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Simple Summary: Bladder cancer is a malignancy that predominantly affects male patients. Surgical
treatment is the first option for clinical management and cancer cell characterization is critical for
tumor margin detection and complete tumor removal. We developed a specialized intraoperative flow
cytometry (iFC) methodology for bladder cancer cell detection. Our study, including 52 individuals,
reveals that iFC is highly specific, sensitive and accurate in detecting cancer cells, based on the
quantification of cell proliferation and the presence of tumor aneuploidy. The results of this study
advocate further research on the utility of iFC as a next-generation malignancy evaluation technique
during transurethral resections.

Abstract: Bladder cancer represents a major health issue. Transurethral resection is the first line treat-
ment and an accurate assessment of tumor margins might warrant complete tumor removal. Genomic
instability and proliferative potential are common hallmarks of cancer cells. We have previously
demonstrated the utility of intraoperative flow cytometry (iFC), a next-generation margin evaluation
methodology for assessment of DNA content, in the detection of several types of malignancy. In
the current study we investigated the possible value of iFC in the characterization of bladder cancer
during surgery. Samples from a population of 52 people with urothelial cancer were included in
the study. The total time for iFC evaluation is 3–5 min per sample and included a two-step analysis,
including DNA-index and Tumor-index calculation. First, DNA-index calculation revealed 24 hyper-
ploid and one hypoploid tumor. Second, cell cycle analysis and Tumor-index calculation revealed that
tumor samples are distinguished from normal cells based on their significantly higher proliferative
potential. The standard for iFC evaluation was pathology assessment and revealed that our protocol
exhibits an accuracy of 98% in defining the presence of cancer cells in a given sample. Our results
support the further assessment of iFC value towards its use as a novel malignancy evaluation tool in
transurethral resections.

Keywords: cancer; bladder cancer; flow cytometry; surgical treatment; surgical oncology

1. Introduction

Cancer remains a leading cause of human mortality with a worldwide rate of more
than 1 death per 1000 people per year [1]. Amongst urological cancers, bladder cancer is
the most common in the male urinary tract, displaying two to six times elevated frequency
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in male than female patients [2] and recording 440,864 cases and 158,785 deaths in male
patients during 2020, according to Global Cancer Observatory [1]. Approximately 90–95%
of bladder cancer cases are attributed to transformation of urothelial cells, lining throughout
the urinary tract, in to cancer cells leading to urothelial carcinomas whereas squamous cell
carcinoma, originating from bladder-lining cells, as well as adenocarcinoma [3] deriving
from glandular cells account for ~4 and 2% of cases, respectively.

Depending on the depth of invasion, bladder cancer incidents are classified either as
non–muscle-invasive (NMIBC) which are characterized by lower metastatic potential and
more favorable prognosis (80% of total cases) or as muscle-invasive bladder cancer cells
(MIBC) that reflect increased invasiveness and progress to metastatic disease [4]. MIBC
cases may arise by remission of NMIBC cases but the majority of them are de novo diagnoses
with a 5-year survival rate less than 60% at local disease and less than 10% in distant
metastases [4,5]. Due to distinct histopathological features and heterogeneity deriving
from differentially expressed genes [6,7], NMIBC and MIBC can be further divided into the
subtypes of basal- and luminal-like and subdivided by TCGA (The Cancer Genome Atlas)
into luminal-papillary, infiltrated, squamous, neuronal/small cell and luminal/genomically
unstable (GU) carcinomas [8]. Recently, luminal subtype was further subcategorized
to a basal-squamous and distinct neuronal carcinoma (SCC) [6]. Genomic instability
is a recognized hallmark of bladder cancer, leading on defects on cell cycle and growth
regulation [9] thus giving rise to malignant transformation and sustaining proliferation [10].

