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Computer vision in surgery: from potential to clinical value
Pietro Mascagni 1,2,3,12✉, Deepak Alapatt4,12, Luca Sestini 4,5, Maria S. Altieri3,6, Amin Madani3,7, Yusuke Watanabe3,8,
Adnan Alseidi3,9, Jay A. Redan10, Sergio Alfieri11, Guido Costamagna11, Ivo Boškoski 11, Nicolas Padoy2,4 and Daniel A. Hashimoto 3,6

Hundreds of millions of operations are performed worldwide each year, and the rising uptake in minimally invasive surgery has
enabled fiber optic cameras and robots to become both important tools to conduct surgery and sensors from which to capture
information about surgery. Computer vision (CV), the application of algorithms to analyze and interpret visual data, has become a
critical technology through which to study the intraoperative phase of care with the goals of augmenting surgeons’ decision-
making processes, supporting safer surgery, and expanding access to surgical care. While much work has been performed on
potential use cases, there are currently no CV tools widely used for diagnostic or therapeutic applications in surgery. Using
laparoscopic cholecystectomy as an example, we reviewed current CV techniques that have been applied to minimally invasive
surgery and their clinical applications. Finally, we discuss the challenges and obstacles that remain to be overcome for broader
implementation and adoption of CV in surgery.
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With over 330 million procedures performed annually, surgery
represents a critical segment of healthcare systems worldwide1.
Surgery, however, is not readily accessible to all. The Lancet
Commission on Global Surgery estimated that 143 million
additional surgical procedures are needed each year to “save
lives and prevent disability”2. Improvements in perioperative care
and the introduction of minimally invasive approaches have made
the surgery more effective but also more complex and expensive,
with surgery accounting for about one-third of U.S. healthcare
costs3. Furthermore, a large proportion of preventable medical
errors happen in operating rooms (OR)4. These observations
suggest the need for developing solutions to improve surgical
safety and efficiency.
The analysis of videos of surgical procedures and OR activities

could offer strategies to improve this critical phase of surgical care.
This is especially true for procedures performed with a minimally
invasive approach, which is being increasingly adopted globally5–7

and heavily relies on the visualization provided by fiber optic
cameras. In fact, in minimally invasive surgery the partial loss of
haptic feedback is compensated by magnified, high-definition
videos acquired by endoscopic cameras8. Endoscopic videos
guiding surgical procedures represent a direct and readily
available source of digital data on the intraoperative phase of
surgical care.
In recent years, the analysis of endoscopic videos of minimally

invasive surgical procedures has enabled the study of the impact
of OR activities on patient outcomes9 and the assessment of
quality improvement initiatives10. In addition, video-based assess-
ment (VBA) is being increasingly investigated for operative
performance assessment, formative feedback, and surgical cre-
dentialing. However, VBA has mostly remained confined to the
research domain given the burden of manually reviewing and
consistently assessing surgical videos11,12. Expanding on initial

successes in minimally invasive surgery, use of video has been
growing in open surgery as well13.
Computer vision (CV), a computer science discipline that

utilizes artificial intelligence (AI) techniques such as deep
learning (DL) to process and analyze visual data, could facilitate
endoscopic video analysis and allow scaling of applications for
the benefit of a wider group of surgeons and patients14.
Furthermore, while humans tend to grossly assess images
qualitatively, computer algorithms have the potential to extract
invisible, quantitative, and objective information on intraopera-
tive events. Finally, automated, online, endoscopic video
analysis could allow us to monitor cases in real-time, predict
complications, and intervene to improve care and prevent
adverse events.
Recently, several DL-based CV solutions mostly for minimally

invasive surgery have been developed by academics as well as
industry groups. CV applications range from workflow analysis to
automated performance assessment. While analogous digital
solutions are being clinically translated and implemented at scale
for diagnostic applications in gastrointestinal endoscopy15 and
radiology16, CV in surgery is lagging.
We discuss the current state, potential, and possible paths

