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ABSTRACT

With the advent of next generation high-throughput
DNA sequencing technologies, omics experiments
have become the mainstay for studying diverse bi-
ological effects on a genome wide scale. Chromatin
immunoprecipitation (ChIP-seq) is the omics tech-
nique that enables genome wide localization of tran-
scription factor (TF) binding or epigenetic modifi-
cation events. Since the inception of ChIP-seq in
2007, many methods have been developed to in-
fer ChIP-target binding loci from the resultant reads
after mapping them to a reference genome. How-
ever, interpreting these data has proven challenging,
and as such these algorithms have several short-
comings, including susceptibility to false positives
due to artifactual peaks, poor localization of bind-
ing sites and the requirement for a total DNA in-
put control which increases the cost of performing
these experiments. We present Ritornello, a new ap-
proach for finding TF-binding sites in ChIP-seq, with
roots in digital signal processing that addresses all
of these problems. We show that Ritornello gener-
ally performs equally or better than the peak callers
tested and recommended by the ENCODE consor-
tium, but in contrast, Ritornello does not require a
matched total DNA input control to avoid false posi-
tives, effectively decreasing the sequencing cost to
perform ChIP-seq. Ritornello is freely available at
https://github.com/KlugerLab/Ritornello.

INTRODUCTION

Reliable and precise characterization of where proteins,
such as transcription factors (TFs), interact with the

genome, enables biologists to understand how gene ex-
pression is regulated at the molecular level. The human
genome, for example, encodes about 1500 TFs (1) and many
of them directly recognize and bind to specific DNA se-
quences to regulate gene expression. Therefore, identifica-
tion of where each TF binds to the DNA is critical for recon-
structing the complex regulatory network of gene expres-
sion. Chromatin immunoprecipitation (ChIP) followed by
high-throughput sequencing (ChIP-seq) is a powerful tool
for detecting protein–DNA interactions at the genome-wide
scale and has become the method of choice. In a ChIP-
seq experiment, first, proteins interacting with the DNA
are chemically attached to the DNA using formaldehyde-
mediated crosslinking. Then the DNA is fragmented into
short pieces and antibodies specifically targeting the protein
of interest are used to pull down DNA fragments bound by
that protein. Finally, the immunoprecipitated DNA frag-
ments are released from the protein of interest and sub-
jected to high-throughput DNA sequencing. The resulting
sequenced reads are mapped to a reference genome and
computational peak calling algorithms are applied to pro-
cess mapped reads and infer protein-binding positions.

TFs usually bind to short specific DNA sequences (mo-
tifs) and generate sharp point-source peaks (2). For most
ChIP-seq experiments currently available, only one of the
two 5′ ends of each double-stranded DNA fragment has
been sequenced (single end sequencing), so the read cover-
age near the point-source peaks follow a characteristic bi-
modal shape. However, calling peaks accurately from a large
quantity of mapped reads is nontrivial and over 40 algo-
rithms have been developed (3–44) since the ChIP-seq tech-
nology was first introduced (45). Peak calling remains chal-
lenging due to the presence of artifactual-binding events
(false positives) and background noise from reads outside of
peaks, multi-binding events with overlapping read contribu-
tions and variability of experimental quality. Additionally,
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for most peak calling algorithms, matched negative con-
trols, which are usually DNA samples obtained without per-
forming immunoprecipitation (total DNA input control) or
immunoprecipitated by non-specific antibodies (IgG con-
trol), are often required to control the false positive rate
(FPR).

Performing a negative control experiment for each sam-
ple, effectively doubles the sequencing cost of ChIP-seq,
limiting the number of samples that can be run per exper-
iment. Peak calling algorithms that do not use the control
(including those that have the option to run with or with-
out it) have been developed; however, they underperform
due to the lack of a detailed characterization of ChIP-seq
signal and noise.

Binding events can also occur in close proximity to one
another and it is often difficult to resolve how many bind-
ing sites are present and precisely where binding occurs.
BRACIL (46) and CSDeconv (47) use blind deconvolution
algorithms to resolve individual peaks at multi-binding loci
but are not scalable for peak calling and are thus used for
post processing when peaks have been identified by other
peak callers. GEM (23) incorporates de novo motif discov-
ery into the peak identification process aiding in resolving
individual peaks, but may not be suitable if the TF of in-
terest does not bind to DNA directly or does not have any
specific motif.

ChIP-seq experiments can also be of varying quality.
Collective efforts by large consortia have provided guide-
lines on how to evaluate the quality and signal-to-noise ra-
tio of ChIP-seq experiments. The opposing strand cross-
correlation between the read coverage on the positive and
that on the negative strands has been used to assess experi-
mental quality by ENCODE (2). The cross-correlations of
ChIP-seq as well as input control experiments exhibit two
modes, one at or around their respective average fragment
lengths and an additional one at or around their respec-
tive read lengths. High quality experiments tend to have a
greater contribution from the fragment length mode, while
low quality experiments and input controls tend to have a
larger contribution from the read length mode. Specifically,
to assess the quality of ChIP-seq experiments, ENCODE
recommends two metrics, the normalized strand coefficient
(NSC) and the relative strand correlation (RSC)(2). The
NSC is the ratio between the the fragment length mode and
the baseline for large offsets of cross-correlation. The RSC
is the ratio between the fragment length mode and the read
length mode of the cross-correlation. If the NSC or RSC
scores are low, indicating poor experimental quality, EN-
CODE recommends repeating the experiment. Given the
considerable cost of repeating a ChIP-seq experiment, it is
useful to be able to ‘rescue’ samples with suboptimal qual-
ity for use as additional replicates, rather than discarding
them.

Here, we present Ritornello, a novel algorithm for find-
ing binding sites of TFs. Ritornello is based on both digi-
tal signal processing (DSP) and statistical techniques. In the
current work, we contribute the following innovations and
insights:

i) a peak caller, that does not require a matched control
and still maintains a low FPR, outperforming even al-
gorithms that use the control.

ii) an efficient method to perform full deconvolution of
multi-binding events on a genome wide scale.

iii) samples of low quality can be ‘rescued’, instead of being
discarded.

iv) a rigorous characterization of the binding signals and
artifacts in the presence of noise in ChIP-seq data.

v) a non-parametric approach to calculate the fragment
length distribution (FLD) for any single-end NGS ex-
periment.

We benchmarked Ritornello against MACS2 (3) and
GEM (23), two algorithms recommended by the EN-
CODE consortium (2). In the default modes each requires
the matched control. We demonstrated that Ritornello, a
matched control free method, outperformed MACS2 and
GEM.

MATERIALS AND METHODS

We have developed Ritornello to find candidate peaks effi-
ciently, with minimal use of memory and computation time,
by using a DSP technique called a matched filter, classify
candidate peaks as true-binding events or artifacts based
on their shape and finally test candidate-binding positions
for significance based on comparison to a model absent
of binding at that position. The scheme of the Ritornello
method is detailed in Figure 1.

Derive fragment length distribution via deconvolution

For fragments overlapping a binding position, the positive
strand mapping reads will be upstream of the binding site
whereas negative strand reads will be downstream of the
site. As such, the distance between a read and the bind-
ing position is dependent on the fragment length, which
most peak calling algorithms must estimate to obtain accu-
rate predictions for binding locations. Specifically, most cur-
rent peak callers only estimate the average fragment length
rather than the whole distribution. Our first innovation for
Ritornello is calculating, not just the mean fragment length,
but the entire sample specific empirical FLD from single-
end reads (step 2 of Figure 1). Ritornello utilizes this FLD,
as a key component, for more accurate peak predictions,
which we will describe in detail below.

