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Digging deep into Golgi phenotypic diversity 
with unsupervised machine learning

ABSTRACT  The synthesis of glycans and the sorting of proteins are critical functions of the 
Golgi apparatus and depend on its highly complex and compartmentalized architecture. 
High-content image analysis coupled to RNA interference screening offers opportunities to 
explore this organelle organization and the gene network underlying it. To date, image-
based Golgi screens have based on a single parameter or supervised analysis with predefined 
Golgi structural classes. Here, we report the use of multiparametric data extracted from a 
single marker and a computational unsupervised analysis framework to explore Golgi pheno-
typic diversity more extensively. In contrast with the three visually definable phenotypes, our 
framework reproducibly identified 10 Golgi phenotypes. They were used to quantify and 
stratify phenotypic similarities among genetic perturbations. The derived phenotypic net-
work partially overlaps previously reported protein–protein interactions as well as suggesting 
novel functional interactions. Our workflow suggests the existence of multiple stable Golgi 
organizational states and provides a proof of concept for the classification of drugs and 
genes using fine-grained phenotypic information.

INTRODUCTION
RNA interference (RNAi) screening combined with high-throughput 
imaging provides a powerful experimental means of investigating 
the genetic regulation of subcellular structures. High-throughput im-

aging can acquire cell images for thousands of different treatments, 
requiring computationally driven image analysis. To characterize cel-
lular phenotypes elicited by treatments, the simplest approaches rely 
on a dedicated, directed image analysis using one or a few image 
features. But obviously the phenotypes characterized are limited.

Today, image analysis can generate hundreds of numerical fea-
tures for each cell image, opening up the possibility of high-content 
analysis and the characterization of multiple phenotypes. To convert 
image features into cell phenotypes, high-content analysis often re-
lies on supervised machine learning. In this case, phenotypes are 
assigned to sample cells after an algorithm has been trained with 
sets of reference cells selected by an expert. In effect, the machine 
learning algorithms automate a classification scheme previously de-
fined by a user (Conrad and Gerlich, 2010; Sommer and Gerlich, 
2013). Obviously, supervised machine learning approaches are con-
strained by the human expert, who has to select a set of reference 
cell images. Although an experienced user may be able to recognize 
cellular phenotypes visually, it is clear that our visual system has not 
evolved to analyze patterns of subcellular structures in microscopic 
images reliably. Furthermore, visual classification cannot guarantee 
objectivity; it may be subject to personal bias due to prior assump-
tions, a problem recognized across multiple scientific disciplines 
(Lindblad et  al., 2004; Bamford et  al., 2009). Supervised machine 
learning and various high-content image–based analysis approaches 
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phenotypic analysis as much as possible. We address three prob-
lems that commonly limit the use of unsupervised learning methods, 
such as clustering. The high sensitivity to noise is alleviated by exten-
sive data quality checks. The naturally occurring phenotypic diversity 
is handled through a step of control morphology modeling. Finally, 
clustering results are validated using reproducibility as a significance 
metric. Using analysis at the single-cell level, with a glycosylation-
dependent Golgi marker, a small library of siRNAs targeting gene 
transcripts important for membrane traffic and validation through 
reproducible associations with specific genetic perturbations, we 
detected more than 10 distinct Golgi phenotypes. This study dem-
onstrates the existence of multiple stable Golgi organizations. Fur-
thermore, we use this phenotypic information to build a phenotypic 
network that maps similarities between genetic perturbations. The 
workflow presented here can be adapted in other studies of high-
content data sets to maximize the use of image-based high-
dimensional data and the efficiency of phenotypic distinctions.

RESULTS
Golgi morphological RNAi screen: marker, target genes, 
and initial validation
To image Golgi morphology in HeLa cells, we used immunofluores-
cence staining with Helix pomatia lectin (HPL) and Hoechst to stain 
the nucleus as described previously (Chia et al., 2012). HPL binds 
specifically to terminal N-acetylgalactosamine (GalNAc) residues 
that are added to proteins by O-GalNAc glycosylation initiation en-
zyme (GalNAc-Ts) located at the Golgi apparatus. GalNAc-Ts can 
relocate to the endoplasmic reticulum (ER) under some conditions, 
leading to staining with a diffuse morphology.