toward the clinical value of computer vision in surgery. We
examined laparoscopic cholecystectomy, currently the most
studied surgical procedure for CV methods, to provide a specific
example of how CV has been approached in surgery; however,
many of these methods have been applied to robotic, endoscopic,
and open surgery as well. Finally, we discuss recent efforts to
improve access and methods to better model surgical data
together with the ethical, legal, and educational considerations
fundamental to delivering value to patients, clinicians, and
healthcare systems.
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COMPUTER VISION FOR LAPAROSCOPIC CHOLECYSTECTOMY
Cholecystectomy is the most common abdominal surgical
procedure, with almost one million cases performed in the US
alone each year17. The safety and efficacy of minimally invasive
surgery were demonstrated over two decades ago, and laparo-
scopy has since become the gold standard approach for the
removal of the gallbladder. Laparoscopic cholecystectomy (LC)
generally follows a standardized operative course, is performed by
most general surgeons, and is often one of the first procedures
introduced during surgical training. A relatively recent analysis
pooling data from more than five thousand patients confirmed
the safety of LC, reporting 1.6–5.3% and 0.08–0.14% overall
morbidity and mortality rates, respectively17. Nonetheless, iatro-
genic bile duct injuries (BDIs) still complicate 0.32–1.5% of LCs17,18,
rates higher than the incidence commonly reported in open
surgery19. BDIs resulted in a three-fold increase in mortality at one
year, a lifelong decrease in quality of life despite expert repair, and
were estimated to have an annual cost of about a billion dollars in
the U.S. alone20,21. Overconfidence in performing this very
common surgical procedure and variability in LC operative
difficulty have resulted in the scarce implementation of safety
guidelines and the consequent non-decreasing incidence of BDI.
Thus, the ubiquity and standardization of LCs have made this

procedure an attractive benchmark for CV research and develop-
ment in minimally invasive surgery22,23. In addition, the visual
nature and importance of BDI have incentivized both academia
and industry to develop CV solutions to solve this well-defined
clinical need. Finally, the public release of datasets of annotated
LC videos has boosted interest and facilitated research in the
field24.

Computer vision analysis
At the coarsest level, a surgery can be described by identifying the
procedure being performed. For example, automatic recognition
of the type of laparoscopic procedure from the first 10minutes of
surgical procedures has proven highly effective25. Though such
applications may not immediately seem clinically relevant, they
could serve to several indirect purposes, such as reducing
annotation efforts for more specific tasks26 or triggering
procedure-specific models without human intervention. Once
the type of procedure is identified, consensus suggests that
surgical procedures can be described both temporally and
spatially using a hierarchy of increasingly detailed descriptors or

annotations (Fig. 1)27. In practice, this hierarchy inherently
indicates a natural progression of increasingly complex tasks to
annotate and model.
At the coarsest temporal level, an entire surgical video can be

classified into phases, broad stages of surgical procedures, which
can be further broken down into more specific steps that are
performed to achieve meaningful surgical goals such as exposing
specific anatomic structures. In 2016, EndoNet first tackled the task
of surgical phase recognition using a convolutional neural
network (CNN) to automatically extract visual features, including
information on the appearance of surgical instruments, from LC
video frames24. A more detailed temporal analysis could be used
to recognize specific activities in surgical videos. Initial works on
the topic have formalized surgical actions as triplets comprising
the tool serving as the end effector, the verb describing the
activity at stake, and the anatomy being targeted (e.g., “grasper,
retract, gallbladder”)28.
At the briefest temporal extreme, the contents of a single frame,

such as the instruments or anatomical characteristics, may be
described. When applicable, these contents can be further
localized spatially, either loosely with markings such as bounding
boxes drawn around structures of interest or precisely with
segmentation masks delineating objects with pixel-level accuracy.
For spatial annotations, the degree of detail is defined by both the
type of annotation (e.g., bounding box vs. segmentation masks)
and the target being annotated (e.g., tools or tool parts). Further,
the relationships between different localized objects can also be
described, for example, to describe the interaction or relative
position between instruments and anatomical structures.
Invariably, the limiting factor for most clinical applications is the