The opposing strand ‘cross-correlation’ �n = Pr[Rn ] ∗
Pr[−Rp] is the single strand ‘autocorrelation’ �p =
Pr[Rp] ∗ Pr[−Rp] convolved against the FLD as has previ-
ously been shown (48):

�n = Pr[Rn ] ∗ Pr[−Rp]

= Pr[Rp + F ] ∗ Pr[−Rp]

= Pr[Rp] ∗ Pr[−Rp] ∗ Pr[F ]

= �p ∗ Pr[F ],

(1)

where, Pr[Rp] is the probability of choosing a read starting
at a position Rp on the positive strand, Pr[Rn ] is the proba-
bility of choosing a read start at a position Rn on the neg-
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Figure 1. Overview of the Ritornello approach. Step 1: the reads are mapped to the genome and the distributions of read starts Pr[Rp ] and Pr[Rn ] are
calculated. Step 2: the FLD Pr[F ] is calculated using only those areas identified as background coverage (free of peaks and artifacts). Step 3: the expected
distribution of reads around a binding event is calculated from a model including the FLD Pr[F ] as well as the distribution of relative-binding positions
within fragments Pr[K ]. Initially, K is modeled with a uniform distribution or equivalently K ∼ β(�, �) with α = 1. Step 4: the expected distribution of
reads around a binding event is used to locate candidate-binding event peaks (e.g. bk − 1, bk and bk + 1) by identifying the positions with the highest match
with impulse response function. Step 5: candidate-binding events are classified as either read length artifacts (e.g. bk + 1) or are retained as putative-binding
events (e.g. bk − 1 and bk) based on the shape of the local cross-correlation between opposing strands. Step 6: the binding intensity, β

p
k + βn

k , of each
peak, bk are deconvolved from the mixture of local peaks bk − 1 and background noise using a maximum likelihood approach. The likelihood ratio test
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ative strand, Pr[F ] is the FLD and * is the convolution op-
erator. The FLD can then be obtained by deconvolution as
follows:

Pr[F ] = F−1
(F(�n)
F(�p)

)
, (2)

where, F is the Fourier transform operator and F−1 is its
inverse.

In the current work, we clarify that Equation (1) assumes
that Rp and F are statistically independent and thus Pr[Rp +
F ] can be simplified to Pr[Rp] ∗ Pr[F ]. If we assume that
Rn (as opposed to Rp) and F are independent, then we can
instead write the following relationship:

�p = Pr[Rp] ∗ Pr[−Rn ]

= Pr[Rn + F ] ∗ Pr[−Rn ]

= Pr[Rn ] ∗ Pr[−Rn ] ∗ Pr[F ]

= �n ∗ Pr[F ],

(3)

and deconvolve as follows:

Pr[F ] = F−1
(F(�p)
F(�n)

)
. (4)

Equations (2) and (4) describe how to obtain the FLD under
two different and mutually exclusive assumptions (i.e. Rp⊥F
or Rn⊥F where ⊥ denotes statistical independence). To esti-
mate the FLD empirically, Ritornello must locate genomic
positions where either Rp or Rn is roughly independent of F
and invoke the corresponding equations locally.

We note that the local coverage on either Rp or Rn is un-
likely to be uniform when the FLD changes as a function of
genomic position on that strand. Therefore, to estimate the
fragment lenght distribution, we exclude regions that clearly
do not satisfy the assumptions made in Equations (1) and
(3) by retaining only regions whose coverage is roughly lo-
cally uniform for Rp in Equation (1) and Rn in Equation (3).

We identify these candidate regions by looking for read
coverage that is locally uniform on either strand, using a
� 2 goodness of fit test (i.e. Pr[Rp] ∼ U or Pr[Rn] ∼ U ). For
each window of size 2Fmax (twice the maximum fragment
length) centered at position i on either strand, we calculate
the � 2 test statistic as follows:

zp
i =

i+Fmax∑
j=i−Fmax

(Pr[Rp = j ] − U [ j ])2

U [ j ]

zn
i =

i+Fmax∑
j=i−Fmax

(Pr[Rn = j ] − U [ j ])2

U [ j ]
.

(5)

We then sum the local empirical autocorrelations, �p, i or
�n, i, for those windows where either the positive or nega-
tive strand is independent of the fragment length, as deter-
mined by the � 2 test for local uniformity, across the genome

G. Additionally, we sum the local opposing strand cross-
correlations, �p, i or �n, i, associated with each autocorre-
lation according to Equations (1) and (3) as follows:

�(τ ) =
G∑

i=1

�p,i (τ )I(V p
i > α) + �n,i (τ )I(Vn

i > α)

�(τ ) =
G∑

i=1

�n,i (τ )I(V p
i > α) + �p,i (τ )I(Vn

i > α)

V p
i ≡ Pr[zp

i < χ2(2Fmax)]

Vn
i ≡ Pr[zn

i < χ2(2Fmax)].

(6)

where,

�p,i (τ ) = Pr[Rp = i ] Pr[Rp = i − τ ]

�n,i (τ ) = Pr[Rn = i ] Pr[Rn = i − τ ]

�p,i (τ ) = Pr[Rp = i ] Pr[Rn = i − τ ]

�n,i (τ ) = Pr[Rn = i ] Pr[Rp = i − τ ]

τ ∈ [−Fmax, Fmax].

(7)

Using the global autocorrelation, � and cross-correlation,
�, functions from Equation (6), we estimate the FLD as
follows:

Pr[F ] = F−1
(F(�)
F(�)

)
. (8)

Why the fragment length distribution can be inferred from
single end data?

We have just shown that the fragment length distribution
can be derived via deconvolution from Pr[RP] and Pr[Rn ]
when those distributions are related by Equations (1) or
(3). This is intuitive in paired-end sequencing. However, in
single-end sequencing, only one end is randomly selected
from each fragment, and it is hard to imagine how the frag-
ment length information can be inferred. For a given set of
fragments, single end sequenced reads are a sub-sample of
paired-end sequenced reads. Thus, Pr[RP] and Pr[Rn ], the
only inputs to Equations (2) or (4), should be the same for
the single-end reads as that in the paired-end, resulting in
similar estimated FLDs, Pr[F ].

To directly demonstrate that the computed Pr[F ] of
singled-end data is a reasonable approximation for the
FLD, we have applied Equations (6) and (7) to a pseudo
single-end data created by randomly sampling one end from
each fragment of a paired-end experiment. In Figure 2, we
show that the FLD calculated using Equations (6) and (7)
from this pseudo single-end data (black) is similar to the
true FLD of the paired-end sample (green).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
is then applied to determine the significance of the peak. Step 7: the distribution of relative-binding positions within fragments, Pr[K ], is updated using a
maximum likelihood estimate of �, where K ∼ β(�, �). This is obtained using a combined likelihood model for the top 200 most significant peaks. Steps
3–6 are repeated using the new Pr[K ].
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Figure 2. Ritornello captures the FLD from single-end sequencing data.
Given a set of fragments, singled end sequenced reads are a subsample of
paired-end sequenced reads. When enough single end fragments are sam-
pled the distribution of read coverage on the positive and negative strands
Pr[Rp ] and Pr[Rn ] are equivalent to their paired-end counterparts. A sin-
gle read from each paired-end fragment of an EZH2 sample was randomly
chosen to simulate singled end data. The FLD calculated by Ritornello
from this data (black curve) closely approximates the true FLD (green
curve).

Local fragment length distribution varies around binding
events

The fragments generated from a binding event overlap the
binding site, thus any given fragment must be at least as
long as the distance from its start position to the binding
site. This creates dependence between the fragment length
and genomic position on both strands because reads that
are further from the binding site are necessarily longer on
aggregate. Consequently, neither the positive nor the neg-
ative strand read coverage is independent of the fragment
length within a binding event, making it inappropriate to re-
cover the FLD using Equation (2), as shown by simulation
in Figure 3D. In contrast, in simulated event free regions,
it is shown that the FLD can be correctly recovered using
Equation (2) as seen in Figure 3A.

