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Simple Summary: The use of targeted therapies is revolutionizing the prognosis of many cancers;
however, there is still limited knowledge of their side effects. Dyslipidemia is often present in cancer
patients due to mechanisms that are directly or indirectly related to cancer or therapies. The aim of
our study is to investigate the effects of vemurafenib on lipid metabolism in a cohort of pediatric
patients treated for brain tumors. For the first time, we describe dyslipidemia as a possible side effect
of the BRAF inhibitors. A better understanding of the pathways that are involved in dyslipidemia
could also help with a better understanding of the drug-resistance mechanisms in cancer cells.

Abstract: BRAF inhibitors, in recent years, have played a central role in the disease control of
unresectable BRAF-mutated pediatric low-grade gliomas (LGGs). The aim of the study was to
investigate the acute and long-term effects of vemurafenib on the lipid metabolism in children treated
for an LGG. In our cohort, children treated with vemurafenib (1 = 6) exhibited alterations in lipid
metabolism a few weeks after starting, as was demonstrated after 1 month (n = 4) by the high plasma
levels of the total cholesterol (TC =221.5 & 42.1 mg/dL), triglycerides (TG = 107.8 & 44.4 mg/dL),
and low-density lipoprotein (LDL = 139.5 £ 51.5 mg/dL). Despite dietary recommendations, the
dyslipidemia persisted over time. The mean lipid levels of the TC (222.3 £+ 34.7 mg/dL), TG
(134.8 + 83.6 mg/dL), and LDL (139.8 £ 46.9 mg/dL) were confirmed abnormal at the last follow-up
(45 £ 27 months, n = 6). Vemurafenib could be associated with an increased risk of dyslipidemia. An
accurate screening strategy in new clinical trials, and a multidisciplinary team, are required for the
optimal management of unexpected adverse events, including dyslipidemia.

Keywords: BRAF; vemurafenib; lipid metabolism; cholesterol; triglycerides; dyslipidemia; brain
tumor; low grade glioma

1. Introduction

Low-grade gliomas are the most common central-nervous-system (CNS) tumors
among children [1]. The prognosis for these tumors is generally excellent, with the 10-year
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overall survival (OS) between 85 and 95% [2]. In pediatric low-grade gliomas (pLGGs),
several factors, such as grading, location, age at diagnosis, the extent of surgery, and
biological characteristics, influence the OS. A complete surgical resection, whenever feasible,
tends to be curative, and a wait-and-see approach can be adopted. pLGGs that cannot be
resected without the risk of permanently damaging important functions, or that progress
after resection, require additional therapy.

Chemotherapy can control tumors by up to 50% of pLGGs, and over 90% of patients
are still alive 20 years after radiotherapy [3]. Considering the excellent OS, the goal of the
medical therapy should be to ensure the stability of the disease and to minimize the early
and late effects of therapy. In the last decade, biological drugs have filled an important
void in the therapeutic armamentarium against pLGGs when they are not resectable and
are refractory or recurrent following standard chemotherapy regimens. In these cases,
treatment with biological/targeted therapy has the potential to prevent morbidities and
sequelae that are typically associated with chemo-radiotherapy, such as neurocognitive
impairment, ototoxicity, nephrotoxicity, peripheral neuropathy, and hypothalamic—pituitary
disfunction [4-6].

The understanding of the biological pathways that lead to pLGGs has allowed the
development of new biological therapies that directly interrupt these pathways. pLGGs
most frequently have somatic driver genetic alterations that converge on the activation of
the Rapidly Accelerated Fibrosarcoma/Mytogenic-Activated Protein Kinase (RAS/MAPK) path-
way [7]. Rearrangements that afflict the genes v-Raf murine sarcoma viral oncogene homolog
B1 (BRAF) and KIAA1549-BRAF are the most frequent somatic driver alterations across
all pLGGs [8,9]. The BRAF V600E mutation is reported in 20-35% of pLGGs [10,11], and,
in particular, it is found in 9% of pilocytic astrocytomas, 50% of gangliogliomas, and 66%
of pleomorphic xanthoastrocytomas [8,10]. The BRAF V600E mutation confers a worse
prognosis because of the insensitivity to traditional chemotherapy, and a higher propensity
toward malignant transformation in combination with CDKN2A deletion [12]. Hence,
inhibiting MAPK signaling by using small-molecule inhibitors, such as BRAF inhibitors
(BRAFi), may be a promising strategy in pLGGs [13-16]. It is also known that the various
combinations of MEKi and BRAFi can delay or prevent the occurrence of resistance to a
single therapy and may reduce side effects (SEs). [17-20]. These therapies may lead to a
rapid and prolonged response of the tumors [6,19,21,22]. As observed in other gliomas,
such as subependymal giant cell astrocytoma (SEGA), in which stopping the mammalian
target of rapamycin mTOR inhibitors (mTORIi) results in inevitable tumor regrowth, after
the discontinuation of BRAFi, up to 75% of patients experienced rapid progression in a few
weeks. However, upon rechallenge with BRAFi, 90% achieved an objective response [23].