availability of well-annotated datasets. Coarser labels, such as
classifying or qualitatively describing the content of a video
sequence rather than segmenting each frame, are less cumber-
some to annotate but may appear to serve less directly relevant
clinical applications. Nevertheless, coarse-grained labels could be
used for: (1) data curation and navigation to streamline the use of
video for VBA; (2) education by explaining the contents of a video
to trainees; and (3) documentation of and navigation to specific
data points to later annotate more details.

Surgical applications
Fundamental work on CV for temporal and spatial analysis of
endoscopic videos allowing automated surgical workflow and
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Fig. 1 Framework for the analysis of endoscopic videos. Temporal (a) and spatial (b) annotations at different resolutions are used to model
tasks at increasingly finer details.
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scene understanding is being translated to clinically applicable
scenarios. LC remains the procedure of choice for demonstrating
many such scenarios given its ubiquity and well-defined clinical
phenomena; thus, we discuss CV-enabled surgical applications for
postoperative video analysis and potential real-time intraoperative
assistance in LC. It is important to recognize, however, that such
applications are also being investigated for other minimally
invasive procedures, gastrointestinal endoscopy, and open
surgery23,29.

Quality improvement. Postoperatively, models for procedure
and surgical phase recognition could be used to automatically
generate structured and segmented databases to assist with
quality improvement initiatives. While such databases would
represent an invaluable resource for surgical documentation,
research, and education per se, the burden associated with the
manual analysis of large quantities of videos presents a
considerable bottleneck for adoption. Automated video analy-
sis could be used to digest these large collections of surgical
videos, retrieve meaningful video sequences, and extract
significant information. For example, full-length surgical videos
can be analyzed with phase and tool detection models to
identify intraoperative events and effectively produce short
videos selectively documenting the division of the cystic duct
and the cystic artery, the most critical phase of an LC30,31. While
this fairly simple approach could be applied to a variety of
procedures, adaptation to other use cases would still require
considerable development. Very recently, cutting-edge meth-
ods have enabled overcoming such barriers by allowing video-
to-video retrieval, the task of using a video to search for videos
with similar events32,33. In addition, models for phase recogni-
tion can also be used directly to automatically generate
standardized surgical reports of LC. When analyzing such
reports based on phase predictions, Berlet et al. found that
clusters of incorrectly recognized video frames, i.e. model
failures, could indicate complications such as bleeding or
problems with gallbladder retrieval34. Such events could be
linked with the electronic health record to gain insights on
patient outcomes after surgery.

Operative complexity analysis. CV models can be trained to
extract more nuanced information from videos such as
surrogates of LC operative difficulty. Since LC operative
difficulty correlates with gallbladder inflammation, Loukas
et al. trained a CNN to classify the degree of gallbladder wall
vascularity yielding performance comparable to expert sur-
geons35. Similarly, Ward et al. trained a CNN to classify
gallbladder inflammation according to the Parkland grading
scale, a 5-tiered system based on anatomical changes. This
classification then contributed to predictions of events such as
bile leakage from the gallbladder during surgery and provided
insights on how increases in inflammation correlate to
prolonged operative times36.

Operative assessment and feedback. CV models for tool detection
have been used to assess the technical skills of surgeons. In this
regard, Jin et al. showed that automatically inferred information
on tool usage patterns, movement range, and economy correlated
with performance assessed by surgeons using validated evalua-
tion metrics37. More recently, Lavanchy et al. have proposed to
transform automatically extracted tool location information into
time-series motion features to use as input of a regression model
to predict surgical skills, and distinguish good versus poor
technical performance38. However, these attempts at automati-
cally assessing technical skills have not been based on existing,
validated measures of skill; therefore, more research is required to
determine whether automated assessments of skill will supple-
ment or replace traditional assessment methods39.