Local fragment length distribution varies around read length
artifacts

In addition to binding events, we have observed local arti-
factual patterns that create dependence between fragment
length and genomic position on both strands, preventing
the reconstruction of FLD. These artifactual patterns fall
into the following two categories:

i) a pile of reads whose start positions constitute a read
length width column pattern on the positive strand, fol-
lowed by a read length width column pattern on the neg-
ative strand, a read length downstream. We refer to this
artifact as a column artifact. We simulate it in Figure 3B
and show it in Figure 4A.

ii) a binding peak (or background read coverage) but with
a read length width column pattern of missing reads on
the positive strand followed by a read length width col-
umn pattern of missing reads on the negative strand, a
read length downstream. We refer to this as a missing-

column artifact. We simulate it in Figure 3C and show it
in Figure 4B.

Based on paired end data, we have observed that the FLD
is invariant with respect to genomic position with the ex-
ception of these artifacts and binding events which Ritor-
nello excludes from the FLD calculation using Equations
(6) and (7). Both of these artifacts cause local disturbances
in the FLD. This is easier to see in paired-end sequenced
reads. The paired-end column artifact shown in Figure 4C
contains fragments with length distributed according to the
sample’s FLD. However, the fragments are organized such
that longer fragments extend further from center of the arti-
fact (denoted with an asterisk) than shorter fragments, im-
plying F is dependent on Rp and Rn. The paired end missing-
column artifact shown in Figure 4D is composed of frag-
ments organized such that the range of possible fragment
lengths is restricted based on genomic position. Specifically,
on the positive strand, lengths of fragments (such as frag-
ments A and B) must lie outside the range [dp, dp + w] where
dp is the distance from the positive strand read to the center
of the missing-column artifact (denoted with an asterisk).
Likewise, on the negative strand, the lengths of fragments
(such as fragments C and D) must lie outside the range [dn,
dn + w] where dn is the distance from the negative strand
read to the center of the missing-column artifact (denoted
with an asterisk). Thus, column and missing-column arti-
facts are composed of fragments organized such that both
strands are dependent on fragment length.

We note that if we were using Equations (2) or (4) without
invoking Equations (5)–(8) at these artifactual regions, the
resulting FLD would have two modes, one associated with
the ‘phantom peak’ near the read length, and one associated
with the predominant fragment length. ENCODE observed
these two modes in the opposing strand cross-correlation,
which is related to the FLD (Equations (1) and (3)). How-
ever, when these artifactual regions are filtered out as is done
in equations (5)–(8), the ‘phantom peak’ is greatly attenu-
ated. Thus, these artifactual areas give rise to a low quality
RSC (2,49), the ENCODE measures of the ‘phantom peak’
using cross-correlation. The cause of these artifacts is likely
incorrect mapping which is described in the next section.

Incorrect mapping leads to read length artifacts

The read length used in any sequencing experiment is de-
termined subsequent to the collection of fragments. There-
fore, read length artifacts are associated with sequencing or
post-sequencing procedures. Each read in a ChIP-seq exper-
iment is sequenced from the sample’s genomic DNA, which
can differ from the reference genome used in the align-
ment step. Comparative genome assembly algorithms used
for sequence alignment work by comparing the nucleotide
sequence for each read to the sequence of the reference
genome and assigning the read to the location that gave the
best alignment score, usually based on fuzzy string match-
ing. If the nucleotide sequence of the sample’s genome, from
which the reads are sampled, disagrees with the reference
genome at location x, the mapping algorithm can fail to as-
sign the appropriate reads to that location. This could occur
if the number of mismatched bases (or indels) per read ex-
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Figure 3. The presence of binding events and read length artifacts hinders reconstruction of the FLD by deconvolution. Coverage patterns (positive strand
in red and negative strand in blue) were generated from reads sampled randomly from either end of simulated fragments. Equation (2) was applied to infer
the FLD, FLD (black). The actual FLD was calculated from the simulated fragments (green). The read length is shown in gray. (A) The FLD, inferred
from reads in simulated binding regions, deviates from the true FLD. (B) The FLD, inferred from genomic background coverage outside of binding events,
agrees with the true FLD. (C) In the presence of read length column artifacts, the inferred FLD deviates from the true FLD and exhibits a ‘phantom peak’
at read length. (D) In the presence of read length missing-column artifacts, the inferred FLD deviates from the true FLD and exhibits a ‘phantom peak’
at read length.

ceeds a predetermined cutoff or simply if the reads belong-
ing to that location map better to another region with higher
sequence similarity. When this occurs there will be a discon-
tinuity in coverage across w nucleotides (where w is the read
length) because there are exactly w possible read start po-
sitions where the read would overlap the mismatched base
(or indel). On the positive strand the discontinuity is up-
stream of x and on the negative strand the discontinuity is
downstream of x. This results in an missing-column arti-
factual coverage pattern of incorrectly mapped reads to the
upstream sequence highlighted in yellow as seen in Figure 5.
Further, reads that fail to map to the correct location can in-
stead map to another location with higher sequence similar-
ity as determined by the mapping algorithm. This would re-
sult in a column artifact as seen in the downstream sequence
highlighted in yellow in Figure 5. These artifacts tend to oc-
cur in interspersed repetitive regions such as the sequences
shown in yellow in Figure 5.

For paired-end each relocated read in a column artifact,
the associated read from the same fragment is also relocated
as shown in Figure 4C. Likewise for each missing read in a
missing-column artifact, the associated read from the same
fragment is also missing as shown in Figure 4D. In principle,
the missing column artifact problem may be mitigated by
suggesting multiple possible mappings (which can be done
using the bowtie −k option or efficiently using other algo-
rithms (50)). However, while this may fill in some of the
missing columns, it will create additional column artifacts,
which would need to be resolved.

Derive the expected read coverage distribution around binding
events

Once we estimate the FLD, we use it to derive a filter
matched to the read coverage pattern characteristic to re-
gions of true-binding events (step 3 of Figure 1). We denote
putative ChIP target-binding sites by Bj, where j is an in-
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Figure 4. Column and missing-column artifacts and the nonrandom FLD in their neighborhoods. Examples of read length column (A) and missing-column
(B) artifacts in a single-end human GM12878 cell anti-Serum Response Factor (SRF) ChIP sample on chromosome 1. Examples of a read length column
(C) and missing-column artifact (D) in a paired-end MEF input control sample on chromosomes 1 and 18 respectively. Positive strand reads are shown
in red while negative strand reads are shown in blue. The artifact center positions x where the sample genome differs from the reference are marked with
asterisks. The paired-end scatterplots show each read’s position (x-axis) and associated fragment length (y-axis) to demonstrate the dependence relationship
between genomic position and fragment length. Every positive strand read (red point) is accompanied by a negative strand read (blue point) originating
from the same fragment. For clarity, in the paired-end column artifact plot (C), we have plotted each fragment and separated them to two groups such
that in one group all fragments have positive strand reads within the positive strand column (light red column) and in the other group all fragments
have negative strand reads within the negative strand column (light blue column). Explicitly, reads from fragments contributing positive strand columns
are shown between the pink lines, while those from fragments contributing to the negative strand column are shown between cyan lines. The paired-end
missing-column artifact (D) has a column of missing reads on the positive strand followed by a column of missing reads on the negative strand. The positive
strand column of missing reads is linked to a diagonal of missing reads on the negative strand, representing the associated missing downstream fragment
ends and are together outlined in light red. Similarly, the negative strand column of missing reads is linked to a diagonal of missing reads on the positive
strand, representing the associated missing upstream fragment ends, and are together outlined in light blue. We highlight two fragments to demonstrate
the coupling between reads on the positive strand and reads on the negative strand.

