TAMs, show preclinical promise but
require deeper mechanistic validation.

Future research must prioritize several areas. First, integrating
multi-omics data—spatial transcriptomics, proteomics, and meta-
bolomics—will shed light on how TAM subpopulations interact
with other cells, such as cancer-associated fibroblasts and
endothelial cells, to form TMEs. Second, the development of
tailored therapies is critical. For example, TAMs in early-stage
tumors may require different targeting strategies than TAMs in
metastatic niches. Third, improved preclinical models—using
patient-derived organ tissues or humanized mice—will improve
translational relevance. Finally, the use of artificial intelligence to
analyze TAM heterogeneity and predict treatment response could
accelerate the development of personalized medicine.

In summary, TAMs are double-edged swords in cancer biology.
Their ability to inhibit or promote tumors depends on environ-
mental cues, making them dynamic therapeutic targets. While
current strategies, such as CSF-1R inhibition, CD47 blockade, and
CAR-M, are promising, overcoming resistance and environment-
dependent variability requires innovative approaches. By embra-
cing the complexity of TAM biology and advancing technologies
such as single-cell analysis and nanotechnology, novel therapies
that transform the TME from a barrier to a battleground for
immune-mediated tumor eradication can be developed. This
progress will depend on interdisciplinary collaborations that
bridge the gap between immunology, bioengineering, and clinical
oncology to provide lasting solutions for cancer patients.
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