Intraoperative decision support. We envision the uptake of AI to
assist during minimally invasive procedures (Fig. 2). In this setting,
real-time predictions from CV models could be used to guide
trainees, enhance surgeon performance, and improve commu-
nication in the OR. When starting an LC, CV models could
automatically assess the appearance of the gallbladder35,36, adjust
preoperative estimations of operative difficulty40, and suggest
whether that case is more appropriate for a trainee or an
experienced surgeon. Once the gallbladder is exposed, surgical
guidelines suggest using anatomical landmarks to help guide safe
zones for incision. For example, Tokuyasu et al. developed a model
to automatically detect such key landmarks with bounding
boxes41.
Similarly, deep learning models could be used to provide a

color-coded overlay on the surgical video that could ultimately
serve as a navigational assistant for surgeons. Madani et al. have
utilized annotations of expert surgeons to train GoNoGoNet to
identify safe and unsafe areas of dissection42. The endpoint of safe
dissection of the hepatocystic triangle is to achieve the critical
view of safety (CVS), a universally recommended checkpoint to
conclusively identify hepatocystic anatomy and prevent the visual
perception illusion causing 97% of major BDIs43,44. In this regard,
Mascagni et al. have developed a two-stage CV model to first
segment surgical tools and fine-grained hepatocystic anatomy to
then predict whether each of the three CVS criteria has been
achieved45.
While automated confirmation of the CVS can provide the

surgeon with additional assurance of anatomy, other CV tools can
ensure that clips are well placed, and no other structures are
inadvertently being clipped. To provide such assistance, Aspart
et al. recently proposed ClipAssistNet, a neural network trained to
detect the tips of a clip applier during LC46. If experienced
surgeons may find such assistance unnecessary and even trivial,
trainees and early career surgeons may benefit from the
reassurance that can be provided by real-time decision-support
algorithms such as GoNoGoNet, DeepCVS, and ClipAssistNet. Such
algorithms could serve as automated versions of surgical coaches
that can facilitate and augment decision-making in the OR39.

OR team dynamics. At a broader level, real-time workflow
analysis could be used to improve communication, situational
awareness, and readiness of the whole surgical team. Analyzing
surgical videos, phase detection models23 and algorithms to
estimate remaining surgical times47 can help track the progress of
the operation to assist OR staff and anesthesia in planning for the
current and next case. Furthermore, workflow analysis could help
detect deviation from an expected intraoperative course and
trigger an automated request for backup or a second opinion.
Finally, a visual postoperative summary of the intraoperative
events or “surgical fingerprint” could be analyzed with the
patient’s preoperative profile to assess the risk of postoperative
morbidity or mortality48.

KEY ENABLERS FOR COMPUTER VISION IN SURGERY
Despite the plethora of methods for automated analysis of LC
videos presented in the last few years, few AI-based CV systems
have been proposed to analyze other surgical procedures, with
most focused on minimally invasive procedures. This hinders
clinical impact, to the point that no CV application is currently
widely used in surgery.
Reasons for this lack of generalization and clinical translation

are manifold but largely center around the availability and quality
of data and performance of existing modeling approaches, two
key elements for CV in surgery which are intimately intertwined.
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Surgical data
Historically, surgical procedures were demonstrated in front of
trainees and peers in operating theaters with stadium-style
seating and windows for natural light. Now, however, operating
rooms (ORs) are one of the most siloed components of healthcare
systems. Information on OR events is usually only reported in
surgeon-dictated post-operative notes or indirectly inferred from
postoperative surgical outcomes. As such, it has long been difficult
to gather actionable insights on intraoperative adverse events
(AE), which occur in up to 2% of all surgical cases49. Consequently,
clinical needs were mostly identified anecdotally by interviewing
surgeons and key opinion leaders, a suboptimal practice prone to
biases.