Unfortunately, BRAFi are not free from the development of toxicity and adverse events
(AE), and most of them have been reported in adult populations with melanoma, in which
these new therapies are most commonly used, while few studies are available on pLGGs.
Vemurafenib (a second-generation BRAFi) has already been studied in the treatment of
BRAF V600E e V600K mutation-positive melanoma in the BRIM-3 Trial of 337 adult pa-
tients. In this trial, a total of 334 patients (99%) reported at least one AE in the vemurafenib
arm. The most common AEs (occurring in >20% of patients) in the vemurafenib arm were
rash, arthralgia, alopecia, fatigue, photosensitivity reaction, nausea, diarrhea, headache,
hyperkeratosis, pruritus, dry skin, skin papilloma, decreased appetite, pain in extremity,
pyrexia, vomiting, and squamous-cell carcinoma of the skin [24]. Preliminary data regard-
ing BRAFi toxicities are also emerging in pediatric-age patients, and the most observed
toxicities are pyrexia, hematological, dermatological, cardiac, and ophthalmic diseases [25].
The association of MEKi and BRAFi may mitigate some of the toxicities induced by the
“paradoxical activation” of the MAPK pathway when a BRAFi is used as a single agent
in BRAF wild-type cells [26,27]. Despite numerous studies that compare the different
BRAFi molecules, there are no head-to-head clinical trials that compare the different agent
combinations, and most of the safety data originate from the confirmatory phase III trials
or pharmacovigilance studies in adult patients [24,28]. It is very important to study the
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SEs and the AEs in pediatric populations, considering the necessity of the long-term use
of BRAFi (as is commonly carried out with mTORi in patients with tuberous sclerosis
and SEGA). Moreover, the novel agents uncovered unexpected and unexplored AEs, and
represent an important medical challenge. A better understanding of the SEs of these
therapies is imperative.

The aim of our study is to expand the knowledge of the long-term AEs of BRAF
inhibitors in pediatric populations by analyzing, retrospectively, the serum lipid concentra-
tions in a cohort of pediatric patients treated with vemurafenib for LGG at our institute.
We also discuss the possible role of lipid metabolism in resistance to BRAFi.

2. Materials and Methods

We collected and retrospectively reviewed clinical, laboratory, and instrumental data
of all patients treated with the BRAF inhibitor vemurafenib for LGG at the Giannina Gaslini
Children’s Hospital in Genoa, Italy, between 1 May 2015 and 31 December 2021. Patients
treated with vemurafenib, with an age up to 18 years of age at the time of diagnosis, and
with follow up of at least 6 months and 2 lipid-level samples (after starting treatment),
were eligible.

The histology diagnosis was confirmed by the national reviewer, for all patients. All
patients had a BRAFV600E mutation confirmed by sequencing performed using the poly-
merase chain reaction (kit Easy Braf real-time PCR, Diatech Pharmacogenetics, Jesi, Italy).

Before and during the BRAFi treatment (at 1, 3, 6, 12 months, and every 6 months
thereafter), each patient underwent a detailed clinical and laboratory investigation to rule
out possible organ disorders that contraindicated a BRAFi treatment (including a complete
blood count, biochemical liver- and kidney-function tests, auxological and endocrinological
assessments, ECG, and echocardiography with a cardiological examination). After the
incidental finding of dyslipidemia in the second treated patient, fasting blood samples for
lipid panel test were collected within 1 month before and at 1, 3, 6, 12 months after the
initiation of treatment with vemurafenib (and every 12 months thereafter).