dex representing the j-th putative-binding event along the
genome. Each fragment originating from binding event j
covers the binding position, Bj. The binding position Bj is
then related to the read position as follows:

Rp
j = Bj − F K, (9)

and

Rn
j = Bj + F(1 − K), (10)

where Rp
j is the start position of a read on the positive strand

resulting from event j and Rn
j is the end position of a read

on the negative strand resulting from event j. K is a random
variable taking values between zero and one, describing the
relative position of the binding site within a fragment. If K
equals 0, then the binding position is at the most upstream
end of the fragment, and if K equals 1, then the binding po-
sition is at the most downstream end of the fragment. If K
is between 1 and 0, the binding position is at that location
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Figure 5. Read length artifacts likely stem from mapping problems. Reads that map to their correct locations do not give rise to artifacts (left). Differences
between the reference and sequenced genomes can produce missing-column artifacts and additionally the coverage can be relocated to a region of higher
sequence similarity forming a column artifact (right).

relative the fragment length. We model K as a � distributed
random variable Pr[K ] ∼ B(α, β). The � distribution is con-
venient for this purpose because it is flexible for modeling
random variables which take values between 0 and 1. Ad-
ditionally, we set � = �, assuming that K is symmetrically
distributed. We initialize K to a uniform distribution (α = 1)
as a natural choice in the absence of prior knowledge (step
3 of Figure 1) and as detailed subsequently we reevaluate it
by optimizing � (step 7 of Figure 1). Next, applying algebra
of random variables, it can easily be seen that:

Pr[Rp
j ] = Pr[Bj ] ∗ Pr[−F K ], (11)

and

Pr[Rn
j ] = Pr[Bj ] ∗ Pr[F K ], (12)

where * is the convolution operator, Pr[K ] = Pr[1 − K ] due
to the symmetry mentioned above and Pr[F K ] is the prod-
uct distribution as follows:

Pr[F K = z] =
∫ ∞

−∞
Pr[F = x] Pr[K = z/x]

1
|x|dx

and

Pr[−F K = z] =
∫ ∞

−∞
Pr[−F = x] Pr[K = z/x]

1
|x|dx.

(13)

Pr[−F K ] is the distribution of local read coverage on the
positive strand with support upstream of a binding position
(negative offset). Pr[F K ] is the distribution of local read

coverage on the negative strand with support downstream
of a binding position (positive offset). We will use these lo-
cal coverage patterns in both steps 4 and 6 of Figure 1 to
locate and quantify candidate peaks respectively.

Matched filtering for rapid and accurate localization of can-
didate peaks

TFs bind to a small fraction of the genome, thus to im-
prove efficiency we only test candidate peak positions (step
6 of Figure 1) that closely match our expected peak shape
(Pr[−F K ] and Pr[F K ]), as identified by a matched filter (51)
(step 4 of Figure 1).

In signal processing, a filter is a function which selects for
the desired output signal vector, s and suppresses the unde-
sirable noise vector, v, of an observed input signal x = s + v.
A matched filter (51) is a specialized filter whose time inverse
is the impulse response function, h, where h is optimally par-
allel to the desired signal (h‖s) and orthogonal to the noise
(h⊥v). The matched filter has the favorable property that
when convolved with an observed signal, it will maximize
the output signal to noise ratio. The time inversed matched
filter, h, is defined as follows:

h = γ	−1s, (14)

where � is a normalization constant and 	−1 is the inverse
covariance matrix of the noise.

In the context of ChIP-seq experiments, the observed in-
put signal x is the read count at each position. For identi-
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fying peaks, the desired output signal s is associated with
an impulse response of Pr[−F K ] for the positive strand
and Pr[F K ] for the negative strand. The read count noise
is not globally stationary, but locally it is approximately
a stationary process and is thus independent and identi-
cally distributed (i.i.d.) with the level of noise changing rela-
tively slowly on a much larger length scale than the support
(2Fmax) of the desired signal. When the noise is i.i.d., (14) is
reduced to

h = γ̃ s, (15)

where the amplitude of the noise is absorbed in γ̃ . From
Equation (15) we see that the filter h is proportional to the
impulse response of s. Specificaly, we use the following fil-
ters hp and hn for the positive and negative strands respec-
tively:

h p = Pr[−F K ] hn = Pr[F K ]. (16)

We define the filtered signal Y at each position by the for-
mula:

Y = h p(−t) ∗ Pr[Rp] + hn(−t) ∗ Pr[Rn ]. (17)

Usually � is chosen to normalize the expected power of
the noise after application of the filter to one. However, a
given � that normalizes the noise in low coverage areas to
one, necessarily will give higher power in areas of higher
coverage. Therefore, it is infeasible to specify a single � when
the noise is not globally stationary. As a result, the standard
way of detecting the desired output signal by thresholding
using a fixed signal to noise ratio is not applicable.

Instead, we identify local maxima using a Gaussian
derivative filter, a technique commonly used for detecting
local maxima (edges) in images as follows:

0 = Y ∗ d
dx

G(0, σ 2), (18)

where G is the Gaussian distribution with variance �2. Zero
crossings (Equation (18)) from positive to negative of this
smoothed first derivative are the local maxima. A minimum
read count requirement is applied to avoid spurious low cov-
erage local maxima. Those local maxima passing the thresh-
old are selected as candidate-binding events, bj; j ∈ [1, N] (for
N candidate events).

Remove false positive-binding events using cross-correlation

Genomic regions that have similarly high read coverage in
both the ChIP sample and the negative control are false
positive-binding events. Most current peak calling algo-
rithms rely on negative controls (usually total DNA input)
to control the FPR. To the best of our knowledge, if negative
controls are not available, false positive events would not be
filtered out by current peak calling algorithms. We have dis-
covered that most of the significant false positive events are
in fact the read length artifacts described earlier and exem-
plified in Figure 6. We have already shown that the cross-
correlations and deconvolved FLDs of regions with read
length artifacts exhibit the ‘phantom peak’ at read length
(Figure 3).

Ritornello identifies regions containing false positive
events by detecting the ‘phantom peak’ in their cross-
correlations; true-binding events contain no such ‘phan-
tom peak’ in thier cross-correlations. To this end, we em-
ploy a machine learning approach, building a classifier to
distinguish between read length artifacts and true-binding
events. To extract features for the classifiers, we calculated
cross-correlation locally from bj − Fmax to bj + Fmax around
each candidate peak. The features include: (i) the maxi-
mum value of the cross-correlation function in the range
between zero and read length, which is denoted by c1 and
(ii) the maximum value of the cross-correlation function in
the range between the read length and the maximum frag-
ment length Fmax, which is denoted by c2. In the neighbor-
hoods of binding events c2 is expected to be higher than c1,
whereas in neighborhoods of read-length artifacts we ex-
pect c1 to be larger than c2. We added additional features
to account for consecutive read length artifacts of varying
amplitudes and large amplifications such as due to poly-
merase chain reaction (PCR). For this purpose, we bina-
rized the coverage in the positive and negative strands by
setting positions with read count >0 to 1. We then per-
formed a running mean smoothing on the binarized cover-
age, calculated cross-correlation and extracted the following
features: (i) the maximum value of the binarized smoothed
cross-correlation function in the range between zero and
read length, which is denoted by d1 and (ii) the maximum
value of the binarized smoothed cross-correlation function
in the range between the read length and the maximum frag-
ment length Fmax, which is denoted by d2.