Variability in surgical data collection. Today, a greater request for
surgical documentation, together with the ease of recording
endoscopic videos of minimally invasive surgical procedures, have
greatly improved our ability to observe intraoperative events and
work toward designing solutions to improve surgical safety and
efficiency. However, there is still not much uptake around
recording and analyzing surgical data. In a survey of members
of a large surgical society, Mazer et al. found surgeons recorded
fewer than 40% of their cases though wished up to 80% of videos
could be captured. Surgeons felt that lack of equipment,
institutional policies, and medico-legal concerns were obstacles
to recording cases50.
Concerns from surgeons and health systems fearing that

intraoperative data might be used against them may be
unfounded. A recent review on black box recording devices in
the OR has suggested that video data predominantly support
surgeons in malpractice cases51. Thus, institutions have largely
begun to implement an individualized approach to video
recording that suits their own needs. Some continue to prohibit

the storage of video, others allow it for select purposes but with
specifically outlined parameters (e.g., scheduled destruction of
data every 30 days), while others still encourage video recording
and storage for quality improvement, education, and research
purposes only. Therefore, institutions should engage in a review of
existing policies and engage stakeholders such as risk manage-
ment officers, malpractice insurance carriers, surgeons, and
patients to determine the best local strategy for video recording.
Clear institutional rules would guide surgeons who wish to record
their cases for any number of reasons, including but not limited to
use for surgical data science purposes.

Promoting data acquisition through behavioral incentives. Policies
and incentives may help to further shift the culture of surgical data
collection to favor greater operative data collection and use
amongst clinicians who may otherwise not consider the value of
intraoperative video and computer vision analyses. Institutions
that understand the value of video data can play a role in
incentivizing clinicians. As an example, AdventHealth, a large
academic health system in the United States (US), partnered with
a patient safety organization (PSO) to collect and analyze
voluntarily submitted data and provides feedback to clinicians,
to improve its quality improvement initiatives around operative
feedback52. In the US, PSOs were established by the Patient Safety
and Quality Improvement Act of 2005 and protect the patient
safety work products of voluntarily submitted data for quality
improvement purposes from civil, criminal, administrative, and
disciplinary proceedings except in narrow and specific circum-
stances. PSOs are organizations that are independent of a health
system and certified by the US Agency for Healthcare Research
and Quality (AHRQ).
Furthermore, AdventHealth offered continuing medical educa-

tion (CME) credits necessary for licensing renewals and ongoing

Resident Too low!a b

c d

e fVisible tips

Fig. 2 CV-based real-time assistance in laparoscopic cholecystectomy. Overviewed CV models could be used to evaluate the difficulty of a
case and whether it is fit for a surgical resident (a), to warn surgeons against incising below the appropriate site (b), to guide safe dissection
(c), to automatically evaluate safety measures (d), to prevent misapplications of clips (e) and to improve OR staff awareness and readiness.
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board certification as a further individual incentive to surgeons to
record and submit videos and review others’ videos for quality
improvement and educational purposes, such as peer review and
feedback. By combining statutory reassurance of privacy with
individual incentives in the form of CME, this health system has
encouraged voluntary submission of video data from a majority of
its surgeons. Such protections and incentives should be con-
sidered by other health systems to encourage voluntary
participation not just in quality improvement programs but also
in efforts to develop CV algorithms that can facilitate such quality
improvement initiatives. Ultimately, improved incentives and
clearly regulatory guidelines could expand the list of publicly
available datasets on which CV algorithms could be developed
and tested53.

Limitations in quality of data. It is not merely the quantity of
available data that limits the clinical value of computer vision
applications but also the quality of that data. While standardized
measurements with predictable variability can be utilized in
tabular data, such as laboratory values for hemoglobin or
creatinine, defining clinical phenomena in surgical videos (i.e.,
annotation) can be quite difficult. Open surgery presents unique
challenges that occur with occlusion of video data from the
surgeon’s own movements, necessitating multiple camera angles,
additional sensors, or algorithmic approaches to overcome
occlusion and consider the added complexity of hand-tool
interactions54–56.