The auxological data were obtained from the auxo-endocrinological assessments
to which the patients were routinely subjected. Height was measured by a Harpenden
Stadiometer, with an accuracy of &1 mm. The weight was measured on a digital scale, with
an accuracy of £0.1 kg. BMI was calculated as weight (kg) divided by height (m) squared
and transformed to standard-deviation scores using the WHO reference values [29].

All the families receive a dietary recommendation based on the Mediterranean diet [30]
at the first interview with the oncologist pediatrician. Patients with alterations in the lipid
or glucose profiles are referred for nutritional counseling.

Fasting blood samples were obtained from 6 patients with LGG. Venous blood samples
were collected by venipuncture or central venous catheter between 8 a.m. and 12 p.m.,
after an overnight fast. The serum and plasma were immediately separated, the lipid
panel (triglycerides, total cholesterol, high-density lipoprotein cholesterol (HDL)) was
quantified on the same day. An enzymatic colorimetric assay was used to determine total
cholesterol, triglyceride, and direct HDL levels. Fasting plasma low-density lipoprotein
cholesterol (LDL-C) was calculated using the Friedewald formula [31]. Fasting glycemia
was determined using an enzymatic hexokinase assay.

Descriptive statistics were generated for the whole cohort, and data were expressed
as mean and standard deviation for continuous variables. Median value and range were
calculated and reported, as were absolute or relative frequencies for categorical variables.
We analyzed the data available for all patients, before and after the incidental finding of
dyslipidemia in the second patient (after which the systematic and scheduled analysis of the
lipid profile was started). The box plots were used to show distributions of numeric variable
values at 1 month before treatment, and at 1 month, 3 months, 6 months, 12 months, and
at last follow-up after initiating treatment with vemurafenib. Box plots visually show the
minimum value, the first quartile, the median, the third quartile, and the maximum value.
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All data were analyzed with SPSS software for Windows (IBM SPSS Statistics for
Windows, version 26. IBM Corp., Armonk, NY, USA).

This study was conducted in accordance with the Declaration of Helsinki. Informed
consent was obtained from all the families.

3. Results
3.1. Study Population

We enrolled six patients (three males, three females) treated with the BRAFi vemu-
rafenib, which was the first-choice BRAF target therapy in our hospital until December
2018. The demographic and clinical features of the six patients are reported in Table 1 and
in Supplementary Table S1.

Table 1. Demographic and clinical features of the patients treated with vemurafenib.

Characteristic Vemurafenib Group (n = 6)
Sex number:
male/female 3/3
Age at diagnosis:
mean years 3 SD 55+5.6
median 3.4 (0.3;13.8)
Age at the start of vemurafenib:
mean years 3 SD 84+6.1
median 7.1(2.8;18.8)
Tumor site:
hypothalamic/chiasmatic 4
basal ganglia 1
spinal cord 1
Tumor histology:
ganglioglioma 4
pilocytic astrocytoma 2
Previous treatment:
surgery or biopsy only 1
one line of chemotherapy 2
two lines of chemotherapy 1
>three lines of chemotherapy 1
>three lines of chemotherapy + RT 1

In the absence of pharmacokinetic and pharmacodynamic data for vemurafenib in
pLGGs, we decided to start the treatment with a low dose of 370 mg/m? (twice a day).
Subsequent increases in the dosage were made every 2 weeks until the target range of
960-1100 mg/m?/day was reached after 1 month. Dose adjustments were made on a
case-by-case basis during follow-up, depending on the patient’s drug tolerance. A patient
with ganglioglioma reached the target dose after 30 months of starting the treatment, which
was due to a resurgence of skin toxicity during dose-escalation attempts.

A patient with ganglioglioma was switched from the BRAFi vemurafenib to the BRAFi
dabrafenib and the MEKi trametinib after 21 months of treatment because of severe skin tox-
icity. A patient with a pilocytic astrocytoma discontinued therapy with vemurafenib after
13 months because of tumor progression (neuroradiologically confirmed), which required
antiedema therapy with dexamethasone, followed by chemotherapy and radiotherapy. In
all the other patients, the treatment with BRAFi is still ongoing at the closing date of the
database. The most frequent locations of tumors were the optic pathway/hypothalamic
region (n = 4), followed by the basal ganglia (n = 1) and the spinal cord (1 = 1). At the start
of the target therapy, a tumor from one patient was disseminated.

