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1  |  INTRODUC TION

Suitable statistical models are vital for monitoring species' popula-
tions at a time of climate change, habitat degradation, and consequent 
major loss of biodiversity. The generalized abundance index (GAI, 
Dennis et al., 2016) provides a useful tool for modeling count data 
which exhibit variation in numbers within a season, and can take sev-
eral different forms, including parametric and non- parametric alter-
natives. The development of the GAI was motivated by an application 

to invertebrates, specifically butterflies, which have multistage 
life cycles, where counts are usually only made of the most visible 
adult stage. Counts within a season typically fluctuate as individuals 
emerge, reproduce and then die off, with one or more generations/
broods of adults apparent per year. Long- term monitoring schemes 
often consist of many sites over many years, and previous modeling 
approaches were often time- consuming to run. The need for more 
efficient data analysis motivated the development of the GAI, which 
also offers flexibility in describing seasonal variation in count data.
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Abstract
The generalized abundance index (GAI) provides a useful tool for estimating rela-
tive population sizes and trends of seasonal invertebrates from species' count data 
and offers potential for inferring which external factors may influence phenology 
and	demography	through	parametric	descriptions	of	seasonal	variation.	We	provide	
an R package that extends previous software with the ability to include covariates 
when fitting parametric GAI models, where seasonal variation is described by either 
a mixture of Normal distributions or a stopover model which provides estimates of 
life span. The package also generalizes the models to allow any number of broods/
generations in the target population within a defined season. The option to perform 
bootstrapping, either parametrically or nonparametrically, is also provided. The new 
package allows models to be far more flexible when describing seasonal variation, 
which may be dependent on site- specific environmental factors or consist of many 
broods/generations which may overlap, as demonstrated by two case studies. Our 
open- source software, available at https://github.com/calli ste- fagar d- jenki n/rGAI, 
makes these extensions widely and freely available, allowing the complexity of GAI 
models used by ecologists and applied statisticians to increase accordingly.

K E Y W O R D S
flight period, generalized abundance index, multivoltine, phenology, seasonal abundance, 
stopover model

T A X O N O M Y  C L A S S I F I C A T I O N
Conservation ecology; Population ecology; Spatial ecology

http://www.ecolevol.org
mailto:
https://orcid.org/0000-0003-2692-4415
https://orcid.org/0000-0001-6786-4936
https://orcid.org/0000-0002-5465-8006
http://creativecommons.org/licenses/by/4.0/
mailto:edennis@butterfly-conservation.org
mailto:edennis@butterfly-conservation.org
https://github.com/calliste-fagard-jenkin/rGAI


2 of 7  |     DENNIS et al.

Here,	we	outline	the	GAI	approach;	 full	details	are	provided	 in	
Dennis et al. (2016).	Within	a	single	year,	suppose	that	counts	are	
recorded at S sites each visited on at most T occasions. Each count 
yi,j for the ith site and jth visit is regarded as a realization of a discrete 
random variable, for example Poisson (alternative distributions are 
described later), with expectation

where Ni represents relative total abundance for site i, and ai,j denotes 
a function describing seasonal variation in counts in terms of a small 
set of parameters. Estimates of abundance are relative since not all 
individuals present during a visit will be observed, and detection is 
assumed to be constant (but see Matechou et al., 2014). Variation in 
transect length is also not accounted for, but could be by appropriately 
scaling Ni. The GAI encompasses three options for ai,j which describe 
seasonal variation in counts:

• Splines— seasonal variation is described by a flexible curve repre-
senting ai,j, for example using B- splines (Dennis et al., 2016). The 
ai,j are scaled to sum to unity, such that they describe how Ni is 
spread over the season. The seasonal curve is typically assumed 
to be the same across all S sites and the smoothness of the curve 
is defined by the number of knots for the spline. This option cor-
responds closely with the method previously developed for mod-
eling butterfly count data (Dennis et al., 2013) and is the approach 
typically used for abundance trend reporting— see for example 
Brereton et al. (2020); Fox et al. (2021).

• Mixture model— seasonal variation is taken as a mixture of B 
Normal probability density functions (corresponding to one or 
more broods within a year) so that

where ti,j denotes the jth occasion, which is the time during the 
season typically measured by day or week, and wi,b, μi,b and σi,b cor-
respond to the weight, mean, and standard deviation, respectively, 
for the ith site and bth brood, and 

∑B

b=1
wi,b = 1, B ≥ 1.	The	weights	

wi,b describe the relative sizes of the B broods with respect to each 
other. As in the spline case, the mixture model is a phenomenological 
model, where the ai,j effectively describe how Ni is spread over time, 
where ai,j integrate to unity.