Improving data quality. Clear annotation protocols with exten-
sive annotator training are necessary to ensure that temporal and
spatial annotations on surgical videos are clear, reliable, and
reproducible. The goals of a given project can help to define the
annotation needs and should be clearly established a priori to
ensure that appropriate ground truths are established and
measured. In addition, annotation protocols should be publicly
shared to favor reproducibility and trust by allowing others to
collaborate while enabling independent assessment of the ground
truth used for training and testing CV models57. Ward et al.
provide greater detail on the difficulties of annotating surgical
video and suggest several key steps that can mitigate against poor
or inapplicable model performance related to subpar or inap-
propriate annotation58.

Artificial intelligence methods
As more and more clinical applications are identified, progres-
sively effective techniques are being introduced to model these
applications and bring value to patients. Beyond application-
specific modeling, methods are also being developed to help
circumvent or mitigate the technical, regulatory, ethical, and
clinical constraints endemic to surgery.

Methods for better leveraging data. To develop effective clinical
solutions, AI models are often trained to replicate expert

performance from large quantities of well-annotated data (i.e.,
fully supervised learning). While leading to unprecedented results
in medical image analysis59, this learning paradigm is highly
dependent on the availability of large annotated datasets. Its
sustainability is, therefore, severely limited by issues like strict
regulatory constraints on data-sharing and the opportunity cost
for clinicians to annotate the data, which make the generation of
large datasets far from trivial60. These issues are further
compounded by the need to well-represent and account for
variations between patients (anatomy, demographics, etc.),
surgeon interactions (workflow, skills, etc.), and OR hardware
(instruments, data acquisition systems, etc.).
Several solutions have been explored to increase the amount of

data available, such as using synthetically generated datasets61 or
artificially augmenting available annotated datasets62. Still,
sufficiently modeling the range of possible interactions remains
an open problem. Recently, approaches for decentralized training
(e.g. federated learning) have begun to gain traction63, allowing
learning from data at remote physical locations, mitigating privacy
concerns, and raising the hope of greater data accessibility.
However, even with large quantities of data available, quality

annotations are still scarce and expensive to produce. To reduce
the dependency on annotations, different solutions have been
proposed, leveraging the intrinsic information present in unla-
beled data or repurposing knowledge acquired from different
tasks and domains. Self-supervised approaches aim at learning
useful information from large amounts of unlabeled data by
formulating pre-text tasks which do not require external annota-
tions64. Semi-supervised approaches also leverage large quantities
of unlabeled data but combine them with small amounts of
annotated data. This strategy often involves artificial labeling of
unlabeled data, guided by some available labeled data65,66.
Weakly supervised methods aim to refine readily available but

noisy annotations, such as crowd-sourced labels67, or to repurpose
existing annotations collected for different tasks (e.g. learning
surgical tool localization using non-spatial annotations such as
binary tool presence68). When such annotations are available
concurrently with target-task annotations, multi-task training can
be carried out (e.g. using tool presence signals to help inform
which surgical phase is being carried out and vice-versa)24.
Alternatively, transfer-learning approaches help repurpose infor-
mation learned from different tasks and/or domains, for which
annotated datasets are more readily available, and apply it to the
domain and task of interest (Table 1). A common example is
employing transfer learning from large, well-labeled, non-surgical
datasets such as ImageNet69. Domain adaptation is another
popular transfer-learning paradigm when dealing with data
coming from similar domains as the target one, such as synthetic
surgical datasets61.

Methods for trustworthy AI. Even as increasingly effective models
are being developed for various clinical applications, technical
methods are also required to equip surgical staff with the means
to explain AI predictions, interpret the reasons behind them,

Table 1. Common approaches to reduce annotation dependency when learning to perform a task (target task) in a specific domain (target domain).