The mean age at the start of targeted therapy was 8.4 £ 6.1 years (range: 3.5-18.8).
The mean time from the last follow-up during treatment to the start of vemurafenib was
44.6 £ 26.5 months (range: 14.7-77.2). Before the vemurafenib, five out of six patients were
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treated with a neurosurgery partial resection, and five out of six with chemotherapy (one
of these patients was also treated with radiotherapy) (Supplementary Table S1).

At the start of treatment, two patients were obese, and the mean BMI of the subjects
included in the analysis was 0.9 & 1.8 kg/m?. None of the subjects were taking any
medication to specifically control glucose and/or lipid metabolism (such as statins, fibrate,
hypoglycemic agents). They were free of overt liver, renal, and cardiac disease. The fasting
blood glycemic levels were normal (Supplementary Table S3). The thyroid function and
the hypothalamic—pituitary axis were normal or were well substituted with hormone-
replacement therapies (Figure 1). The GH-deficiency treatment with rhGH in a patient was
delayed by 12 months because of her oncological clinical condition.

+ )

@[ wzzzzzz  Traditional Chemotherapy

Surgery

Growth hormone deficiency
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TSHD treatment
Gonadotropin disorder
treatment

Adrenocorticotropic hormone
deficiency treatment

Radiotherapy

Vemurafenib
Trametinib+ Dabrafenib

: i |

Figure 1. Swimmer plot, endocrinological and oncological treatments.

3.2. Blood Lipid Levels

According to the 2011 National Heart, Lung, and Blood Institute (NHLBI) guide-
line [32], before treating patients with vemurafenib, the mean lipid levels of triglyc-
erides (75.5 & 24.9 mg/dL, n = 4), total cholesterol (157 & 29.7 mg/dL, n = 3), and HDL
(45.5 £ 4.9 mg/dL, n = 2;) were normal/acceptable, and the LDL levels were borderline
(114 + 141 mg/dL, n = 2).

One month after initiating treatment with vemurafenib, the lipid levels of triglyc-
erides (107.8 £ 44.4 mg/dL, n = 4), total cholesterol (221.5 £ 42.1 mg/dL, n = 4), and
LDL (139.5 & 51.5 mg/dL, n = 4) were abnormal. The data remained elevated 3 months
after the start of treatment: triglycerides (115 + 45.6 mg/dL, n = 4), total cholesterol
(238 £ 36.5mg/dL, n =4), and LDL (148.8 & 40.2 mg/dL, n = 4). Moreover, the mean lipid
levels of triglycerides (134.8+ 83.6 mg/dL; Figure 2), total cholesterol (222.3 £ 34.7 mg/dL;
Figure 3), and LDL (139.8 & 46.9 mg/dL; Figure 4) were confirmed to be pathologically
high at the last follow-up (from the start of treatment until the last follow-up, the mean time
was 44.6 £ 26.5, range: 14.7-77.2 months). The HDL levels remained normal/acceptable
(Figure 5).
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Figure 2. Triglyceride levels before and during vemurafenib. The dashed line indicates the acceptable
upper limit, the double line indicates the borderline-high limit according to the NCEP Expert Panel
on Cholesterol Levels in Children.
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Figure 3. Total cholesterol levels before and during vemurafenib. The dashed line indicates the
acceptable upper limit, the double line indicates the borderline-high limit according to the NCEP
Expert Panel on Cholesterol Levels in Children.
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Figure 5. HDL levels before and during vemurafenib. The dashed line indicates the acceptable upper
limit, the double line indicates the borderline-high limit according to the NCEP Expert Panel on
Cholesterol Levels in Children.

The analysis of the individual patient data shows that the incidence of blood hyper-
triglyceridemia (according to the 2011 NHLBI) [32] after 1 month of vemurafenib was
50% (n = 2/4). According to the Common Terminology Criteria for Adverse Events v 5.0
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(CTCAE) [33], one case was grade 0 and one case was grade 1, at long-distance follow-up,
and the available incidence of hypertriglyceridemia was 84% after vemurafenib (n =5/6,
five cases were grade 0, and one case was grade 1 CTCA).