Immunohistological classification and the molecular characteristics in bladder carci-
nomas are a cornerstone in evaluating and addressing subsequent treatment strategy as
distinct cells may present differential response to anti-cancer drugs [11–13]. Whilst bladder
cancer is detected predominantly in early stages (7 in 10 cases), thus being candidate for
tumor resection [14], unlikely 15–70% of cases relapse after one year. Following successful
removal, the 5-year survival rate is 94% for in situ tumors and falls to 6% in metastatic
cases [15,16].

Surgical management is the first-line treatment for 4 out of 5 cancer cases, since it has
been estimated that more than 80% of the >15 million cancer cases in 2015 were candidates
for surgical treatment [17]. The low mortality rate and morbidity following surgery and the
prospective of complete tumor removal are among the main advantages, making surgery a
method of choice, with a projection that by 2030, >45 million surgical procedures will be
performed regarding tumor removal [17]. Transurethral resection is the typical methodol-
ogy for both diagnosis and therapy of non-invasive bladder cancer [18]. The success of the
operation is based on several variables and requires the accurate characterization of cancer
cells for both diagnosis and the further therapeutic management of patients [18].

Flow Cytometry is among the most effective single-cell analysis technologies with
several applications in cancer: immunophenotyping, characterization of hematological
malignancies, revealing measurable residual disease, ploidy and cell cycle assessment,
among others [19]. Intraoperative flow cytometry (iFC) is a rapid, highly sensitive and
relatively inexpensive method with the potential of characterizing tumor biology and
margin status, offering a potential of complete tumor removal. Our team has utilized
intraoperative flow cytometry, originally for brain malignancies [20–23]. Based on the high
diagnostic potential of iFC, the methodology has further been standardized and applied
in several types of malignancy, including head and neck [24,25], breast [26–28], liver [29],
pancreatic [30] colorectal [31], as well as gynecological neoplasms [32]. Since iFC facilitates
near real time detection of aneuploidy and calculation of S- plus G2/M-phase fraction in
surgical samples, it offers an accurate measurement of cancer hallmarks in 3–5 min. In
conclusion, iFC is a powerful informative tool towards discrimination of tumor cells from
surrounding healthy tissue in a plethora of malignancies leading to optimal resection and
remission prognosis. The current study is, to our knowledge, the first application of iFC in
bladder cancer and urological malignancies. We optimized previous iFC protocols for ideal
performance in sample collection and analysis in transurethral resections. Our data suggest
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that iFC provides a rapid and accurate (98.1%) cancer characterization and warrants further
examination in larger studies.

2. Materials and Methods
2.1. Study Sample

The study included patients that underwent transurethral resection between 2021–2022,
in the Department of Urology, University Hospital of Ioannina (UHI). All operations were
performed by urologists. The total number of patients was 52, which were enrolled follow-
ing an informed consent. The study had approval of the Institutional Review Board of UHI
and was in accordance with the principles of the Declaration of Helsinki.

During surgery, a sample (~5 mm2 of volume) was taken from the tumor tissue, while
an additional sample from macroscopically healthy tissue. Both samples were blinded,
divided into equal pieces used for flow cytometry analysis and pathology evaluation,
respectively. Pathology assessment, performed by an expert pathologist, was considered as
the standard for evaluation.

2.2. DNA Content Analysis

DNA analysis was performed following tumor excision according to Ioannina Protocol,
a methodology for intraoperative assessment first implemented for brain malignancies [21].
In short, samples were minced through a Medimachine (BD Bioscience) for 1 min in stan-
dard phosphate buffered saline buffer and a cell suspension was obtained. Suspended cells
were diluted to a final concentration of 106 cells/mL, following an automated hematology
analyzer count. The final homogenized cell suspension was stained, using a propidium
iodide solution (125 µg/mL) for 3 min and immediately processed for flow cytometric
analysis. For iFC analysis, a FACSCalibur flow cytometer was used, utilizing CellQuest
software V3.1 (Both by BD Bioscience). A ficoll gradient on peripheral blood from healthy
donors (Ficoll-Paque separation, GE Healthcare), was utilized to obtain peripheral blood
mononuclear cells (PBMCs). PBMCs were designated as the normal standard for detecting
the diploid peak of cells in G0/G1 phase. A typical number of 5000 gated events (stained
cell nuclei) per sample were evaluated.