To define a set of genetic perturbations with a high probability of 
affecting Golgi morphology, we selected siRNA pools targeting 
SNARE (soluble NSF (N-ethyl-maleimide–sensitive factor) attach-
ment protein receptor and COG complex (conserved oligomeric 
Golgi complex) transcripts (Supplemental Figure 1). The SNARE 
family of proteins mediate membrane fusion events via v-SNARE 
located on vesicle membranes and t-SNARE localized on target 
compartment membranes. The Golgi apparatus is a major center of 
membrane trafficking and therefore is dependent on various 
SNAREs (Hong, 2005; Hong and Lev, 2014; Malsam and Sollner, 
2011). The COG complex plays an essential role in retrograde trans-
port within the Golgi by providing tethering functions (Willett et al., 
2013). We reasoned that the disturbance in SNARE/COG targets 
would impact Golgi organization and reveal various Golgi pheno-
typic classes.

We assembled data sets for multiple screening plates and veri-
fied their experimental and biological reproducibility with several 
controls (details under Reproducibility tests and replicates). We used 
the Polo-like kinase (Plk) siRNA, which typically induces an over 99% 
decrease in cell count from mock transfected wells to verify efficient 
siRNA transfection in all experimental plates (Supplemental Figure 
2A). Previously, we reported that depletion of the SNARE syntaxin-5 
(STX5) induces a diffuse Golgi morphology with an increase in HPL 
staining intensity (Chia et al., 2012). We used the median cell inten-
sity of HPL staining in STX5-depleted wells to calculate a Z′ for all 
screening plates, which was found to be between 0.36 and 0.4 (Sup-
plemental Figure 2B and Supplemental Table 1). Analysis of the 
Hoechst nuclei count revealed 900–2100 nuclei/treatment depend-
ing on the siRNA treatment tested (Supplemental Figure 2C). The 
total nuclei counts showed a mean coefficient of variation (CV) <20% 
between well replicates, indicating good consistency. Overall these 
initial assessments indicated reasonable reproducibility and war-
ranted further processing by the single-cell extraction pipeline.

have been used previously to study organelles such as the Golgi ap-
paratus by characterizing three or four phenotypes (Farhan et  al., 
2010; Chia et al., 2012; Anitei et al., 2014; Millarte et al., 2015).

The Golgi apparatus is an architecturally extremely complex or-
ganelle under constant dynamic membrane flow in both the antero-
grade and retrograde directions. A series of four to seven cisternae, 
ribbon-like membranes tightly opposed to one another, form the 
Golgi stacks, which are flanked on each side by a network of vesicles/
tubules. Several dozen to several hundred Golgi stacks are loosely 
linked together in a perinuclear location (Lowe, 2011). The Golgi ap-
paratus is essential for protein posttranslational modifications, in-
cluding glycan addition and protein sorting (Chia et al., 2012; Goh 
and Bard, 2015). It also participates in the control of cell migration 
(Yadav et al., 2009; Millarte et al., 2015). Golgi organization is thought 
to be particularly important for the manufacture of glycans by glyco-
sylation enzymes in an orderly distribution in specific cisternae (de 
Graffenried and Bertozzi, 2004; Stanley, 2011). The Golgi apparatus 
is thought to depend on a complex genetic network (Lowe, 2011). 
The precise nature of this network remains unclear, however, and is a 
prime target for cell-based genetic screening.

Results from a kinome/phosphatome small interfering RNA 
(siRNA) screen on ERGIC-53 localization were interpreted as the 
Golgi apparatus being either fragmented or with a tubular aspect 
(Farhan et  al., 2010). A recent restricted siRNA multiparametric 
screen set looking at the relation between Golgi morphology and 
migration used giantin as a Golgi marker and used three typical 
phenotypic Golgi morphological classes: small, fragmented, and 
big Golgi (Millarte et al., 2015). Additionally, a kinome/phosphatome 
siRNA high-content imaging screen with a mannose-6-phosphate 
receptor reported some selected hits from screens to be affected by 
the extent of trans-Golgi fragmentation (Anitei et  al., 2014). All 
these studies defined Golgi phenotypes based on a chosen set of 
features and image training labels and were guided by human visual 
expertise. Similarly, our laboratory previously used a supervised 
machine learning approach to classify three morphologies of Golgi 
apparatus within single cells as diffuse, condensed, or fragmented 
(Chia et al., 2012). However, the larger number of glycosylation pro-
files associated with various gene perturbations suggested that 
more Golgi organizations might exist.

Unsupervised machine learning methods allowing extraction of 
phenotypes independent from user image annotations have the po-
tential to distinguish more phenotypes. Unsupervised methods 
work by identifying the underlying structure in the input data in the 
absence of any defined output. For example, a clustering approach 
discovers inherent groupings/categories based on the distribution 
of data points in a feature space (Sommer and Gerlich, 2013). These 
methods have been used, for example, to profile drugs and to 
classify time-lapse cellular imaging data in mitosis progression 
(Pelkmans, 2012; Zhong et al., 2012). An unsupervised method also 
identified key cell heterogeneity during preadipocyte differentiation 
and revealed cellular subpopulations in lung cancer clones that 
were resistant versus sensitive to paclitaxel (Slack et al., 2008; Loo 
et al., 2009; Singh et al., 2010).

