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Abstract

Salmonella enterica serovar Enteritidis (S. Enteritidis) is the most common and essential

serotype that causes salmonellosis in Guizhou province. This study aimed to investigate the

antimicrobial resistance (AMR) and molecular genotyping of 79 S. Enteritidis clinical isolates

from 2011 to 2016 in Guizhou, China. Antimicrobial resistance and minimum inhibitory con-

centrations (MICs) of S. Enteritidis clinical isolates were detected by micro broth dilution

method against ten classes 16 antimicrobial agents, and molecular genotyping were exam-

ined by pulsed-field gel electrophoresis (PFGE) and multiple-locus variable-number tandem

repeat analysis (MLVA). All (100%) isolates showed resistance to at least one antimicrobial.

Resistance to nalidixic acid (98.7%) was the highest, followed by sulfamethoxazole (87.3%)

and ampicillin (77.2%). The majority of isolates (92.4%) showed decreased susceptibility to

ciprofloxacin. Resistance to the third and fourth-generation cephalosporins was observed.

Twenty-six AMR profiles were observed, and the predominant AMR profile was ampicillin-

streptomycin-sulfamethoxazole-amoxicillin/clavulanic acid-nalidixic acid. A high burden of

multidrug resistance (MDR) (81.0%) was found. Seventy-nine S. Enteritidis isolates were

divided into 33 different pulsotypes (PTs), and the most frequent PT was PT18. Twenty-six

different MLVA types (MTs) were generated with seven VNTR loci analysis of these isolates.

The dominant PTs and MTs were persistent during 2011–2016. S. Enteritidis clinical iso-

lates showed higher genetic diversity using PFGE combined with MLVA grouped into 60

PT-MT genotypes. No correlation was observed between genotypes, AMR profiles and geo-

graphic location. These data revealed the characteristics of AMR and molecular genotyping

of S. Enteritidis clinical isolates in Guizhou province. These results highlight that strengthen-

ing the AMR and molecular genotyping surveillance is essential to prevent and control sal-

monellosis in Guizhou. PFGE combined with MLVA should be powerful tools for the

molecular genotyping of S. Enteritidis isolates.
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Introduction

Nontyphoidal Salmonella (NTS) is one of the most common pathogens that contaminate food

and causes diarrhea in humans. 93.8 million cases of gastroenteritis due to Salmonella species

occur each year globally, with 155,000 deaths [1]. In China, 9.87 million cases of gastroenteritis

caused by Salmonella each year [2], and outbreak events due to Salmonella infection some-

times occurred [3]. NTS was the dominant pathogen, which caused microbiological foodborne

outbreaks with the largest number of cases in China [3]. Salmonella enterica serovar Enteritidis

(S. Enteritidis) is the most common serotype among human isolates globally [4]. A recent sur-

vey showed NTS was the top five pathogens causing diarrhea in children under age five and

elderly outpatients older than 65 years in China [5, 6], and of all identified NTS isolates, S.

Enteritidis was the most common serotype [5, 6].

Molecular genotypes can be helpful to active outbreak investigation and surveillance of

pathogen, especially same serotype isolates. PFGE is a standard and international molecular

subtyping method to discern Salmonella strains and often used for surveillance and outbreak

investigations [7]. Although PFGE is considered as the gold-standard for subtyping Salmo-
nella, it is time-consuming, labor-intensive and offers low throughput [8]. The discriminatory

power of single endonucleotidase analysis of PFGE is limited for outbreak detection of S.

Enteritidis [9]. MLVA is another molecular genotyping method used by microbiologists to

generate a DNA fingerprint, which is based on a fragment size analysis of the number of

repeats in the variable number tandem repeats (VNTR) region of microbial genome in most

bacterial species. MLVA is usually examined after PFGE has been performed. Meanwhile,

MLVA genotyping method showed much higher discriminatory power than PFGE in studies

from other countries [10, 11]. The use of PFGE combined with MLVA is suitable for efficiently

genotyping S. Enteritidis strains and provides crucial epidemiological information [12].

Guizhou is a multinational and mountainous area in the southwest of China with 34.75 mil-

lion permanent residents, which is known as a “natural encyclopedia” of the karst landform.