A post-acquisition analysis was performed to calculate DNA-index and Tumor-index.
DNA-index represent the ploidy status of each cell and is calculated as a ratio between the
geometric mean corresponding to G0/G1 peak of the sample to that of PBMCs. Hence, a
DNA-index > 1.1 represents a hyperploid cell, while a DNA-index < 0.9 is indicative of
a hypoploid cell, while DNA-index = 1, corresponds to diploid cancer. The Tumor-index
specifies the cancer cell proliferation rate and is calculated as a cumulative percentage of
cells in both S and G2/M phase.

2.3. Histopathological Assessment (Haematoxylin and Eosin Staining)

Surgical specimens of bladder tissues were paraffin-embedded for haematoxylin
and eosin (H&E) staining and histopathological assessment. Dako Coverstainer (Agilent
Technologies) was used for H&E process from baking, dewaxing and staining through to
the dehydrated, coverslipped and dried slide, according to manufacturer’s instructions.
The tissue sections were examined under a light microscope (Olympus BX41).

2.4. Statistical Analysis

Independent Samples Mann-Whitney U test was utilized to delineate whether the
G0/G1 and Tumor-index between cancer and normal cells is significantly different. Receiver-
Operating Characteristic (ROC) analysis has been utilized calculate the sensitivity and
specificity of the assay and to determine the optimal cut-off value. Based on the ROC anal-
ysis results, each cut-off value was assessed to define the optimal accuracy of our assay. In
each test, the level of significance was defined based on a probability (p-value) < 0.05. Data
analysis was performed using SPSS software, version 23 (IBM) and further represented in
Graphpad Prism, version 8.4.2 (Graphpad Sotware, LLC, San Diego, CA, USA).
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3. Results
3.1. Study Population

The purpose of the current study was to assess the utility of intraoperative flow cy-
tometry during transurethral resection. To this end, we studied a population that included
individuals with bladder cancer that underwent a transurethral resection as a first line
of treatment. In general, 52 patients were eligible for inclusion, with the vast majority
being males (45 out of 52). Among the analysed tumors, 20 were low-grade and 32 were
high-grade, according to pathology assessment. As regards tumor type, we included
41 cases of papillary urothelial carcinoma (PUC), 10 of Invasive urothelial carcinoma (IUC)
and one case of squamous cell carcinoma of the urinary (SCCUB), respectively. Patients’
characteristics regarding tumor grade and type are shown in Table 1.

Table 1. Study population Characteristics.

Gender
Male 45
Female 07

Grade 1

Low 20
High 32

Type 1,2

PUC 41
IUC 10
SCCUB 01

1 Based on Pathology Evaluation. 2 PUC: Papillary urothelial carcinoma. IUC: Invasive urothelial carcinoma.
SCCUB: Squamous cell carcinoma of the urinary Bladder.

3.2. Intraoperative Flow Cytometry Determines the Presence of Bladder Cancer Cells with a High
Sensitivity and Specificity

Next, we performed iFC analysis in 52 individuals undergone urothelial resection
and calculated for each sample the DNA-index and Tumor-index, two indices that support
intraoperative cancer cell detection. In each case, the presence of a tumor has been identified
and verified by pathological assessment.

First, we calculated DNA-index, an indicator of aneuploidy, since it is associated with
malignancy and the hallmark of genomic instability [33]. In 28 cases the samples were
diploid and the rest aneuploid. Aneuploid samples were furher divided into: 24 hyperploid
(DNA-index ranging from 1.1–2) and one hypoploid (DNA-index = 0.9). A characteristic
case of hyperploidy with a DNA-index = 1.7 is presented in Figure 1, while the cumulative
results are presented in Figure 2 and Table S1. In conclusion, iFC may accurately assess
aneuploidy in tumor samples.