• Stopover model— this is based upon the model proposed in 
Matechou et al. (2014) which incorporates parameters relating to 
butterfly life span, that is, lifetimes of individual adult butterflies, 
by estimating survival probabilities. In brief,

for j = 1,…,T and c = k − d + 1,	where	βi,d- 1 are the proportions of indi-
viduals emerging at visit d, such that 

∑T

d=1
� i,d−1 = 1 for site i, which are 

described by appropriate areas under a mixture of B Normal densities,

where Fi,b
(

ti,d
)

= Pr
(

X ≤ ti,d
)

 for X ∼N
(

�i,b�
2
i,b

)

, with mean emergence 
date μi,b, standard deviation σi,b, and weighting wi,b. ϕk,c is the proba-
bility an individual present for c occasions and present at visit k, will 
remain until visit k + 1.	Since	ϕk,c represents apparent survival proba-
bility from one visit to the next, adult life spans may be estimated by 
1∕(1−ϕk,c). Unlike the spline and mixture models, the stopover model 
proposes a mechanism, of which the Ni	are	a	part	of.	Hence,	the	model	
results in complex bounds on the ai,j, where it is the emergence pa-
rameters βi,d- 1 which sum to unity. See Matechou et al. (2014) for full 
details of this model.

Where	counts,	yi,j, are assumed to be Poisson, efficient model fit-
ting of the GAI is achieved by maximizing a concentrated (or profile) 
likelihood with respect to only the parameters associated with {ai,j} and 
estimating each Ni by suitably scaled site totals. An iterative approach 
is taken when assuming negative binomial and zero- inflated Poisson 
distributions, as explained in Dennis et al. (2016).

To date, the GAI has primarily been adopted as a method for 
producing species' abundance trends— for example, it is used an-
nually for reporting of UK butterfly trends (Brereton et al., 2020), 
which contribute to UK biodiversity indicators (Department for 
Environment, Food and Rural Affairs, UK, 2020). The approach has 
also been used in status assessments for larger moths in Britain 
(Fox et al., 2021; Randle et al., 2019), and in analyses of European 
butterfly populations (Van Swaay et al., 2020).	Where	the	specific	
goal is to produce abundance trends, the spline option for describing 
seasonal	variation	is	used.	Here,	flight	periods	are	typically	assumed	
to be fixed over sites (as originally developed using generalized ad-
ditive models, Dennis et al., 2013), or geographical subsets of them 
(Schmucki et al., 2016).

However,	the	GAI	presents	wider	opportunities	for	further	insights	
into seasonal count data, particularly through the application of the 
parametric descriptions of seasonal variation from the mixture and 
stopover models. The rGAI package therefore extends previous soft-
ware to provide accessible code that can accommodate the inclusion of 
relevant covariates, as well as any number of broods within a defined 
season. The package also provides the opportunity for wider explora-
tion of stopover models, including estimating species' life spans.

2  |  rGAI PACK AGE OVERVIE W

The rGAI package extends the software made available in the supple-
mentary materials of Dennis et al. (2016). Model fitting is by maximum- 
likelihood, and model parameters are transformed using combinations 
of logarithmic (e.g., for μ and σ) or logistic (e.g., for w and ϕ) link func-
tions. rGAI functions with simple inputs allow survey data to first be 
verified (for duplicate or missing entries across time, or across sites). 
Then, initial values can be selected for the model fitting process, ac-
counting for the appropriate link scale. The GAI with the mixture 
or stopover model description for seasonal variation can be fitted 
with covariate inclusion for parameters of interest, and measures of 
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uncertainty on parameter estimates can be produced using bootstrap-
ping methods. Table 1 details the most important functions in the rGAI 
package and provides a brief description of their intended use. The 
rGAI package also includes a markdown vignette file, with a tutorial- 
style presentation of all of the package's functionality, as well as instal-
lation instructions. The latest version of rGAI is made freely available 
at https://github.com/calli ste- fagar d- jenki n/rGAI.

Covariates can be included in the linear predictors for the mean 
emergence date of individuals {μi,b}, the standard deviation of each 
component {σi,b}, and the weightings {wi,b}. Covariate formulae can be 
specified individually for each brood, or be shared by all broods, for 
all count distributions (Poisson, negative binomial, or zero- inflated 
Poisson). The package flexibly allows any number of broods within 
a season, and includes appropriate custom link functions for the 
relevant parameters, for example to ensure that for the case B = 3, 
μ1 < μ2 < μ3 and w1 + w2 + w3 = 1.