Recent years, rich natural, cultural and environmental resources have been to boost tourism in

Guizhou, which may permit the dissemination of diarrhea pathogens and AMR. Our previous

surveillance on bacterial pathogens of diarrheal patients in Guizhou province showed that

NTS was the primary pathogen caused infectious diarrhea and S. Enteritidis was the most

common serotype [13–15]. Recently, several foodborne outbreaks caused by S. Enteritidis had

been reported in Guizhou [16–18]. Wide-ranging drug resistance and a high proportion of

MDR in the scaled farm, pork and chicken were reported in Guizhou [19–21].

However, data on AMR and molecular genotyping of S. Enteritidis clinical isolates from

Guizhou have lacked so far. This study aimed to perform AMR, PFGE and MLVA of S. Enteri-

tidis clinical isolates from Guizhou for better understanding the AMR and molecular epidemi-

ologic characteristics and revealing associations between AMR profiles, genotypes and

geographic location.

Methods

Ethics statement

The present study was reviewed and approved by the Ethics Review Committee of Guizhou Pro-

vincial Center for Disease Control and Prevention. All data/isolates were analyzed anonymously.

Bacterial isolates and identification

Bacterial isolates used in this study were derived from clinical patients (stool and blood) from

2011 to 2016 in Guizhou province, Southwest of China. All 79 S. Enteritidis strains were
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isolated from eight cities (Anshun, n = 14; Guiyang, n = 23; Qiandongnan, n = 3; Qiannan,

n = 2; Qianxinan, n = 10; Tongren, n = 6; Zunyi, n = 19; Bijie, n = 2). All isolates were stored

in 20% glycerol in -80˚C, which were revived by inoculation into Luria-Burtani (LB) agar

plates. These isolates were confirmed as S. Enteritidis with API20E identification kits (Biomer-

ieux, France) and serotyped by slide agglutination with commercial Salmonella poly and

monovalent O and H antisera (SSI, Denmark).

Antimicrobial susceptibility test

The MICs for 79 S. Enteritidis isolates were determined using the micro broth dilution method

according to the manufacturer’s instructions (Xingbai, Shanghai, China). It contained 16 ani-

microbial agents including ampicillin (AMP), amoxicillin/clavulanic acid (AMC), ceftriaxone

(CRO), cefepime (FEP), cefoxitin (FOX), imipenem (IPM), gentamicin (GEN), streptomycin

(STR), nalidixic acid (NAL), ciprofloxacin (CIP), sulfamethoxazole (SOX), trimethoprim /sul-

famethoxazole (SXT), azithromycin (AZM), chloramphenicol (CHL), doxycycline (DOX) and

tetracycline (TET) that are in ten classes of drugs (penicillin, β-Lactams, cephems, macrolides,

carbapenems, aminoglycosides, quinolone and fluoroquinolones, tetracyclines, phenicols and

sulfonamides). Briefly, freshly culture bacteria were suspended in saline and adjusted to a 0.5

Mcfarland turbidity standard concentration. The 60 μl bacterial suspension was absorbed into

a disposable aseptic groove with a pipettor, then 12 ml nutrient broth was added into the

groove and mixed intensively. 100 μl of the mixture was added into each hole of 96 holes

microporous plate except a negative hole. The 100 μl nutrient broth was added into the nega-

tive hole. The microporous plates were incubated at 35˚C for 18h. Isolates were classified as

susceptible, intermediate or resistant according to the Clinical Laboratory Standards Institute

guidelines (CLSI, 2017) except streptomycin. The interpretive standards of streptomycin used

were the National Antimicrobial Resistance Monitoring System for enteric bacteria (NARMS)

established breakpoints for Salmonella isolates (https://www.cdc.gov/narms/antibiotics-tested.

html). The MIC of streptomycin used susceptible�16 μg/mL, no MIC range of intermediate

susceptibility exists, and resistant�32 μg/mL. Decreased susceptibility to ciprofloxacin (MIC

�0.12 μg/mL) includes isolates with MICs categorized as intermediate or resistant. Escherichia
coli ATCC25922 was used as a control strain. Multidrug-resistant (MDR) was identified as

resistance to three or more classes of drugs.