Subsequently, in order to define cancer cell proliferative potential we performed
a calculation of the percentage of G0/G1 cell cycle fraction and of Tumor-index (the
cumulative cell population in both S and G2/M cell cycle phases) in each sample. Next, this
calculation was utilized to predict the sensitivity and specificity of our study to distinguish
cancer from normal cells. A typical analysis of a cancer sample with a high Tumor-index is
depicted in Figure 3.

Our analysis reveals that G0/G1 fraction in cancer cases is significantly lower (p < 0.01)
(Figure 4A), while, in contrast, Tumor-index is significantly higher (p < 0.01) (Figure 4B), in
relation to normal samples. Specifically, mean Tumor-index in normal tissue is 4.47 ± 0.12
(mean value ± standard error), while percentages of Tumor-index in tumor samples is
23.46 ± 3.25, respectively.

The results of the current study provide novel insights into intraoperative tumor analysis.
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Figure 1. Analysis of a representative aneuploid tumor with high DNA-index (A) Analysis using 
iFC of DNA content and distribution of cell cycle phases. Peripheral blood mononuclear 
cells/PBMCs (left panel) and tumor cells obtained during surgery (middle panel) were stained 
with propidium iodide, to bind nucleic acids. The presented histograms are separated using 3 dif-
ferent marked areas, by respective markers (M1, M2 and M3), in the control PBMC cells. The areas 
correspond to cells that are in the G1, S, G2/M phases, respectively, based on the mean fluores-
cence. Cells in G2/M emit a dual mean fluorescence intensity than that of cells in G1, while cells in 
S phase (DNA replication phase) are characterized by an intermediate fluorescence intensity. In 
the tumor sample, the G0/G1 peak was coincided with M2 marker due to aneuploidy. Due to that, 
an additional marker, M4 was introduced and in this case, markers M2, M3 and M4 represent G1, 
S, G2/M phases, respectively. The DNA-index is 1.7 (B) pathology assessment. A papillary urothe-
lial carcinoma of the bladder, low-grade, following hematoxylin-eosin staining. Original magnifi-
cation ×40 (left panel) and ×100 (right panel). Scale bars represent 50 um (left photo) and 100 um 
(right photo), respectively. 

Figure 1. Analysis of a representative aneuploid tumor with high DNA-index (A) Analysis using iFC
of DNA content and distribution of cell cycle phases. Peripheral blood mononuclear cells/PBMCs
(left panel) and tumor cells obtained during surgery (middle panel) were stained with propidium
iodide, to bind nucleic acids. The presented histograms are separated using 3 different marked areas,
by respective markers (M1, M2 and M3), in the control PBMC cells. The areas correspond to cells that
are in the G1, S, G2/M phases, respectively, based on the mean fluorescence. Cells in G2/M emit
a dual mean fluorescence intensity than that of cells in G1, while cells in S phase (DNA replication
phase) are characterized by an intermediate fluorescence intensity. In the tumor sample, the G0/G1
peak was coincided with M2 marker due to aneuploidy. Due to that, an additional marker, M4 was
introduced and in this case, markers M2, M3 and M4 represent G1, S, G2/M phases, respectively.
The DNA-index is 1.7 (B) pathology assessment. A papillary urothelial carcinoma of the bladder,
low-grade, following hematoxylin-eosin staining. Original magnification ×40 (left panel) and ×100
(right panel). Scale bars represent 50 um (left photo) and 100 um (right photo), respectively.