The package vignette, as well as two examples below, provide 
concrete examples of how this flexibility may be used to produce 
models that are more representative of underlying species biology 
than was possible with previous available software.

3  |  E X AMPLES

We	now	demonstrate	usage	of	the	rGAI	package	via	two	examples.	
These examples are presented to illustrate the general capabilities 
of the rGAI package for modeling seasonal count data, rather than 
providing full statistical analyses.

Both	examples	 feature	 seasonal	 count	data	 for	2018	 from	 the	
UK Butterfly Monitoring Scheme (UKBMS, Brereton et al., 2020). 
The scheme consists of a long- running network of transects at 
which counts of butterflies are made on a weekly basis from April 
to September under standardized, favorable weather conditions 
(Pollard	&	Yates,	1993).

3.1  |  Incorporating covariates

We	illustrate	the	usage	of	covariates	in	the	rGAI	package,	to	allow	
for seasonal variation in counts to vary over space, by application 
to data for the Common Blue, Polyommatus icarus. This species is 
known to be bivoltine in the south of the UK, with two generations 
of adult butterflies per season, but univoltine further north, with a 
single peak in counts per season, as discussed in Asher et al. (2001, 
p. 47), and demonstrated by Matechou et al. (2014) using a stopover 
model.

Here,	 the	 rGAI	 package	 was	 used	 to	 fit	 a	 GAI	 with	 Poisson	
distribution and a stopover model to describe seasonal variation, 
where mean emergence dates were regressed linearly on northing 
for both broods, and the weighting parameter was described as a 
quadratic function of northing. Parameter estimates are given in 
Table 2, with constant survival probability, ϕ, and constant stan-
dard deviations for each brood (σ1 and σ2). The transform_out-
put function was used to produce parameter estimates on the 
parameter scale for specified covariate values (northing), which 
are shown in Figure 1, as well as estimates of seasonal pattern, 

Function Description

extract_counts Extracts a table of counts across sites and occasions from an input 
data.frame, to facilitate data cleaning and visualization

transform_
starting_
values

Produces a set of initial parameter values on the link scale, given user 
inputs on the parameter scale

fit_GAI Fits GAI models, with any number of broods, with a spline, mixture 
model, or stopover model to describe seasonal variation. Counts 
can be modeled with a negative binomial, Poisson, or zero- inflated 
Poisson distribution

bootstrap Produces bootstrap confidence intervals for all parameters by either 
resampling them from their asymptotically Normal distribution 
(parametric bootstrap), or re- fitting models by resampling sites 
(non- parametric bootstrap). Bootstraps can be provided on the link 
or parameter scale

transform_output Transforms parameter estimates from the link scale to the parameter 
scale, with custom covariate values, or those observed in the data

transform_
bootstrap_
parameters

Transforms bootstrap confidence intervals of parameter values from 
the link scale to the parameter scale, for custom covariate values

plot Produces plots of fitted GAI models, with the option of scaling curves 
by the site total, or producing plots showing variation between 
sites due to covariate values

AIC Extracts Akaike's information criterion for a fitted GAI model

summary Produces a summary of a fitted GAI model, with parameter estimates 
and standard deviations for parameters, on the link scale

TA B L E  1 Description	of	key	functions	
in the rGAI package.

https://github.com/calliste-fagard-jenkin/rGAI
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which are presented in Figure 2. Figures 1 and 2 illustrate the 
gradual delay in mean emergence date with increasing northing, 
along with the increasing closeness of the two broods, until the 
species' seasonal pattern shows only one generation in the most 
northern parts of the UK.

This brief example is based upon data for a single year, but ap-
plication to multiple years offers the potential to assess analytically 

how the change from two to one broods might vary over time, for ex-
ample due to climatic factors, as well as consider whether changes in 
abundance for different broods are in synchrony (Asher et al., 2001, 
p. 162).

By fitting the GAI with a stopover model, an estimate of survival 
was also obtained (�̂ = 0.47), with a 95% confidence interval of (0.45, 
0.49), produced by a parametric bootstrap. Application to multiple 
years would allow for assessment of potential changes in species' 
lifespans over time, as demonstrated for two butterfly species in 
Dennis et al. (2016).