Training Annotations

Available for target task Available for different task Not available

Training data From target domain Augmentation Weakly-supervised learning
Multi-task learning

Self-supervised learning
Semi-supervised learning

From different domain Transfer learning (Domain adaptation) Transfer learning
(e.g. from ImageNet)

The table reports approaches to facilitate such learning given data from target/different domains, and annotations available for target/different tasks or not
available.
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estimate predictive certainty, and consequently build confidence
in the models themselves. These considerations are only now
beginning to be addressed in healthcare applications70 and are
particularly glaring in the case of “black-box” algorithms like deep
learning-based methods where the relationships between input
and output are not always explicit or well-understood. Here,
establishing, formalizing, and communicating causal relationships
between features of the input and the model output could help
mitigate dangerous model failures and potentially inform model
design71. It is also important to formalize processes to identify,
record, and respond to potential sources of error both before and
after model deployment. To this end, Liu et al. present a
framework for auditing medical artificial intelligence applica-
tions72.
Future work could look beyond these issues to methods that

can identify when dealing with unfamiliar data (out-of-distribu-
tion). Aside from enabling clinicians to make informed decisions
based on the reliability of the AI system in specific settings, this
could also help researchers recognize and address data selection
biases and other confounding factors present in the datasets used
to train these models.

Methods for AI translation. Each clinical application demands
specific conditions to be satisfied in order to be delivered in a
timely and appropriate manner in line with existing technical and
clinical workflows. As several methods are developed to serve and
support various stakeholders during different stages of periopera-
tive care, both hardware and software optimizations will also need
to be carefully considered. Acceptable latency, errors, and
ergonomic interfaces are all key factors in this discussion. For
example, certain optimizations such as running these models with
reduced precisions may help dramatically reduce the

computational infrastructure needed to deploy these models
but may degrade performance. For less time-sensitive applica-
tions, cloud computing has been explored for AI-assistance and
navigation but is limited by network connectivity73.

ETHICAL, CULTURAL, AND EDUCATIONAL CONSIDERATIONS
The approaches we have reviewed demonstrate that modern
methods have the technical capability to translate computer
vision advances to surgical care. However, several obstacles and
challenges remain to unlock the potential of computer vision in
surgery (Fig. 3). While OR translation, clinical validation, and
implementation at the scale of CV solutions are surely funda-
mental to delivering the promised surgical value, these steps
involve multiple stakeholders - from device manufacturers to
regulators - and remain largely unexplored today. Here we focus
on ethical, cultural and educational considerations important to
surgeons and their patients.
Several ethical questions must be addressed, including data

safety and transparency, privacy, and fairness and bias74. Ongoing
discussions are occurring at both the national and international
levels to determine how best to protect patients without
prohibiting innovations in data analysis that could yield safer
surgical care. Considerations for data safety, transparency, and
privacy include concepts of informed consent by patients, security
of data, and data ownership and access, including whether
patients have the right to control and oversee how their personal
data is being used.

Fig. 3 Obstacles and possible solutions for CV in surgery. Behavior and technical/operational obstacles can limit the development and
implementation of CV models in surgery. A combination of statutory, behavioral, and operational changes in the regulatory, clinical, and
technical environments could result in improvements in the application of CV for surgery. AI artificial intelligence, PSO patient safety
organization, CME continuing medical education, OR operating room.
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Patient perspectives on video data
In a qualitative analysis of 49 patient perspectives of video
recording via a hypothetical “black box” system that could capture
all surgical data in the OR, 88% of patients felt that any ownership
of video data belonged to them as opposed to the hospital at
which their care was received or to the surgeon who performed
their operations75. Regulations around ownership, privacy, and use
of identifiable and pseudonymized data vary by country (and even
by the state, local, and institutional rules) so research efforts have
largely been siloed to individual institutions or local consortia
where it may be easier to define who owns data under a given
legal infrastructure and how it can be used. As efforts continue to
better understand the needs of the field in developing technology
that could prove lifesaving for surgical care, it will be critically
important to ensure that patients are included and prioritized in
discussions that concern the use of data generated through their
health encounters.
Patients could be a strong advocate for computer vision