It is of paramount importance for a methodology of potential clinical significance
to calculate its accuracy. To this end, the receiver operating characteristic (ROC) curve
analysis has been utilized to assess whether iFC has the ability to accurately discriminate
cancer tissue (Figure 5). Briefly, ROC analysis allows the plot between the sensitivity and
specificity of an assay, based on different cut-off values. The calculation of the optimal value
can be assisted by the accompanying table (Table S2), that allows the assessment of different
cut-off values to define the optimal one. Based on ROC-analysis, the optimum cut-off value
to delineate cancer is 93.5% in G0/G1 cell cycle fraction (or, inversely 6.5% in Tumor-index),
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which results in 100% sensitivity and 96.2% specificity (Table S2). The Positive Predictive
Value is 96.2% and the Negative Predictive Value is 100%. Consequently, the accuracy
of our assay is 98.1%. In conclusion, the iFC protocol we followed during transurethral
resection is an accurate methodology to delineate cancer cells in a given sample.
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Figure 2. DNA-index represents aneuploidy of tumor cells. DNA-index values have been quantified
by iFC and plotted, representing normal (blue dots) and cancer (red dots) cells in individual patient
samples, respectively. While normal cells (taken from normal bladder tissue) are diploid, a DNA-
index of 6=1 is a common, unique hallmark of cancer cells. The Median DNA index is depictred as a
black horizontal line in each group.
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Figure 3. Analysis of a representative tumor with α high Tumor-index (A) Analysis using iFC of
cell cycle distribution. Peripheral blood mononuclear cells/PBMCs (left panel) and tumor cells
obtained during surgery (middle panel) were stained with propidium iodide, to bind nucleic acids.
Markers M1, M2, M3 are used to gate cells in G1, S and G2/M phases, respectively, as explained in
Figure 1. The cell fraction in each phase (presented in upper right corner of each histogram) is used to
quantify Tumor-index, a marker used to determine the presence of malignant cells in a given sample.
(B) pathology assessment. A papillary urothelial carcinoma of the bladder, high-grade, following
hematoxylin-eosin staining. Original magnification ×40 (left panel) and ×100 (right panel). Scale
bars represent 50 um (left photo) and 100 um (right photo), respectively.
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lower percentage in G0/G1 than normal bladder tissue. (B) Inversely, a significantly higher Tumor-
index (the cumulative cell fraction in S and G2/M phases) is a hallmark of cancers cells.
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Figure 5. ROC-Curve analysis. iFC evaluation of neoplasia based on G0/G1 and Tumor-index
calculation is highly accurate. Sensitivity (Y-axis) and 1- specificity (X-axis) for individual cut-off
values is presented by the blue line. The selection of a spot in the blue line allows the calculation
of the respective sensitivity and specificity, based on a cut-off value. The selected cut-off value is
denoted in the curve with a red asterisk.
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Lastly, in order to confirm the sensitivity of our methodology in defining tumor
margins, we evaluated the status of tumor margins taken from different sites during
surgery, in a subpopulation of 4 representative cases. In all cases, the margin status has
been defined. Pathological assessment corroborated flow cytometry results with absolute
agreement. The results of a representative case are presented in Figure 6, where also margin
status analysis is described. In the presented case, DNA-index was 1 and the differences
in the tumor-index was utilized to delineate margin status. The cut-off value of 6.5% in
Tumor-index characterized margin 1 as positive and margin 2 as negative. Thus, margins
containing different percentage of cancer cells in the total analyzed population exhibit
distinct proliferation capacity, making it possible to delineate margin status. In conclusion,
the accuracy of iFC in detecting cancer cells has been verified in selected cases with an
absolute agreement to pathological assessment.
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Figure 6. Margin assessment of a representative case of bladder cancer with iFC. DNA analysis of
cancer cells, as described leads to quantification of cell cycle phases G0/G1. S and G2/M by the
respective markers M1, M2 and M3. (A) DNA analysis of a tumor sample (red), a positive (pink)
and a negative margin (green). Proliferating cancer cells (cumulative percentage in M2 and M3, or
tumor-index) allows the assessment of margin status, where a percentage beyond the cut-off value of
6.5% is indicative of the presence of cancer cells in a given margin. In the presented case, margin 1
is positive, with a Tumor-index of ~15%, while margin 2 is negative, with a Tumor-index of ~3.4%,
below the cut-off value. (B) overlays in 2 dimensions (left) and 3 dimensions (right). The presence of
proliferating cancer cells is defined by the black arrow in the 2-D plot.