Pulsed-field gel electrophoresis analysis

PFGE was performed according to the standard operating procedure for pulsenet PFGE of Sal-
monella serotypes (https://www.cdc.gov/pulsenet/pathogens/pfge.html) with CHEF DRIII

(Bio-Rad, USA). All isolates, including the reference strain-Salmonella serovar Braenderup

H9812 in this study, were digested with XbaI enzyme (New England Biolabs, Leusden, The

Netherlands). The cluster analysis of PFGE was performed using BioNumerics software (Ver-

sion7.6; Applied Maths), and the Dice coefficient was determined using the unweighted pair

group method with arithmetic averages (UPGMA). Band comparison was performed using

dice coefficient with 1.50% optimization and 1.50% position tolerance. If the PFGE patterns of

isolates have the same numbers of bands and the same apparent size, isolates are designated

genetically indistinguishable[22].

Multiple-locus variable-number tandem repeat analysis

Laboratory standard operating procedure for pulsenet MLVA of S. Enteritidis was accessible

on the website (https://www.cdc.gov/pulsenet/pathogens/mlva.html). The PCR primers of

seven VNTR loci (SE1, SE2, SE3, SE5, SE6, SE8, and SE9) were synthesized according to the
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procedure by Biotechnology Corporation (Tianyi Huiyuan, Beijing, China). Capillary electro-

phoresis was performed for PCR products on an Applied Biosystems Genetic Analyzer 3730xl.

The data were clustered with the categorical coefficient and generated a minimum spanning

tree (MST) with BioNumerics software basing on seven VNTR loci to know the genetic rela-

tionship, which followed the laboratory standard operating procedure.

Results

Antimicrobial resistance and MICs of S. Enteritidis

Antimicrobial resistance testing showed that all 79 S. Enteritidis isolates exhibited resistance to

at least one class antimicrobial in Guizhou (S1 Table). S. Enteritidis isolates were shown to be

the most resistant to nalidixic acid (98.7%, 78/79), followed by the resistance to sulfamethoxa-

zole (87.3%, 69/79), ampicillin (77.2%, 61/79), streptomycin (75.9%, 60/79) and amoxicillin/

clavulanic acid (49.4%, 39/79) (Table 1). Furthermore, S. Enteritidis isolates were shown to be

resistant to the third and fourth-generation cephalosporins, including ceftriaxone (7.6%, 6/79)

and cefepime (6.3%, 5/79). None of these isolates was resistant to cefoxitin. Only 3.8% (3/79)

of S. Enteritidis isolates were resistant to ciprofloxacin. However, 92.4% (73/79) of isolates

Table 1. Antimicrobial resistance of 79 S. Enteritidis clinical isolates in Guizhou from 2011 to 2016.

Antimicrobial Number of isolates (%)

2011

(n = 7)

2012

(n = 3)

2013

(n = 14)

2014

(n = 16)

2015

(n = 12)

2016

(n = 27)

Total

(n = 79)

Penicillin

Ampicillin (AMP) 5(71.4) 3(100) 10(71.4) 12(75) 10(83.3) 21(77.8) 61(77.2)

β-Lactams

Amoxicillin/clavulanic acid (AMC) 4(57.1) 3(100) 8(57.1) 12(75) 10(83.3) 2(6.9) 39(49.4)

Cephems

Ceftriaxone (CRO) 0 0 0 1(6.2) 2(16.7) 3(11.1) 6(7.6)

Cefepime (FEP) 0 0 0 1(6.2) 2(16.7) 2(7.4) 5(6.3)

Cefoxitin (FOX) 0 0 0 0 0 0 0

Carbapenems

Imipenem (IPM) 0 0 0 0 0 1(3.7) 1(1.3)

Aminoglycosides

Gentamicin (GEN) 3(42.9) 1(33.3) 0 1(6.2) 0 3(11.1) 8(10.1)

Streptomycin (STR) 4(57.1) 2(66.7) 11(78.6) 12(75) 11(91.7) 20(74.1) 60(75.9)

Quinolones and Fluoroquinolones

Nalidixic acid (NAL) 7(100) 3(100) 14(100) 16(100) 12(100) 26(96.3) 78(98.7)

Ciprofloxacine (CIP) 2(28.6) 0 0 0 0 1(3.7) 3(3.8)

Sulfonamides

Sulfamethoxazole (SOX) 5(71.4) 3(100) 13(92.9) 13(81.2) 12(100) 23(85.2) 69(87.3)

Trimethoprim /sulfamethoxazole (SXT) 2(28.6) 0 1(7.1) 5(31.2) 1(8.3) 4(14.8) 13(16.5)