We build a classifier using logistic regression, with fea-
tures: { c2

c1
, d2

d1
}. The instances used to build this classifiers in-

clude manually classified peaks obtained as follows: we first
applied MACS2 (negative control free mode) to four TF
ChIP-seq datasets generated by ENCODE, subsequently
selected the top 200 peaks for each of four samples and fi-
nally manually labeled regions with typical binding shape as
true positives (see Figure 6A) and regions with character-
istic read length artifact as false positives (see Figure 6B).
We trained this model using a five fold cross-validation and
achieved high performance with AUROC of 0.993. This set
of features is scale-free and thus our trained classifier is gen-
eralizable to any ChIP-seq sample and does not need to
be retrained. Ritornello incorporates this trained classifier
(step 5 of Figure 1) to flag artifactual locations as false pos-
itives without the need for a paired total DNA input or IgG
control.

Deconvolving single events from local coverage

The read coverage near an event is a mixture of reads gen-
erated by that event, noise and any neighboring events. In
order to accurately quantify each event, it is essential to de-
convolve its binding intensity (number of reads originating
from each event) from this mixture. Fragments originating
from different events in close proximity may overlap. Conse-
quently, it is difficult to quantify the number of reads com-
ing from each binding event. Further, fragments originat-
ing from non ChIP-ed DNA, off targeted sequencing due
to antibody inefficiency, as well as other sources, contribute
to background noise. We model the read coverage around
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Figure 6. Local cross-correlation differentiates true-binding events from read length artifacts (false positives). (A) Local cross-correlation of a binding
event in anti-ATF2 K562 ChIP sample peaks near the average fragment length. (B) Local cross-correlation of a column artifact in anti-ATF2 K562 ChIP
sample peaks near the read length. (C) A scatterplot of the maximum local log cross-correlation up to 10 bp beyond the read length versus the maximum
local log cross-correlation in the range of 10 bp beyond the read length to 0.75Fmax (D) A scatterplot of the maximum local binarized cross-correlation
(using unique reads) up to 10 bp beyond the read length versus the maximum local binarized cross-correlation in the range of 10 bp beyond the read length
to 0.75Fmax.

each candidate peak using a generalized linear model to de-
convolve its binding intensity.

The binding intensity, �j, of each candidate peak, j, is
only dependent on positions where that peak has support, i
∈ [bj − Fmax, bj + Fmax]. To efficiently deconvolve the signal
at bj we first discard peaks that do not overlap with bj. We re-
tain only the subset qk ∈ {q1. . .qT} of T peaks in close prox-
imity to j (including j), such that the support of each peak in
q overlaps with the support of j. The locally uniformly dis-
tributed noise associated with this neighborhood is indexed

by q0. Here we assume that read counts follow a Poisson dis-
tribution, a common assumption made by other algorithms,
such as MACS and GEM (3,23). We can then model the
number of reads on the positive and negative strands, C p

i,qk

and Cn
i,qk

, at position i due to event qk as follows:

C p
i,qk

∼ Pois
(
β p

qk
h p(i − bqk)

)
, (19)

and

Cn
i,qk

∼ Pois
(
βn

qk
hn(i − bqk)

)
, (20)
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where the parameters β
p
qk and βn

qk
denote the binding inten-

sities (expected read counts) of event qk. The impulse re-
sponse functions h p(i − bqk) and hn(i − bqk) are the proba-
bilities of observing a read at position i from event qk. We
note that different β

p
qk and βn

qk
values are used to account

for local differences in read coverage between positive and
negative strands.

To model the noise we will once again invoke our assump-
tion of locally stationary noise, as in the discussion before
Equation (16). Here we assume that the locally stationary
noise is a uniformly Poisson distribution. We model the read
counts due to noise at position i for the positive and negative
strands as follows:

C p
i,q0

∼ Pois
(
β p

q0
U(i )

)
, (21)

and

Cn
i,q0

∼ Pois
(
βn

q0
U(i )

)
, (22)

where U is a function that is locally uniform with support
of 2Fmax around bj and β

p
q0 and βn

q0
are the expected number

of reads due to noise on the positive and negative strands
respectively.

The read count at position i is then given by the sum of
read counts from all sources qk as follows:

C p
i = C p

i,q0
+

T∑
k=1

C p
i,qk

∼ Pois
(
λ

p
i,q

)
, (23)

where

λ
p
i,q = β p

q0
U(i ) +

T∑
k=1

β p
qk

h p(i − bqk), (24)

and

Cn
i = Cn

i,q0
+

T∑
k=1

Cn
i,qk

∼ Pois
(
λn

i,q

)
, (25)

where

λn
i,q = βn

q0
U(i ) +

T∑
k=1

βn
qk

hn(i − bqk). (26)

The relationships in Equations (23) and (25) use the follow-
ing theorem: if X1. . .Xn are independent Poisson distributed
random variables, Pois(�1). . .Pois(�n), then their sum X1 +
. . . + Xn is Poisson distributed, Pois(�1 + . . . + �n).

In order to obtain the binding intensity for peak, bj, we
maximize the likelihood for the models (Equations (23) and
(26)) of all nucleotides around bj. The likelihood of local
binding intensities β

p
q and βn

q around the peak of interest, j,
can be written as:

L(β p
q , βn

q |C p
i , Cn

i ) =
b j +Fmax∏

i=b j −Fmax

Pois
(

C p
i ; λp

i,q

)
Pois

(
Cn

i ; λn
i,q

)
.

(27)

We then find the maximum likelihood estimates for parame-
ters β

p
q and βn

q . The sum, β p
j + βn

j , is reported as the binding
intensity for the peak at bj.

We note that this is formally a Poissson generalized lin-
ear model with identity link function. Such a model has the
advantage that it can resolve multiple peaks in close proxim-
ity, such as double-binding or triple-binding events. To our
knowledge only BRACIL (46) and CSDeconv (47) are de-
signed to deconvolve adjacent-binding events, in particular
double-binding events and use different models. Those two
algorithms are less efficient and therefore require as input a
set of peaks from other peak callers.

Ritornello implements a dogleg optimization (the
Newton–Raphson method coupled with initial gradient
descent), which is much faster than traditional Expectation
Maximization or Markov Chain Monte Carlo methods
(52), enabling the rapid deconvolution of all loci detected
in previous steps.

Testing candidate peaks for significance

In the previous section we quantified the intensity, �j, of
each candidate peak. Here we determine the significance of
each of these candidate-binding events using a likelihood
ratio test based on the likelihood we derived in Equations
(27). The null model H0

j is obtained by setting both β
p
j = 0

and βn
j = 0. We note that we use the term null model at each

position bj to refer to the model involving a zero-binding in-
tensity at bj but with potentially nonzero β

p
q0 and βn

q0
as well

as β
p
q and βn

q in neighboring candidate events. The alter-
native model H1

j uses full parameterization including non
vanishing β

p
j and βn

j at the location of interest bj.
Since the null model H0

j is nested within H1
j , we can em-

ploy the likelihood ratio test statistic (D) in the form:

D = 2 ln

(
max

{
L(β p

q , βn
q |C p

i , Cn
i )

}
max

{
L(β p

q ′ , β
n
q ′ |C p

i , Cn
i )

}
)

q ′ ≡ q \ { j}
H0

j : βq ′ ∈ �, β j = 0

H1
j : βq ∈ �.

(28)

According to Wilke’s theorem (53) the likelihood ratio test
statistic for this nested model is distributed according to a
� 2 distribution with two degrees. We then calculate the p-
value for each peak based on this � 2 distribution.