4. Discussion

Flow cytometry is inarguably the method of choice for measuring DNA content at the
cellular level [34]. Among the main advantages of FC is the speed of analysis, accuracy, cost
effectiveness and the fact that it can be applied in most tissues and cell lines derived from
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several cancer types [34], including bladder cancer [35]. The applications of FC in cancer
include, among others, drug-screening and development on novel therapeutics [36–38],
as well as diagnostic intraoperative FC analysis [22]. The intraoperative use of FC is
contributing towards the accurate characterization of tumor biology and the resection
margin status assessment. Our research team is working on the way to establish iFC as a
universal next generation margin evaluation tool [28]. Till now, iFC has been successfully
implemented in surgical procedures regarding malignancies of brain, head-and-neck, breast,
gynecological, hepatobilliary and colorectum, with a high accuracy that in most cases is
beyond 90% [20–32]. The current study extends the utility of iFC in bladder cancer analysis
during transurethral resections and reveals that it exhibits a high accuracy (>98%) towards
bladder cancer cell characterization. The assay exhibits a Negative Predictive Value of 100%
and a Positive Predictive Value of 96.20%.

Although tumors that are diagnosed early can be managed by transurethral resection,
the median survival following recurrence of invasive UC remains only 5.6 months. This
notion underscores the importance of detection and therapeutic intervention of bladder
cancer as early as possible [39,40]. The accurate tumor characterization is pivotal for post-
operative management and to improve survival [41]. Based on DNA content analysis, we
confirmed that iFC methodology can be expanded to assess and characterize malignancy
during bladder cancer surgery. Our specialized methodology allowed for optimal sample
collection and analysis. Consequently, along with correct identification of histological
subtypes by pathology, evaluation of DNA-index and proliferation analysis of the resected
tissue would be a strong ally in determining healthy tumor margins. Based on this notion,
iFC may also assist in the prevention of muscle-invasive disease and spread of lymph node
metastases [42] and, in all, improving oncological outcome. The utility of iFC in this type
of surgery has been verified by a pilot analysis in selected samples, where margin status
of five patients was assessed and margin status was successfully delineated, based on the
golden standard pathology evaluation.

Genomic instability is an established hallmark of bladder cancer leading on defects
on cell cycle and growth regulation [9] thus giving rise to malignant transformation and
sustaining proliferation [10]. In fact, Ras-mitogen-activated protein kinase (MAPK) sig-
nal transduction pathway is altered in non-invasive carcinomas whilst two of the most
frequently mutated tumor suppressor genes encountered in invasive tumors are retinoblas-
toma (RB) and p53 genes [43,44]. Luminal papillary tumor analysis revealed mutations
in FGFR gene and aberrant FGFR3 and PIK3CA pathway activation [6,45]. Chromosomal
aberrations (namely polyploidy and hypoploidy) are known causes of carcinogenesis, a
hallmark of cancer cell cells as well as prognostic and predictive marker [34]. In our study,
we detected aneuploidy in almost 50% of cancer cases, based on DNA-index calculation
(Figure 2 and Table S1). In addition, the sustaining proliferative signaling of bladder cancer
cells was detected as an induction of Tumor-index (Figure 4). We believe that the genomic
instability, as a hallmark of bladder cancer cells, may be a reason behind the high sensitivity
and specificity of iFC analysis (Figure 5).

5. Conclusions

Since surgical removal is the first line of treatment in most cancer cases, the ultimate
goal in the field of surgical oncology is the complete tumor removal. A prerequisite for
this, is the accurate characterization of a tumor sample, to delineate resection margins. In
addition, the intraoperative representation of tumor biology would offer valuable informa-
tion for further clinical management. Our report is the first to highlight the importance of
iFC as a tool in transurethral resection that offers a rapid and accurate characterization of
cancer cells, as well as a representation of tumor biology. These results need to be further
evaluated and verified in larger populations and in multicenter studies.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14215440/s1, Table S1: Descriptive statistics for DNA-index,
percentage of cells in G0/G1 and Tumor-index in normal and cancer cells. Table S2: Roc curve
analysis data. The cut-off value is designated with bold.
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