Macrolides

Azithromycin (AZM) 0 0 0 0 0 3(11.1) 3(3.8)

Phenicols

Chloramphenicol (CHL) 0 0 0 1(6.2) 1(8.3) 0 2(2.5)

Tetracyclines

Doxycycline (DOX) 2(28.6) 0 1(7.1) 6(37.5) 4(33.3) 6(22.2) 19(24.1)

Tetracycline (TET) 1(14.3) 0 1(7.1) 5(31.2) 4(33.3) 7(25.9) 18(22.8)

Multi-drug resistance (MDR) 5(71.4) 3(100) 11(78.6) 13(81.3) 11(91.7) 21(77.8) 64(81.0)

https://doi.org/10.1371/journal.pone.0221492.t001
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were shown to be decreased susceptibility to ciprofloxacin (MIC�0.12 μg/mL) (S1 Table).

Additionally, imipenem and azithromycin resistance were detected in 1.3% (1/79) and 3.8%

(3/79) of S. Enteritidis isolates, respectively. The MICs of each antimicrobial for 79 S. Enteriti-

dis were displayed in Table 2.

In all isolates, high-level MDR S. Enteritidis isolates were observed. 81.0% (64/79) of S.

Enteritidis isolates were resistant to three or more classes of antimicrobial agents. Resistance to

five classes antibiotics was the most frequent, accounting for 38.0% (30/79) of S. Enteritidis iso-

lates, whereas exhibited MDR to at most eight classes antibiotics (Fig 1). Furthermore, twenty-

six AMR profiles were observed among S. Enteritidis isolates. The predominant AMR profile

was ampicillin-streptomycin-sulfamethoxazole-amoxicillin/clavulanic acid-nalidixic acid

(27.8%, 22/79). Meanwhile, 44.3% (35/79) of S. Enteritidis isolates were resistant to at least the

combination of traditional antimicrobials, including ampicillin, streptomycin, sulfamethoxa-

zole and amoxicillin/ clavulanic acid (S1 Table). Only 2.5% (2/79) of S. Enteritidis isolates were

shown resistance to ampicillin-chloramphenicol-streptomycin-sulfamethoxazole-tetracycline

(ACSSuT).

PFGE genotyping

The 79 S. Enteritidis isolates were analyzed by PFGE using enzyme XbaI, which generated 33

different XbaI pulsotypes (PT1-PT33) with similarity indices ranged from 60.1% to 100% (Fig

2). Among these isolates, 13 pulsotypes were represented by more than one isolate with PT18

(n = 15) containing the most number of isolates, followed by PT13 (n = 7). The dominant PTs

were persistent during 2011–2016. All the 79 S. Enteritidis isolates were grouped into two clus-

ters (cluster A and cluster B) (Fig 2). The majority of the isolates (n = 73) were grouped in clus-

ter B with 28 pulsotypes (PT6-PT33) and further slip into cluster B1 (n = 67) and cluster B2

(n = 6). The dominant PTs (PT18, PT13, PT8 and PT20) among these isolates grouped in clus-

ter B1. The association analysis among PTs, AMR profiles and geographic location showed

that the dominant AMR profiles gathered mainly in cluster B1. However, no correlation was

observed between the pulsotypes, AMR profiles and geographic location (Fig 2).

Table 2. MIC50 and MIC90 of 16 antibiotics for 79 S. Enteritidis clinical isolates.

antibiotics MIC range MIC50 MIC90

Ampicillin 1–64 64 64

Amoxicillin/clavulanic acid 1–64 16 64

Ceftriaxone 0.25–16 0.25 0.5

Cefepime 1–64 1 1

Cefoxitin 1–8 2 4

Imipenem 0.5–32 0.5 0.5

Gentamicin 1–64 1 32

Streptomycin 8–64 64 64

Nalidixic acid 4–64 64 64

Ciprofloxacine 0.03–8 0.125 0.25

Sulfamethoxazole 16–1024 512 512

Trimethoprim /sulfamethoxazole 0.13–8 0.25 8

Azithromycin 2–128 2 8

Chloramphenicol 2–128 8 16

Doxycycline 2–64 4 64

Tetracycline 2–64 4 64

https://doi.org/10.1371/journal.pone.0221492.t002
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MLVA genotyping

MLVA based on seven VNTR loci (SE1-SE2-SE3-SE5-SE6-SE8-SE9) were performed for the

characteristics of 79 S. Enteritidis isolates further. Among these isolates, 26 different MLVA

types (MTs) were discriminated (Fig 3). Nine MTs were represented by more than one isolate

with MT5 containing the most number of isolates, followed by MT6 (Figs 3 and 4). MT5

included 25 isolates from 2011 to 2016 except 2015, accounting for 31.6% (25/79) of the total

number of isolates. Meanwhile, MT6 contained 14 isolates from 2011–2016 except 2012,

accounting for 17.7% (14/79) of the total. Seventeen MTs contained only one isolate. The 79 S.