Up to this point, we have obtained an initial list of
putative-binding events. This was based on inferring an im-
pulse response function given by the product distribution
of the FLD and a uniformly distributed K (step 3 Figure
1). To further refine the impulse response function, we find
the estimate of � that maximizes the combined likelihood
of the 200 most significant putative events (step 7 of Figure
1). As shown in Figure 7, the Pr[−F K ] and Pr[F K ] derived
from this procedure closely match the shape of highly abun-
dant peaks. Finally, we repeat the peak identification, arti-
fact testing, and likelihood ratio testing (steps 4–6 of Figure
1) using the updated hp and hn and report final list of signif-
icant peaks.
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Figure 7. The parameterized filter closely matches the peak shape. Shown
is an example peak in a human SRF sample. The parameterized filter for
this sample is shown in gray. The peak location as determined by the filter
is shown by a dashed line.

FDR correction

To control the false discovery rate, we adjust the P-values,
pi, associated with each hypothesis test by applying the
Benjamini–Hochberg (54) approach to obtain q-values, qi,
which control the FDR as follows: qi = pi

m
ki

, where ki is the
P-value rank by significance and m, is the total number of
potential hypothesis tested. Finally, we ensure monotonic-
ity using the Benjamini–Yekutieli correction (55).

Usually one performs all hypothesis tests and m is set to
that number. For the likelihood ratio test that Ritornello
performs, it is important to note that the null hypothesis
is the absence of a peak at a position of interest in the pres-
ence of any amount of coverage due to uniform background
signal or neighboring peaks. The appropriate m for Ritor-
nello is then, not the number of candidate peaks tested, as
these were previously enriched for peak shape coverage by
the matched filter, but rather the total number of windows
exceeding the minimum read count threshold before select-
ing those that match the filter.

RESULTS

To assess Ritornello’s performance, we compared it against
the MACS2 (3) and GEM (23) peak callers, which have both
been recommended by the ENCODE consortium (56,57).
We use 14 single-end TF ChIP-seq experiments from the
ENCODE project (57), each with two biological replicates
(see Table 1 and Supplementary Table S1). Matched DNA
input or IgG controls were also available (Supplementary
Table S1).

Although matched input controls are optional for some
methods, they are used by ChIP-seq peak calling algorithms

to avoid calling many spurious false positives. Both MACS2
and GEM have options to run with or without the matched
input control. To show that Ritornello, which is a matched
control free approach, avoids calling these false positives
we benchmark it against MACS2 (with and without the
matched control), and GEM (with and without the matched
control) on each of the 28 samples. We refer to MACS2
with the control as MACS2-I and without the control as
MACS2. We refer to GEM with the control as GEM-I and
without the control as GEM. To control for the variable
size of reported peaks, we used the interval from 100 bp up-
stream to 100 bp downstream of each peak summit identi-
fied by MACS2 or GEM, and of each peak location iden-
tified by Ritornello. If multiple peaks called from a sin-
gle algorithm overlapped each other using this 200 bp win-
dow, only the peak with the more significant q-value is con-
sidered. Mitochondria were excluded from all analysis. We
compare the performance of these algorithms in terms of:

i) the percentage of peaks unique to Ritornello with re-
spect to each control utilizing sample.

ii) the similarity between characteristic coverages in bind-
ing events predicted uniquely by Ritornello, MACS2-I,
or GEM-I to the coverages of strong binding events pre-
dicted by multiple algorithms.

iii) motif enrichment.

Additionally, we demonstrate that Ritornello predicts
very few false positives in negative controls suggesting that
Ritornello has a low FPR. We also observe that Ritor-
nello produces results that are reproducible among techni-
cal replicates as determined by the irreproducible discovery
rate algorithm (58) (Supplementary Table S2).

Most peaks called by Ritornello are common to MACS2-I or
GEM-I

Control samples are used to eliminate false positive peaks
during ChIP-seq peak calling. It is therefore important to
measure how many peaks are unique to Ritornello with re-
spect to the control using algorithms. The percentages of
peaks unique to Ritornello with respect to MACS2-I and
GEM-I are shown in Table 2. Ritornello tends to call few
(<10%) unique peaks in all samples with the exceptions of
E2F4 and ATF2. Although Ritornello tends to report fewer
peaks than MACS2-I and GEM-I, these peaks are most of-
ten a subset of the peaks reported by those input using algo-
rithms. Peaks that are called by MACS2-I and GEM-I but
not by Ritornello typically have less reads and hence the
shape of the read coverage at these loci is not well defined.

Comparing Ritornello and alternative methods based on
unique peak coverage patterns

We next investigate the peak shape and motif content for
samples where Ritonello called >10% unique peaks relative
to MACS2-I or GEM-I. For this analysis, we compared the
peaks that are uniquely reported by Ritornello to the cor-
responding algorithms in Figure 2. To be fair when com-
paring read coverage of unique peaks, we averaged the lo-
cal distributions of read start positions (pileup) for the top
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Table 1. TF ChIP-seq experiments (two replicates each)

TF Cell type

NRF1 K562
SRF GM12878
REST H1
MAX K562
ATF2 H1
E2F4 GM12878
GATA1 MEL
MYC MEL
CTCF Myotube
ELK1 K562
SRF H1
MAX H1
YY1 H1
REST K562

Table 2. Percentage of peaks unique to Ritornello as compared to
MACS2-I and GEM-I

 1.3%
 0.5%

 0.7%
 0.3%

 0.9%
 1.4%

 2.4%
 7.4%

 3.8%
42.0%

12.3%
35.6%

 1.5%
 1.4%

 5.9%
 5.7%

 0.6%
 0.6%

 2.6%
 2.0%

 0.4%
 0.6%

 7.8%
 5.7%

 3.9%
 3.4%

 1.1%
 0.6%

 0.3%
 0.5%

<0.1%
<0.1%

 0.3%
 0.6%

 0.5%
 1.9%

 5.2%
29.2%

 0.8%
 1.8%

 0.4%
 0.4%

 3.7%
 5.0%

<0.1%
<0.1%

 0.8%
 0.8%

 1.2%
<0.1%

 1.9%
 3.1%

 0.8%
 0.4%

 3.8%
 0.5%

YY1 H1 rep2
YY1 H1 rep1
SRF H1 rep2
SRF H1 rep1

SRF GM12878 rep2
SRF GM12878 rep1

REST K562 rep2
REST K562 rep1

REST H1 rep2
REST H1 rep1

NRF1 K562 rep2
NRF1 K562 rep1

MYC MEL rep2
MYC MEL rep1
MAX K562 rep2
MAX K562 rep1

MAX H1 rep2
MAX H1 rep1

GATA1 MEL rep2
GATA1 MEL rep1
ELK1 K562 rep2
ELK1 K562 rep1

E2F4 GM12878 rep2
E2F4 GM12878 rep1
CTCF Myotube rep2
CTCF Myotube rep1

ATF2 H1 rep2
ATF2 H1 rep1

Vs−GEM−I Vs−MACS2−I

For each of the 28 experiments (replicates are denoted by rep1 and rep2),
we highlight in dark blue where Ritornello had >10% unique peaks, light
blue 5–10% unique peaks and gray <5% unique peaks. Ritonello calls few
(<10%) unique peaks in most samples.

200 most significant unique peaks of each algorithm (pileup
plots in Figure 8 and additionally Supplementary Figures
S1 and 2) and found that the characteristic patterns (black
curves whose shapes match the impulse response functions)
associated with the highest intensity peaks reported by all
algorithms tend to be similar to the patterns obtained by
aggregating the pileups of peaks uniquely reported by Ri-
tornello but in contrast are less similar to the aggregated
pileups of peaks uniquely reported by MAC2-I or GEM-I.
These results provide evidence that peaks uniquely reported
by Ritornello may be more likely to be indicative of binding
events than those uniquely reported by MACS2-I or GEM-
I.