Unsupervised learning can be used to characterize cellular phe-
notypes automatically; however, its use is challenging because of its 
relatively poor performance on noisy data, which is further limited 
by the lack of interpretation in the case of an unpredictable output 
(Sommer and Gerlich, 2013). To the best of our knowledge, it has 
not been used to date for the study of a subcellular structure such as 
the Golgi apparatus.

In this study, we present an unsupervised methodology for iden-
tifying Golgi phenotypes. We use a single marker to focus the 
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reproducibility (Figure 1). The proposed workflow for constructing 
image-based Golgi phenotypes consists of three major modules 
involving 1) a multistep machine learning–based quality control 
(QC) module to produce high-quality data sets, 2) control modeling 
to identify the non–control-like treated cells (with altered Golgi mor-
phology content), followed by 3) unsupervised clustering analysis to 
identify novel types or subtypes of the known Golgi phenotypes. 
The first module focuses on data QC by eliminating the low-quality 
data at multiple levels of cells, wells, and features. The output of this 
module yields high-quality nuclei or cells, reproducible features, 
and homogeneous replicate wells. The second module identifies 
normal “unaltered Golgi”–looking cells in the whole data set and 
excludes them from subsequent unsupervised clustering. A control 
“unaltered Golgi” model is fitted to the high-quality control cells 
obtained from the previous module. The control model then pre-
dicts for all the remaining cells if they are control-like (with unaltered 
Golgi) or non–control-like (with altered Golgi), yielding a penetrance 
score, defined as the percentage of non–control-like cells for each 

Single-cell extraction pipeline: segmentation and feature 
extraction
We processed images using a high-content screening unit (HCSU), 
a dedicated automatic high-throughput workflow for the extraction 
of numerical features (Tjhi et al., 2011; Chia et al., 2012). HCSU also 
extracts single-cell images that can be used as cell vignettes 
(Figure 1). A wavelet-based segmentation and watershed algorithm 
for nuclear staining identifies individual nuclei and defines a cell ter-
ritory from the nuclear center of mass. Images of single cells are 
then extracted as a vignette. Numerical features including object 
shape, area, and fluorescence intensity and texture were extracted 
for both nuclear and Golgi staining, resulting in 113 nuclear and 124 
HPL features (Supplemental Table 2).

Overview of the deep phenotypic analysis workflow
Because unsupervised analysis is particularly sensitive to artifacts 
and noisy data, we derived a multistep approach to produce 
high-quality data sets and replicates at multiple levels to test for 

FIGURE 1:  Workflow of unsupervised pipeline to uncover Golgi phenotypic classes.
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respective nomenclature: Biological Replicate 1 with first set of opti-
cal fields (Biological Replicate 1/Technical Replicate 1) or second set 
of optical fields (Biological Replicate 1/Technical Replicate 2), Bio-
logical Replicate 2 with first set of optical fields (Biological Replicate 
2/Technical Replicate 1) or second set of optical fields (Biological 
Replicate 2/Technical Replicate 2). We refer to GMMs (Gaussian 
mixture models) 1–4 as independent unsupervised runs of our de-
veloped pipeline with these four data sets: Biological Replicate 1/
Technical Replicate 1 (GMM1), Biological Replicate 1/Technical Rep-
licate 2 (GMM2), etc.

Nuclear quality control
Because unsupervised analysis is sensitive to artifacts and noisy data 
(Sommer and Gerlich, 2013), we reasoned that low-quality nuclei/
cells resulting from poor segmentation, overlapping, and out-of-
focus samples can affect its performance. Watershed algorithms can 
misidentify touching nuclei and lead to outputs with imperfectly iso-
lated nuclei (Zhang et al., 2015). Hence, we developed a nuclear 
quality control (NQC) step to remove these irregularly segmented 
nuclei (Figure 1). First, we generated nuclear clusters to select the 
samples for manual labelling of “high” and “low” quality nuclei. 
This was done by utilizing a GMM to perform unsupervised cluster-
ing on all cells and then randomly selecting a small number of cells 

from each cluster of nuclei for labelling 
(Bishop, 2006). The use of unsupervised 
clustering yielded different nuclear subpop-
ulations that can capture all the nuclear im-
age variations, and hence allowed us to 
generate an efficiently labeled small subset 
of samples.