Enteritidis isolates were divided into two main clusters, cluster A and B, from the dendrogram

generated (Fig 3). A majority (97.4%, 77/79) of isolates were grouped in cluster B with 57.4%

similarity. In all isolates, no diversity of the VNTR locus at SE6 and SE8 was observed with tan-

dem repeat numbers of ten and one, respectively. Moreover, the MST of basing on seven

VNTR loci of 79 S. Enteritidis clinical isolates showed that the MLVA profiles were clustered a

single clone with two singletons (Fig 4).

Genotyping of PFGE combined with MLVA

The genotyping of the Guizhou S. Enteritidis isolates were also determined using PFGE com-

bined with MLVA. If the isolates have the same PTs and the same MTs, isolates are designated

genetically indistinguishable. The 79 S. Enteritidis clinical isolates were divided into 60 unique

PT-MT genotypes (Fig 2). Forty-eight PT-MT genotypes contained only one isolate. Twelve

PT-MT genotypes were represented by more than one isolate with PT18-MT5 genotype con-

taining the most number of isolates, accounting for 10.1% (8/79) of S. Enteritidis isolates. Fur-

thermore, no relationship was observed between the PT-MT genotypes, AMR profiles and

geographic location (Fig 2). S. Enteritidis isolates from Guizhou showed higher genetic diver-

sity using PFGE combined with MLVA.

Discussion

S. Enteritidis is the most frequent etiological agent of salmonellosis in humans and poultry.

The surveillance of Salmonella from infectious diarrheal cases indicated S. Enteritidis was one

of the most important pathogens and the most common serotype in Guizhou province [13,

14]. However, these studies did not provide enough information concerning AMR and

Fig 1. The percentage of resistance to ten classes antibiotics of S. Enteritidis isolates. Our analysis showed that

resistance to five classes of antibiotics was the most frequent among 79 S. Enteritidis isolates.

https://doi.org/10.1371/journal.pone.0221492.g001
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molecular epidemiological characteristics of S. Enteritidis isolates in Guizhou. Decreased sus-

ceptibility to ciprofloxacin and resistance to cephalosporins in S. Enteritidis isolates are not

reported. To systematically understand the AMR and molecular characteristics, we collected

79 S. Enteritidis clinical isolates from Guizhou province in 2011–2016 for analysis in this

study.

In the present study, the AMR and MICs of 79 S. Enteritidis clinical isolates from Guizhou

were detected against 16 antimicrobial agents for the first time here. The results exhibited

high-level resistance to antimicrobial agents. All (100%) S. Enteritidis isolates were resistant to

at least one antimicrobial agent, which was higher than those reported from the Midwestern

United States (50%), Spanish (61.7%), Serbia (22%) and Shanghai (77.3%) [23–26]. Further-

more, a high proportion (81.0%) of MDR S. Enteritidis isolates in our study was observed (Fig

Fig 2. Pulsed-field gel electrophoresis (PFGE) pulsotypes based on XbaI enzyme digestion, antimicrobial

resistance and multiple-locus variable-number tandem repeat analysis (MLVA) types of 79 S. Enteritidis isolates

from Guizhou province. A black box represents resistance to an antimicrobial; a dark gray box represents

intermediate to an antimicrobial; a light gray box represents susceptibility to an antimicrobial. MLVA types based on

seven loci were shown on the right of AMR. The dendrogram was generated by UPGMA. The corresponding

background information, pulsotype (PT), MLVA type (MT) and PT-MT genotype were shown on the right of the

dendrogram. Genotyping of PFGE combined MLVA (PT-MT genotype) based on PTs and MTs of isolates. If the

isolates have the same PTs and the same MTs, isolates are designated genetically indistinguishable.