research in surgery, as many report perceiving that a benefit of
video recording is to enable an objective record of the case to
assist in future care and serve as medico-legal protection for both
the patient and the surgeon. Importantly, patients highlighted
their desire for such data to be used for continuous quality
improvement75. The use of computer vision models such as those
we have previously described can facilitate each of these benefits
today as context-aware algorithms can automatically index cases
for rapid review and post hoc use of guidance algorithms can
provide visual feedback to surgeons. Indeed, some institutions are
using these technologies to facilitate discussions at weekly
morbidity and mortality conferences for quality improvement
purposes.

Bias and transparency of datasets
Additional considerations regarding fairness and bias of
datasets that affect model performance and lack of algorithmic
transparency have also been highlighted in recent publica-
tions76,77. Bias in datasets must be acknowledged and
considered, especially given that many current and future
datasets will be obtained from laparoscopic and robotic
platforms that may not be as accessible to low- and middle-
income countries. It is also important for researchers to
recognize that bias can be introduced at the level of each
operation, as surgeons carry with them the influence of their
training and prior operative experience in surgical decision-
making. The amalgamation of such influences will undoubtedly
introduce bias into datasets that could impact model perfor-
mance and thus the generalizability of CV tools in surgery.

Collaboration to overcome barriers to computer vision
research in surgery
As the importance of bias in datasets and the need for
representative, generalizable data has been increasingly recog-
nized, efforts have grown around expanding the collaborative
nature of AI research for surgery. For example, the Global
Surgical Artificial Intelligence Collaborative (GSAC), a nonprofit
organization dedicated to promoting the democratization of
surgical care through the intersection of education, innovation,
and technology, has been facilitating research collaborations
across institutions in the US, Canada, and Europe by providing
tools for annotation, data sharing, and model development that
meets regulatory standards of each of the participating
institutions’ home countries. Focused efforts such as GSAC
can lower the barrier of entry for institutions and individuals
without significant access to either data or computational
resources by facilitating cost sharing, providing infrastructure,

and expanding access to both technical and surgical expertise
for collaborative work.

Data science education for clinicians
Finally, education in surgical data science is of paramount
importance, both to ensure that current clinicians can understand
how computer vision and other AI tools impact their decision-making
and patients and to enable future generations to contribute their
own insights into developing newer, more sophisticated tools. The
Royal College of Physicians and Surgeons of Canada has recently
identified digital health literacy as a potential new competency for
Canadian physicians in specialty practice, highlighting the impor-
tance of new careers that combine medical knowledge with
graduate education in AI as well as multidisciplinary clinical teams
that incorporate data scientists and AI researchers78. A similar
conclusion was reached in the UK’s Topol Review on preparing the
healthcare workforce for a digital future in the National Health
Service (NHS), and the NHS subsequently established Topol Digital
Fellowships to teach digital transformation techniques79. Institutional,
interdisciplinary fellowships are now being established to promote
greater clinician literacy in AI topics and greater understanding of
clinical problems and workflow by engineers and data scientists.
Additionally, institutions such as IHU Strasbourg are offering short,
intensive courses in surgical data science to both clinicians and
engineers/data scientists to promote interdisciplinary education and
collaboration.

CONCLUSION
Computer vision offers an unprecedented means to study and
improve the intraoperative phase of surgery at scale. As both the
clinical and data science communities have begun to converge on
advancing research and scientific inquiry on how best to utilize CV in
surgery, several proof-of-concept applications of potential clinical
value have been demonstrated in minimally invasive surgery. Key
efforts to generalize such applications focus around streamlining
access to surgical data and better modeling methods, always
considering the cultural and ethical aspects intrinsic to patient care.
As CV in surgery matures, broader societal involvement will be
necessary to ensure the promises of CV in surgery are translated
safely and efficaciously to assist in the care of surgical patients.
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