According to the 2011 NHLBI [32], hypercholesterolemia was presented in 100% of the
patients (n = 4/4, all cases were grade 1 CTCA) after 1 and 3 months of vemurafenib. At
long-distance follow-up, the available incidence of hypercholesterolemia after vemurafenib
was 100% (n = 6/6, all cases were grade 1 CTCA). After 1 month, the LDL levels were
elevated in 50% (n = 2/4), although there is no specific CTCA score for LDL, and all cases
were grade 1 CTCA because of the required diet changes in the patients. Similarly, after
3 months, 75% (n = 3/, all cases were grade 1 CTCA), and, at long-distance follow-up, 83%
(n=5/6, all cases were grade 1 CTCA) of the vemurafenib group had elevated LDL levels.

4. Discussion

During the past years, target therapies have revolutionized therapeutic possibilities
in oncology. The reports of side effects have increased proportionally to the increase in
the number of available molecules. However, the knowledge of metabolic side effects is
currently limited.

For the first time in children, we describe dyslipidemia (hypertriglyceridemia, hyper-
cholesterolemia, and an increase in LDL) as common early and late adverse events after
starting the BRAFi vemurafenib. However, the patients treated with vemurafenib were
commonly pretreated with traditional chemotherapy. In a patient in whom vemurafenib
was replaced by the combination of dabrafenib and trametinib for clinical reasons (photo-
sensitivity and cutaneous side effects), the total cholesterol values returned to normal, as
well as the other side effects, in a few weeks (Supplementary Table S2).

To the best of our knowledge, dyslipidemia, as an adverse event of BRAFi, is reported
only in a few studies, and the blood-test screening of the occurrence is not included in the
ongoing pediatric clinical trials. Therefore, a correlation between this possible side effect
and resistance to BRAFi in clinical practice has not yet been explored. Because of the small
cohort and design of our study, it was not possible to correlate dyslipidemia to the neurora-
diological response after initiating BRAFi, and/or to resistance to the target therapy.

In a phase I study that investigated the pharmacokinetics, efficacy, and tolerability
of vemurafenib (960 mg twice daily) in 42 Chinese patients (median age: 42, 19-69) with
BRAFV600-mutation-positive unresectable or metastatic melanoma, dyslipidemia was a
common AE, compared to the BRIM-3 study in Caucasians (cholesterol-level increase in 59%
vs. <1%, hypertriglyceridemia in 22% vs. <1%) [24]. However, the blood-chemistry analysis
of the full fasting lipid profile was not performed in the BRIM-3 protocol, and, therefore the
incidence of dyslipidemia may be strongly underestimated. Severe hypercholesterolemia
was reported (CTCA grade > 3) in only 1 of 27 Chinese patients with hypercholesterolemia.

A significant increase in the plasma triglyceride levels was detected in 14 adult
patients following vemurafenib treatment for V600OE-mutated Erdheim—Chester disease
(176.6 £ 22.2 vs. 130.7 £ 7.8 mg/dL untreated patients n = 42, +36%, p < 0.05) [34]. Inter-
estingly, in the same study, although without statistically significant differences, the mean
total cholesterol levels (214.5 = 19.2 mg/dL) and the mean LDL levels (128.4 &= 20.6 mg/dL)
were borderline-high (vs. acceptable mean values in non-treated V600E-mutated Erdheim-—
Chester disease: total cholesterol 174.5 £ 10.8 mg/dL, LDL 110.1 & 9.6 mg/dL).

We know that some of the drugs that are used for targeted therapies have significant
metabolic consequences, including dyslipidemia. On the other hand, the stimulation of
lipid synthesis may result from the direct activation of oncogenic pathways in tumor
cells. Many oncological mutations result in the aberrant activation of several signaling
pathways, which can reprogram cancer-cell metabolism and cellular processes, including
cell proliferation, differentiation, and the development of resistance to chemotherapy.

Among the target therapies, mTOR inhibitors are burdened with frequent dyslipidemia
and, therefore, the etiopathology of this side effect has been the object of many studies. We
know that the mTORi reduce the gene expression of lipogenic enzymes, such as acetyl-CoA
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carboxylase, fatty acid synthase, and stearoyl-CoA desaturase. Indeed, the mTORi are
responsible for an increase in the total cholesterol and/or triglycerides by interfering with
the protein kinase of the mTOR pathway [35].