https://doi.org/10.1371/journal.pone.0221492.g002
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1), which was significantly higher than the rate of 2.0% (84/4208) from the NARMS report

(2006–2015) [27]. The observed MDR prevalence in Guizhou was similar to those reported

from eight provinces in China (70.2%) [28]. A similar high prevalence of MDR S. Enteritidis

was reported in pork (88.46%) and chicken (94.1%) in Guizhou [21, 29]. Meanwhile, a propor-

tion of isolates (44.3%) were observed to be resistant to at least the combination of traditional

antibiotics, including ampicillin, streptomycin, sulfamethoxazole and amoxicillin/clavulanic

acid in this study (S1 Table). The high-level MDR further limits the option of medicines in the

clinical treatment of S. Enteritidis infection. Therefore, controlling the application of antibiot-

ics for clinical patients and agriculture was essential, since the antibiotics abuse may further

Fig 3. Multiple-locus variable-number tandem repeat analysis (MLVA) types of S. Enteritidis isolates from

Guizhou province. The dendrogram was generated by UPGMA. The corresponding MLVA type (MT) with copy

numbers of the seven loci and background information were shown on the right of the dendrogram.

https://doi.org/10.1371/journal.pone.0221492.g003
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accelerate the accumulation and spread of antimicrobial resistance. More importantly, the rou-

tine AMR surveillance of Salmonella isolates was crucial to early warn the spread of MDR [30–

32].

Ciprofloxacin is recommended to treat salmonellosis as the first-line antibiotic by the

World Health Organization [33]. Only 3.8% of isolates were resistant to ciprofloxacin in this

study, which was lower than S. Enteritidis clinical isolates from Western China (20%), Thai-

land (51.1%) and Iran (90.9%) [34–36]. However, a great proportion of isolates (92.4%)

showed decreased susceptibility to ciprofloxacin (MIC�0.12 μg/mL), which was in agreement

with other cities in China [37–39]. Moreover, this finding was significantly higher than the

rate of 7.2% (303/4208) from the NARM report during 2006–2015 [27]. Due to the decreased

susceptibility to ciprofloxacin, the clinical treatment of S. Enteritidis infection may lead to

treatment failure. Meanwhile, in our study, almost all isolates (except one isolate) were

observed resistance to nalidixic acid (Table 1), which was correlated with the decreased suscep-

tibility to ciprofloxacin. Therefore, nalidixic acid susceptibility testing was valuable before

using ciprofloxacin for the treatment of S. Enteritidis infection in Guizhou.

Moreover, the third-generation cephalosporins were approved to treat salmonellosis [40]

and used in livestock and poultry in China [41]. In our study, resistance to the third and

fourth-generation cephalosporins had emerged since 2014 in Guizhou (Table 1). Six (7.6%) S.

Enteritidis isolates exhibited resistance to the third-cephalosporin (ceftriaxone), of which five

isolates showed co-resistance to the fourth-generation cephalosporin (cefepime) and decreased

susceptibility to ciprofloxacin (S1 Table). If these isolates are globally prevalent, it might

become a remarkable public health concern. Therefore, monitoring the dynamic change of

resistance to fluoroquinolones and cephalosporins of S. Enteritidis isolates was essential.

Fig 4. Genetic relationship of 79 S. Enteritidis isolates from Guizhou province based on MLVA. The minimum

spanning tree (MST) was generated based on 26 MLVA types. Each circle and the number within the circle represent a

different MLVA type. The size of the circle is proportional to the amount of the isolates, and the color within the circles

represents the different number of isolates. The number outside of the circles indicates how many VNTR loci are

different in the MLVA types of connected circles. The shadow zone means these MTs belonging to the same clonal.

https://doi.org/10.1371/journal.pone.0221492.g004
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Meanwhile, these data further highlight the necessity to manage the use of clinical antibiotics

appropriately.

PFGE genotyping can be used to ascertain the homology of the same serotype isolates [26].

Genetic diversity among S. Enteritidis isolates from Guiyang city in Guizhou province had

reported. Eleven S. Enteritidis clinical isolates were divided into eight PFGE genotypes with

XbaI [14]. In our study, PFGE analysis revealed 33 different PTs with 60.1% similarity, which

showed high genetic diversity and indicated that it was a useful tool in discriminating S. Enter-

itidis isolates. Notably, cluster B was the primary PFGE type of S. Enteritidis in Guizhou.