Table 3. Percentage of the top 1000 peaks (or all peaks when <1000)
within 100 bp of a motif obtained by Ritornello, MACS2-I, MACS, GEM-
I and GEM

89.7%
91.3%

19.0%
18.0%

85.6%
85.8%

 4.2%
 3.7%

47.9%
44.5%

30.9%
30.8%

13.4%
14.7%

20.1%
20.9%

89.6%
88.4%

49.1%
52.5%

49.6%
37.3%

 5.6%
 6.7%

69.5%
68.8%

81.0%
83.8%

89.1%
87.0%

17.7%
16.3%

83.8%
81.8%

 3.7%
 4.3%

41.3%
41.1%

28.1%
27.2%

13.4%
14.6%

17.0%
19.1%

88.7%
87.0%

42.6%
47.6%

46.6%
34.1%

 5.0%
 5.9%

68.9%
69.1%

79.8%
83.5%

90.1%
90.5%

21.1%
17.9%

84.4%
82.9%

 2.9%
 3.6%

52.3%
23.8%

31.0%
29.8%

14.2%
13.4%

19.1%
23.0%

88.9%
87.4%

52.9%
52.1%

49.4%
36.4%

 4.4%
 6.1%

71.1%
73.4%

81.4%
83.7%

85.8%
81.7%

17.5%
15.6%

84.2%
85.0%

 2.5%
 3.3%

29.4%
33.6%

25.5%
23.9%

13.6%
13.4%

15.3%
17.5%

89.9%
84.1%

38.5%
44.3%

43.7%
32.3%

 3.6%
 4.8%

67.0%
66.9%

80.5%
83.5%

90.4%
90.1%

19.1%
17.4%

84.6%
85.2%

 2.4%
 3.2%

46.1%
25.0%

31.6%
31.3%

13.0%
13.5%

16.5%
20.0%

89.6%
87.6%

51.6%
50.6%

49.0%
34.3%

 3.7%
 5.3%

70.1%
70.9%

81.1%
83.6%

YY1 H1 rep2
YY1 H1 rep1
SRF H1 rep2
SRF H1 rep1

SRF GM12878 rep2
SRF GM12878 rep1

REST K562 rep2
REST K562 rep1

REST H1 rep2
REST H1 rep1

NRF1 K562 rep2
NRF1 K562 rep1

MYC MEL rep2
MYC MEL rep1
MAX K562 rep2
MAX K562 rep1

MAX H1 rep2
MAX H1 rep1

GATA1 MEL rep2
GATA1 MEL rep1
ELK1 K562 rep2
ELK1 K562 rep1

E2F4 GM12878 rep2
E2F4 GM12878 rep1
CTCF Myotube rep2
CTCF Myotube rep1

ATF2 H1 rep2
ATF2 H1 rep1

GEM GEM−I MACS2 MACS2−I Ritornello

For each of the 28 experiments (replicates are denoted by rep1 and rep2),
we label in dark blue the algorithm that outputs the largest number of motif
containing peaks, light blue the algorithm that outputs the second largest
number of motif containing peaks and gray the algorithms that output the
smallest number of motif containing peaks.

Comparing Ritornello and alternative methods based on mo-
tif occurrence rate

Availability of genuine validations of TF-binding events in-
ferred by TF ChIP-seq peak callers is limited. Therefore,
one of the measures used by practitioners for assessing
the quality of peak callers is the fraction of predicted TF-
binding events that overlap with the characteristic binding
motif of the relevant TF. Employing the same 28 public
ChIP-seq samples, we compare the motif enrichment for
the top 1000 peaks reported by each algorithm or all peaks
when less than 1000 are reported as shown in (Table 3). The
annotated motifs specific to the TFs are downloaded from
the JASPAR CORE 2014 motif library (59). Genomic lo-
cations that match the position weight matrix of each JAS-
PAR motif were identified using PWMScan with default P-
value cutoff at 0.00001 (60). Predicted peaks whose binding
centers are within 100 bp from the corresponding JASPAR
motif are classified motif containing. The peaks found by
Ritornello had the highest motif occurrence rate compared
with MACS2-I, MACS2, GEM-I and GEM in 15 out of
the 28 samples. MACS2-I, MACS2, GEM-I and GEM had
the highest motif occurrence rate in 8, 1, 3 and 1 samples
respectively. This suggests that Ritornello, which is a con-
trol free peak caller, is able to identify the most significant
true-binding events at comparable rates to input using peak
callers.
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Figure 8. Pileup of read start positions for ATF2 rep2 peaks in H1 cells obtained by Ritornello only (blue) compared with that obtained from (A) MACS2
only(red) and (B) GEM only(green). The pileups of peaks common to Ritornello and MACS2 (A) or Ritornello and GEM (B) are shown in black. The
pileups of read start positions for Ritornello best match the pileups of common peaks. Additionally Ritornello unique peaks have comparable levels of
motif enrichment as compared to the other algorithms.

Additionally, we compare the number of motif contain-
ing peaks reported by each algorithm as a function of signif-
icance (Figure 9 and Supplementary Figures S3–9). We see
that Ritornello exhibits improved motif enrichment, with
respect to the other algorithms, for peaks reported in ATF2
rep2 and comparable enrichment to control utilizing algo-
rithms in E2F4 rep1 and rep2. In general, Ritornello shows
comparable motif enrichment to the input utilizing algo-
rithms.

Ritornello identifies true-binding events in low quality sam-
ples

ENCODE recommends discarding low quality samples as
determined by the NSC and RSC scores. Ritornello dis-
cards read length artifacts that give rise to low RSC and
uses a matched filtering approach that maximizes the signal
to noise ratio measured by the NSC, we therefore conjec-
tured that Ritornello may be able to rescue these low qual-
ity samples. We compared the performance of Ritornello
with that of MACS2-I, MACS2, GEM-I and GEM on sam-
ples with suboptimal quality based on the NSC and RSC
scores. The ENCODE Consortium has suggested repeating
experiments with NSC values <1.05 and RSC values <0.8.
Using these criteria we identified that out of the 28 sam-
ples we investigated, four samples have suboptimal quality.
These four experiments include: ATF2 H1 replicate 1 (NSC
= 1.04, RSC = 0.62), ATF2 H1 replicate 2 (NSC = 1.04,
RSC = 0.74), ELK1 K562 replicate 1 (NSC = 1.03, RSC
= 0.64) and ELK1 K562 replicate 2 (NSC = 1.05, RSC =
0.73).

We observed that in these four samples, the pileups of
peaks predicted by Ritornello have a characteristic bimodal
shape of TF binding and have much stronger read cover-
age than their matched input controls (Figure 10 and Sup-

plementary Figures S10–12). This suggests that there are
numerous significant binding events that can be captured
in low quality ChIP-seq samples. Additionally, the pileups
of peaks reported by MACS2 or GEM have either non-
uniform read coverage or a narrow bimodal shape (simi-
lar to column artifacts) as in Figure 10 and Supplementary
Figures S10–12. It is worth noting, however, that when pro-
vided controls, the MACS2-I and GEM-I reported peaks
also have a strong bimodal shape with less signal in the con-
trol sample. This illustrates that Ritornello reliably rescues
peaks from low quality samples, while MACS2-I and GEM-
I might be able to avoid calling false positive artifacts from
low quality samples as well.