3.2  |  Modeling multiple broods

The mixture and stopover model formulations of the GAI are de-
scribed in Dennis et al. (2016) in terms of any general number of 
broods/generations, B, within a year/season, but to date, code for 
a general number of broods has not been widely available; hence, 
applications have been limited to a maximum of B = 2, with the 
exception of a small simulation example for the stopover model in 
Matechou et al. (2014) which considered values up to B = 3. The 
rGAI package extends existing code to allow for any number of 
broods.

Here,	 we	 demonstrate	 application	 of	 the	 package	 to	 data	 for	
Small Copper, Lycaena phlaeas, for which the overall seasonal pat-
tern suggests three broods within a year, with the third brood at the 
end of the monitoring season (Figure 3). Using the mixture model 
formulation, we fit and compare several models for varying B = 1, 
2, 3, as well as different distributions (Poisson, zero- inflated Poisson 
and negative binomial), and fixed or individual standard deviations, 
σ, which describe the variation in flight period lengths. Note that this 
was not an exhaustive model comparison.

TA B L E  2 Parameter	estimates	(with	standard	errors,	SE)	for	the	
GAI, fitted with Poisson distribution and stopover model, applied 
to	UK	count	data	for	the	Common	Blue	butterfly	in	2018,	where	
μ1 is the mean emergence for the first brood, μd is the difference 
between mean emergence times μ1 and μ2, and w1 is the weighting 
of the size of the first brood with respect to the second brood, such 
that w1 + w2 = 1.

Parameter Estimate SE

�1(intercept) 2.334 0.003

�1(northing) 0.142 0.002

�d(intercept) 1.964 0.004

�d(northing) −0.168 0.003

w1(intercept) −0.438 0.019

w1(northing) 0.790 0.020

w1

(

northing2
)

0.241 0.018

σ1 1.572 0.017

σ2 1.292 0.026

ϕ 0.468 0.009

Note: As they vary with northing, estimates for μ1, μd and w1 are shown 
on the link scale (log link for μ and logistic link for w1). See estimates on 
the parameter scale in Figure 1. Estimates for the standard deviation 
of the emergence period for each brood, σ1 and σ2, and weekly survival 
probability, ϕ, are constant, and therefore shown on the parameter 
scale.

F I G U R E  1 Parameter	estimates	of	mean	emergence	times,	μ1 and μ2, and mixing probability, w1, from fitting the GAI with Poisson 
distribution	and	a	stopover	model	to	counts	of	the	Common	Blue	butterfly	in	2018,	with	varying	northing.	For	μ1 and μ2, week 1 corresponds 
to the start of April. 95% confidence intervals derived by parametric bootstrap are shown.
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Based on AIC, the model correctly identifies the species as hav-
ing three broods (Table 3) and indicates the negative binomial distri-
bution to be the most suitable, as well as individual estimates of σ, 
for each brood, suggesting that the time period for each brood var-
ies in length. Although we use AIC for illustration here, alternative 
model selection approaches could be used, such as other informa-
tion criteria or tests based directly on likelihood values.

Transformed parameter estimates for the best- fitting model are 
given in Table 4, along with 95% confidence intervals produced using 
a parametric bootstrap. Using a bootstrap also allows for the pro-
duction of a confidence interval for other quantities of interest, for 
example, the estimated seasonal pattern, ai,j, estimates of relative 
site abundance, Ni, and predicted counts, avoiding the use of the 
delta method which is likely to be complex in these cases.

This example demonstrates the potential of the GAI for modeling 
species with more than two generations within a season, and wider 

application could again involve extension to analysis over multiple 
years, as well as the incorporation of relevant covariates to account 
for spatial variation as in the previous example.

4  |  DISCUSSION/FUTURE AVENUES

The rGAI package has been designed to provide easy- to- use soft-
ware for fitting the GAI, particularly with parametric descriptions of 
seasonal variation through mixture and stopover models. The ability 
to include covariates flexibly into parameters of interest offers the 
potential for further studies and improved understanding of spatio- 
temporal	variation	in	species'	phenology.	Hodgson	et	al.	(2011) con-
sidered variation in phenology over space and time using generalized 
additive models, but through parametric descriptions of seasonal 
variation, the GAI can provide simple phenological summaries from 
parameters of interest, as well as separately for each brood, thus 
offering opportunities beyond many previous phenology studies 
which have been limited to species exhibiting a single peak in abun-
dance or to the first generation only (Bell et al., 2019; Macgregor 
et al., 2019; Roy et al., 2015).