There were dominant PTs among the S. Enteritidis clinical isolates in Guizhou. However,

PFGE pulsotypes were not a correlation with AMR profiles and geographic location. This find-

ing implied that these patients were most likely sporadic. We found a few dominant PFGE pul-

sotypes during 2011–2016, which implicated these common pulsotypes were persistent (Fig 2).

MLVA had proven to be a reliable method for the molecular epidemiological investigation

of S. Enteritidis outbreaks and the surveillance of S. Enteritidis [42, 43]. In our study, the 79 S.

Enteritidis isolates were divided into 26 distinct MTs with 48.9% similarity based on seven

VNTR loci, which showed a high discriminatory power. A similar study demonstrated that

MLVA had a high discriminatory power for S. Enteritidis in China [44]. Furthermore, the

dominant MLVA types of S. Enteritidis clinical isolates were persistent, which was similar to

the mid-east of China [45]. The phylogenetic tree of MLVA types showed no correlation was

observed between MLVA types and geographic location, which further indicated that these

isolates came from sporadic cases. Similar to previous reports [42, 44], all of S. Enteritidis iso-

lates had the same number of the tandem repeat at locus SE6 and SE8 in this study (Fig 3).

Meanwhile, the VNTR locus SE5 had a high diversity based on seven VNTR loci. This result

indicated that the VNTR locus SE6 and SE8 maybe not be detected, as no diversity was found

in our study. Further analysis of the MST based on seven VNTR loci showed 79 S. Enteritidis

clinical isolates belonged to a single MLVA cluster with two singletons, which indicated that

these isolates had a closer genetic relationship and came from the same clone (Fig 3).

Analysis of PFGE combined with MLVA showed that 79 S. Enteritidis clinical isolates were

divided into 60 unique PT-MT genotypes (Fig 2), which revealed higher diversity than single

PFGE or MLVA analysis. No epidemiological correlation was observed among these S. Enteri-

tidis clinical isolates, which further proved that these isolates came from sporadic cases (Fig 2).

The genotyping of S. Enteritidis isolates using PFGE combined with MLVA was superior to

using a single PFGE or MLVA method, which can provide crucial epidemiological informa-

tion. Furthermore, it is useful to the investigation of outbreak and epidemiological surveillance

of S. Enteritidis infection. MLVA can improve public health surveillance of S. Enteritidis and

has been proposed as a supplement to PFGE for subtyping S. Enteritidis [8, 46].

Although the genotyping of PFGE and MLVA can provide important molecular epidemio-

logical information for S. Enteritidis isolates from Guizhou province, We do not know if these

S. Enteritidis isolates belong to the same clone with isolates from other counties or continents.

It would be of crucial importance to further learn the whole gene sequence (WGS) to prevent

and control S. Enteritidis infection in our future studies, which would provide multiple genetic

data, including revealing genetic relatedness with isolates from other counties or continents,

helping with source trace-back investigations and predicting antimicrobial resistance.

Conclusion

This study investigated the AMR, PFGE and MLVA molecular genotyping of 79 S. Enteritidis

clinical isolates from 2011 to 2016 in Guizhou, China. High-level resistance to antimicrobials

was observed. All isolates were resistant to at least one antimicrobial. A high burden of MDR
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was found. Co-resistance to the third and fourth-generation cephalosporins and a high pro-

portion of decreased susceptibility to ciprofloxacin exhibited. It is essential to control the

abuse of antimicrobial agents and strengthen the surveillance of AMR. PFGE analysis with

XbaI enzyme digestion divided the 79 S. Enteritidis isolates into 33 different PTs and MLVA

analysis of these isolates based on seven VNTR loci obtained 26 distinct MTs.

Analysis of PFGE combined with MLVA for 79 S. Enteritidis isolates revealed higher diver-

sity than single PFGE or MLVA analysis. No correlation was observed between these geno-

types, AMR profiles and geographic location. The genotyping of S. Enteritidis using PFGE

combined with MLVA can provide crucial epidemiological information. To our knowledge,

this is the first study that we reported the AMR and the molecular genotyping of S. Enteritidis

clinical isolates from Guizhou province of Southwestern China. These results might be useful

to provide a scientific basis for control and prevention of salmonellosis in Guizhou province.

Supporting information
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