Ritornello obviates the need for a matched input control

To demonstrate that Ritornello calls few false positives that
could otherwise be avoided with the aid of a match con-
trol, we show that Ritornello calls few peaks in control sam-
ples as seen in Table 4. We used the filter learned in the
ChIP channel to look for regions in the corresponding con-
trol that match this pattern. This is performed by running
Ritornello, supplying the filter found in the ChIP experi-
ment rather than having it learned from the control data.
The number of peaks Ritornello reported in each matched
control is a proxy for the number of potential false positive
peaks called by Ritornello in its corresponding ChIP-seq ex-
periment. We found that Ritornello called very few peaks in
the matched controls, which corresponds to a FPR in ChIP
of <0.05 for 25 out of the 28 samples. The samples with the
two highest FPR’s use IgG as a control, so it is likely that
Ritornello is picking up non-specific binding events, which
are unlikely to be a source of noise in an actual ChIP-seq
sample.
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Figure 9. Motif containing peaks as a function of the rank of the q-value for (A) ATF2 rep2, (B) E2F4 rep1, (C) E2F4 rep2 and (D) CTCF rep1. The
number of peaks displayed is slightly more than the number of peaks reported by Ritornello.

DISCUSSION

In this work, we demonstrated that we could infer the en-
tire FLD, rather than only the mean fragment length, using
a deconvolution approach from single-end TF ChIP-seq ex-
periments. We derived an experiment-specific probabilistic
model to mathematically describe the well-known bimodal
shape of TF binding. Using this bimodal shape, we applied
the matched filter technique from signal-processing to iden-
tify potential TF-binding sites and used a Poisson GLM to
deconvolve the binding intensities and test the significance
of each putative-binding event. Our model efficiently decon-
volves the effect of neighboring peaks as well as noise to
resolve multiple adjacent-binding events. We compared Ri-
tornello (a control-free approach) with two popular algo-
rithms recommended by ENCODE, MACS2-I and GEM-
I, which require matched controls to reduce false positives.

We found that Ritornello outperforms these other methods
when input is unavailable and performs similarly when it
is in terms of reproducibility between biological replicates,
motif enrichment and the coverage patterns of unique re-
producible peaks.

We also identified artifactual-binding regions where the
local cross-correlation peaks at read length instead of
around fragment length. We elucidated that these artifac-
tual regions contribute to the phantom peaks associated
with poor experimental quality. Current peak calling algo-
rithms, such as MACS2 and GEM, rely on matched control
samples to remove a substantial fraction of these artifacts.
We provide an extensive description of this specific cate-
gory of artifacts and their origin, and offer an automated
approach to filter out artifacts without requiring matched
controls. Taken together, Ritornello offers an alternative
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Figure 10. Pileup of read start positions for peaks identified by: Ritornello, (A) and (D) (blue); MACS2-I, (B) and (E) (dark red); and MACS2, (C) and
(F) (light red) in samples of low quality and their matched controls. Matched controls are shown in black. The pileups of peaks detected by Ritornello
show smooth bimodal shapes and similarly to MACS2-I, have stronger read coverage in the ChIP as compared to their matched controls. In contrast, the
pileups of peaks detected by MACS2 have a narrower shape and irregular spikes similar to the negative controls.

that obviates the need for a match control, demonstrating
that one can safely reduce the total experimental cost of TF
ChIP-seq experiments, while providing superior analytic re-
sults.

ENCODE provides a blacklist of genomic regions which
contains artifactually high read coverage in different ChIP-
seq experiments (61). This manually curated blacklist
largely overlaps with repetitive regions in the genome (61).
The blacklist has several drawbacks: (i) it does not cover
all artifactual regions, (ii) it is not generalizable to different
cell types and (iii) it is only available for human and mouse.
We note that a few peak calling tools, such as PePr (62),
optionally remove artifacts in regions where the local read
coverage in the ChIP is similar to that in the matched con-
trol. However, these methods still require a matched con-
trol. Ritornello is capable of removing artifacts indepen-
dently without requiring either prior knowledge of a black-
list or matched negative controls.

Many variables influence the quality of ChIP-seq exper-
iments and our ability to infer true-binding events from
the data. These include factors such as antibody effi-
ciency, DNA fragmentation, PCR amplification, sequenc-
ing depth, read mapping quality etc. Each of these fac-
tors may vary from one sample to another. Ritornello is
designed to implicitly take into consideration these experi-

ment specific parameters from raw data and is applicable to
a wide variety of protocols. Additionally, it does not require
any tuning of parameters. One limitation of Ritornello is
that it is designed to detect point-source peaks such as TF-
binding events. For broad-source peaks, such as epigenetic
modifications, we recommend other peak callers.

We note that there are scenarios where Ritornello is ex-
pected to exceed the performance of control utilizing algo-
rithms. These include: (i) when the control is of poor quality
and (ii) positions where methods considering controls fail to
eliminate read length artifacts. Additionally, in regions with
very low coverage or high amounts of noise that obscure the
binding shape of potential peaks, Ritornello will not call-
binding events, and will thus report peaks more conserva-
tively than MACS2-I and GEM-I.

We demonstrated that in TF ChIP-seq experiments that
would otherwise be discarded due to low quality, Ritornello
(as well as MACS2-I or GEM-I) might reliably recover true-
binding events amidst the high levels of artifacts. Often re-
peat experiments with the same reagents are of poor qual-
ity according to ENCODE’s metric and thus algorithms ca-
pable of handling such data are required. If, however, the
repeated experiments were to improve results, the previous
poor quality samples may still be of value to strengthen the
findings of the higher quality samples.
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Table 4. Ritornello tends to call many more peaks in ChIP-seq samples
than in control samples

1640
774

1987
2302

5115
5617

2868
13115

992
1072

930
822

11220
13128

3173
3713

18847
24852

265
394

1409
955

12054
15509

6385
3573

6840
3054

3
3

1
1

62
58

3
3

45
2

12
10

73
66

498
496

24
11

3
5

50
75

31
1

57
93

0
0

 0.2%
 0.4%

<0.1%
<0.1%

 1.2%
 1.0%

<0.1%
<0.1%

 4.5%
 0.2%

 1.3%
 1.2%

 0.7%
 0.5%

15.7%
13.4%

<0.1%
<0.1%

 1.1%
 1.3%

 3.5%
 7.9%

 0.3%
<0.1%

 0.9%
 2.6%

<0.1%
<0.1%

YY1 H1 rep2
YY1 H1 rep1
SRF H1 rep2
SRF H1 rep1

SRF GM12878 rep2
SRF GM12878 rep1

REST K562 rep2
REST K562 rep1

REST H1 rep2
REST H1 rep1

NRF1 K562 rep2
NRF1 K562 rep1

MYC MEL rep2
MYC MEL rep1
MAX K562 rep2
MAX K562 rep1

MAX H1 rep2
MAX H1 rep1

GATA1 MEL rep2
GATA1 MEL rep1
ELK1 K562 rep2
ELK1 K562 rep1

E2F4 GM12878 rep2
E2F4 GM12878 rep1
CTCF Myotube rep2
CTCF Myotube rep1

ATF2 H1 rep2
ATF2 H1 rep1

ChIP Control FPR

ControlType
IgG
input

The FPR is <0.05 for 25 out of 28 samples. It is not surprising that the two
samples where the FPR is highest use IgG controls. IgG can create many
non-specific binding sites and is not representative of the background noise
present in a ChIP-seq sample. Control samples were run using the filter
learned from the corresponding ChIP sample.

SOFTWARE AVAILABILITY

Ritornello was programmed in C++ using the FFTW (63)
library for fast computation of the Fourier transform and
the Samtools (64) library for interfacing with the sequence
alignment/map format which has become the standard in
high throughput sequencing. Ritornello is freely available
for download at https://github.com/KlugerLab/Ritornello
together with a detailed tutorial. Further analysis and
graphics were made using the R statistical language (65).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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