New evidence supports that lipid metabolism is implicated in driving the tumor
microenvironment and the cancer-cell phenotype, which contributes to the development
and survival of cancer cells [36]. Changes in lipid metabolism can affect numerous cellular
processes, including cell proliferation, differentiation, and motility [36]. In the tumor cells,
the lipids can be used to store energy, synthesize the basic elements that are necessary
for the cellular growth and proliferation (such as membranes), and participate in cell
signaling [36,37]. Cancer cells compete for oxygen and nutrients with the host cells, and
they maintain their malignant potential by modifying the lipid metabolism. The oxidative
catabolism of lipids provides ATP and NADH, both of which are essential to controlling
environmental stress and promoting survival [37,38].

Therefore, lipid-metabolism reprogramming is an essential link between the tumor
and the host metabolism, with implications in sensitivity to chemotherapies [37], including
target therapies [39].

A potential link between BRAFV600E and lipid-metabolism regulation in cancer cells
is suggested by some cell and mouse model studies [37,40,41]. In 2015, Kang et al. [42]
demonstrated the interaction between oncogenic BRAF V600E and the enzyme 3-hydroxy-
3-methylglutaryl-CoA lyase (HMGCL), which is involved in lipid metabolism by producing
ketone bodies. HMGCL expression is upregulated in BRAF V600E melanoma and hairy-cell
leukemia. BRAF upregulates HMGCL through an octamer transcription factor, Oct-1,
which leads to increased intracellular levels of the HMGCL product, acetoacetate, which
selectively enhances the binding of the BRAF V600E, but not the BRAF wild-type to MEK1
in V600E-positive cancer cells, to promote the activation of MEK-ERK signaling and,
therefore, tumor growth. In 2017, Xia et al. [43] showed that a high-fat ketogenic diet
increased the serum levels of acetoacetate, which led to the potential tumor growth of
BRAF V600E-expressing human melanoma cells in xenograft mice. The high-fat diets
resulted in increased growth rates, masses, and sizes of tumors, without affecting the body
weight in these mice. In contrast, a high-fat diet did not affect the tumor growth rates,
masses, sizes, or the body weight in mice with tumor xenografts expressing an active NRAS
Q61R mutation. The increased tumor growth in xenograft mice (BRAF mutated) fed with
a high-fat diet was not due to differences in the quantity of the food intake. In both mice
models, the consumption of a high-fat diet did not significantly affect the serum levels
of D-b-hydroxybutyrate (3HB), but significantly increased the serum cholesterol levels
compared to control mice fed with a normal diet. Treatment with hypolipidemic agents or
an inhibitory homolog of acetoacetate attenuated the BRAF V600E tumor growth [43].

Valvo et al., in 2021 [41], showed that, in BRAFV600E papillary thyroid carcinoma, the
de novo lipid synthesis significantly increased (1.58- and 1.34-fold changes in heterozygous
and homozygous BRAFV600E -derived cell lines, respectively) within 6h in vemurafenib-
treated cancer cells. The xenograft mouse data further showed that human BRAFV600E
tumor cells became less responsive to vemurafenib within two weeks, and ultimately
exhibited increased tumor growth when the Acetyl-CoA Carboxylase 2 gene (ACC2) was
knocked down. This suggests that silencing the ACC2 (a rate-limiting enzyme for de novo
lipid synthesis and the inhibition of fatty acid oxidation) may contribute to BRAFV600E-
inhibitor (e.g., vemurafenib) resistance and increased tumor growth. BRAFV600E inhibition
increased the de novo lipid-synthesis rates, decreased fatty acid oxidation due to the
oxygen-consumption rate, and increased the intracellular reactive-oxygen-species (ROS)
production, which can trigger tumor-cell proliferation or death [41].