Generalization to accommodate any number of broods/genera-
tions within a season provides the opportunity for application of the 
GAI to species which are known to exhibit more than two broods per 
year, as well as to species with a less predefined number of broods, 
which may vary over space and time when species show phenotypic 
plasticity in voltinism and phenology (Macgregor et al., 2019). The 
rGAI package provides opportunities to better test for and identify 
such variation. Although this is applicable for several multivoltine 
butterfly species in the UK, there is even greater potential/relevance 

F I G U R E  2 Estimated	seasonal	pattern	for	a	sample	of	northing	
values	(each	100 km,	from	50	to	950 km)	from	fitting	the	GAI	
with Poisson distribution and a stopover model to counts of 
the	Common	Blue	butterfly	in	2018.	The	area	under	the	curve	
is the same for each northing value. The estimate of the mixing 
probability, w1, which describes the size of the first brood relative 
to	the	second,	is	given	for	each	northing	value	at	100 km	intervals.	
Week	1	corresponds	to	the	start	of	April.

F I G U R E  3 Observed	mean	count	per	week	(black	circles),	
averaged over sites, with 5% and 95% quantiles of all observed 
counts	shown	as	error	bars,	for	the	Small	Copper	butterfly	in	2018.	
The predicted mean count per week, averaged over sites, is shown 
in blue, along with predicted 5% and 95% quantiles for comparison. 
Predicted values are estimates from the best- fitting model from 
Table 3, for which parameter estimates are given in Table 4.	Week	1	
corresponds to the start of April.
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beyond the UK, for example in Europe where species may be multi-
voltine in warmer parts of their range. Models for multivoltine spe-
cies may also have increasing relevance as climate warming may lead 
to increases in species' voltinism (Altermatt, 2010).

In future releases of the rGAI package, we intend to allow sur-
vival ϕ to vary with respect to spatial covariates, or within the sea-
son in terms of time or age (Matechou et al., 2014). There is also the 
potential to account for variation in detection probability, to reduce 
bias in estimates of relative abundance, using relevant covariates 
(Matechou et al., 2014). The package can also be extended for multi- 
year fits and trend estimation; see for example Dennis et al. (2016). 
We	also	hope	that	researchers	may	contribute	new	developments	to	
the package; for example accounting for skewness in patterns of sea-
sonal variation/emergence would be of interest (Calabrese, 2012).

The GAI is also relevant for other taxa, for example birds 
on migration— see Matechou et al. (2013), beetles— see Dennis 
et al. (2021) who model the two- year life cycle of fuliginators, 
Iberodorcadion fuliginator— and bees— see Matechou et al. (2018) 
who use a dynamic stopover model to analyze citizen science data 
on bumblebees, from the BeeWalk	scheme.	We	anticipate	that	the	
rGAI package will enhance and enable further research by ecologists 
and applied statisticians, which can improve our understanding of 
changes in species' populations and phenology.
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TA B L E  3 Model	comparison	for	selected	GAI	fitted	with	mixture	
models applied to counts for the Small Copper butterfly, where n is 
the number of model parameters.

Model n AIC ΔAIC

P, B = 1 2 42,075 11,431

P, B = 2, σshared 4 42,081 11,437

P, B = 3, σshared 6 39,488 8844

ZIP, B = 3, σshared 7 35,731 5087

NB, B = 3, σshared 7 30,665 22

NB, B = 3, σ1,2,3 9 30,644 0

Note: Models are defined by the distribution used (P = Poisson, 
ZIP = zero- inflated Poisson, NB = negative binomial), the number of 
broods B, and, for B > 1,	whether	σ, the standard deviation for the 
flight period curves, are shared across broods or estimated per brood. 
AIC denotes the Akaike information criterion and ΔAIC denotes the 
difference for each model between its AIC value and the smallest 
AIC value in the set of fitted models. The best model corresponds to 
ΔAIC = 0.

TA B L E  4 Transformed	parameter	estimates	for	the	best-	fitting	
GAI model (based on the AIC values given in Table 3) applied to 
counts for the Small Copper butterfly.

Parameter Estimate Lower Upper

μ1 8.970 8.839 9.102

μ2 17.437 17.307 17.564

μ3 25.388 25.222 25.550

σ1 1.911 1.814 2.016

σ2 1.711 1.615 1.810

σ3 2.596 2.414 2.808

w1 0.064 0.060 0.068

w2 0.229 0.214 0.244

r 0.830 0.786 0.880

Note: 95% confidence intervals are provided based on a parametric 
bootstrap. The means and standard deviations of the flight period 
are denoted by μb and σb, for each brood b. w1 and w2 describe 
the weighting of the size of the first and second brood, where 
w1 + w2 + w3 = 1. r is the dispersion parameter for the negative binomial 
distribution.
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