The modulation of numerous genes, including multiple oncogenes, growth factors, and
tumor suppressors, are activated by reactive oxygen species (ROS) and the modification
of the level of the AMP/ATP ratio that is due to cancer-cell metabolic plasticity (both
possible effects of cancer and anticancer therapy, including BRAFi and MEKi) [44]. The
HIF-1 and AMP-activated protein kinase (AMPK), which operate as energy biosensors
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of oxidative stress and master regulators of cellular metabolism, play a crucial role in
this phenomenon. [45,46]. The AMPK regulates the ATP level through the switch from
anabolic to catabolic metabolism via the stimulation of glucose uptake, aerobic glycolysis,
and mitochondrial oxidative metabolism, which is mainly due to the 3-oxidation of fatty
acids [46]. These pathways interplay with HIF-1, and, therefore, a variety of oncogenes,
such as Ras, c-Myc, and p53, and the Akt/PKB, PI3K, and mTOR signaling pathways, sustain
cancer-cell proliferation and survival [47-49]. The gene KRAS is also directly implicated
in ROS generation by NADPH oxidases [50]. Cancer-cell survival and metastasis can be
sustained by lipid biosynthesis that is promoted by a shift in the glutamine metabolism
from oxidation to reductive carboxylation [49].

In BRAF V600E melanoma cells, altered lipid metabolism could contribute to targeted
therapy resistance through the modification of the activation of several lipogenesis path-
ways [51-53]. New evidence shows that the SREBP-1-dependent activation of lipogenesis
is required for tumor growth and for cell survival in multiple cancer models, including
high-grade glioma [54,55]. In BRAF-mutant melanomas, therapy resistance to vemurafenib
is supported by the Sterol Regulatory Element-Binding Protein (SREBP1) activation [56]
and the upregulation of the S1 P-dependent signaling pathway [37,40,51,52,57]. In sensitive
BRAF-mutant models, vemurafenib caused the decrease in lipogenesis and the activation
of SREBP-1. All showed high levels of lipogenesis, even in the presence of the inhibitor.
However, this was not seen in therapy-resistant models, in which BRAFi only induced a
moderate decrease in the SREBP-1 levels and did not significantly affect lipogenesis [56].
Probably this is due to the activation of the alternative ERK pathway that is linked to ther-
apy resistance and that is a known regulator of SREBP [58,59], as is shown by the decreased
levels of SREBP-1 in therapy-resistant cells treated with the MEK inhibitor trametinib [56].
The expressions of well-established mSREBP-1 downstream targets, such as ACLY, ACACA,
and FASN, were also consistently reduced. These findings indicate that the reactivation of
the ERK pathway contributes to sustained SREBP-1 activity in therapy-resistant melanoma
cells [56]. Moreover, the expression of key lipogenic enzymes—SREBP-1 downstream
targets—such as fatty acid synthase (FASN) acetyl-CoA carboxylase-1, were found to be
inversely associated with drug resistance in BRAF-mutant cell lines [56].

In the current study, most of these laboratory AEs met the criteria as AEs because
the events were medically significant and required diet modification. All these events
were grade 1 CTCA, asymptomatic, and did not require a change in treatment or dose
modification. However, because of the possible need for long-term use, these observed
results may affect the overall benefit/risk assessment of vemurafenib in patients with high
cardiovascular risk.

5. Conclusions

The targeted therapies for brain tumors are innovative and promising oncological
treatments, and as a result, their use has expanded widely. The effectiveness of BRAFi,
and its use in combination with other new target therapies, is increasing, and therefore the
spectrum of side effects needs to be further explored.

The toxicities that are related to these new agents are generally not life threatening;
however, the long-term effects are unknown, and they could potentially be a limiting factor
in chronic life-long use. An accurate screening strategy in new clinical trials, and a multi-
disciplinary team, are required for the optimal management of unexpected adverse events.

We describe, for the first time, the possible side effects of BRAFi in a case series
of children treated for LGG. In our study, children treated with vemurafenib showed a
worsening in their lipid profiles, with a significant increase in triglycerides, LDL, and
total cholesterol over time. New prospective and multicentric clinical trials of larger study
groups are needed to confirm our observation; therefore, the evaluation of the serum
lipid balance should be implemented in future experimental protocols, including BRAFi
and/or MEKi].
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Because of the large amount of data that show the possible role of lipid metabolism
in the mechanisms of resistance and response to biological therapies, new future studies
should explore this hypothesis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14112693/s1, Supplementary Table S1: Detailed demo-
graphic and clinical features of the patients treated with vemurafenib; Supplementary Table S2:
Lipid levels before and after switch of treatment from vemurafenib to dabrafenib and trametinib;
Supplementary Table S3: Fasting blood glucose, biochemical liver, and kidney-function tests before
and during vemurafenib.
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