Figure 2A shows 25 samples each from 
three of the total 18 nuclear clusters that rep-
resent the different nuclear subpopulations. 
From each of these clusters, 50 nuclear sam-
ples were randomly selected and manually 
labeled as high- or low-quality nuclei. Next, 
these labeled cell samples were used to train 
a random forest (RF) classifier, which then au-
tomatically removed all low-quality cells 
(Breiman, 2001). Figure 2B shows the sam-
ples of nuclei classified as good (well seg-
mented, in focus) and bad (poorly seg-
mented, overlapping). The set of manually 
labeled nuclear samples was divided into a 
training set to train the RF classifier and a 
test set to measure its performance. We 
trained the RF classifier for NQC using labels 
from one plate replicate, which was then 
used to automatically predict the good and 
bad cells for all the replicates tested.

To measure the performance of the RF 
classifier, we computed the precision and 
recall scores for the test data set. The preci-
sion score is defined as the fraction of high-
quality cells out of the total number of 
correctly classified cells, and the recall score 
is a measure of how many high-quality cells 
are correctly classified. Because both preci-
sion and recall scores should be high, the 
training process for the RF classifier involved 
maximizing the area under the precision–
recall curve (Mukhamedyarov et al., 2016). 

siRNA well or treatment. For the next step, all the replicate wells 
with low penetrance were excluded, retaining only siRNA treat-
ments with a significant effect. In the third module, unsupervised 
clustering was performed on non–control-like cells from these high-
penetrance siRNA treatment wells. The resulting Golgi phenotypic 
clusters formed treatment fingerprint signatures, which were 
compared pairwise by calculating Hellinger distance (Vajda, 1989). 
Finally, a Golgi phenotypic network was constructed using the 
Hellinger distance values between all pairs of treatments. The de-
tails of different phases and performance indicators of this workflow 
are given in the following sections.

Reproducibility tests and replicates
We devised different types of replicates to test for potential sources 
of variability and validate our results. To test the reproducibility of 
association of clusters with specific gene depletions, “well repli-
cates” were acquired in each plate, with four wells for each siRNA 
treatment (Supplemental Figure 1). To test the reproducibility of the 
clustering algorithm, “technical replicates” were generated, each 
composed of an independent set of optical fields originating from 
the same well. Finally, to test the overall reproducibility of the ap-
proach, we acquired data sets from two independent “biological 
replicates” performed weeks apart. Hence, our data sets follow the 

FIGURE 2:  NQC with machine learning. (A) Nuclear clusters example obtained from a GMM 
applied on all data sets from the HCSU segmentation output. (B) Example of high- vs. 
low-quality nuclei predicted by the RF classifier trained on manually labeled nuclei. 
(C) Performance curve of RF with recall % (proportion of good nuclei identified out of total 
fraction of good nuclei) on horizontal axis and precision % (proportion of good nuclei assigned 
as correct) on vertical axis with a training data set (80% of labeled data) and a test set (20% of 
labeled data).
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by the fact that an outlier well can influence the evaluation of other-
wise reliable features, and reciprocally, a noisy feature can affect the 
evaluation of wells.

Empirical cumulative distribution functions (CDFs) for all features 
were generated by considering the cell population from each con-
trol well independently. The differences between these CDFs were 
measured to evaluate the reproducibility of a feature across multiple 
control wells. Figure 3A illustrates an example of how a noisy fea-
ture or noisy well is eliminated. Starting with the four features (F1–
F4), the CDFs plotted for four wells (A1–A4) show that the feature F1 
is noisy across all wells, and hence it is eliminated. Further, the well 
A4 (light blue) is eliminated, because it contributes to noise across all 
three remaining features. Hence, for this example, a set of three ro-
bust features across three homogeneous wells are selected.

The difference between feature CDFs was measured using the 
Kolmogorov–Smirnov statistic, which was then used to derive a re-
producibility score (RS) to perform feature–well selection. This score 
was computed by leaving out one feature or one control well at a 
time and determining the number of uniform distributions for all 
remaining features generated across all remaining wells (Supple-
mental Methods). Figure 3B shows the RS corresponding to all 

As shown in Figure 2C, area under the curve for the training data 
(blue) is only slightly higher than that for the test data (red), with the 
precision/recall scores for training data computed as 95.01/93.66 
and for test data as 92.80/85.77, suggesting that the RF is robust to 
overfitting on the training data. Our approach yielded a mean of 
700 quality nuclei/well from an input mean of 1700 nuclei/well (Sup-
plemental Figure 3). Total nuclei counts for all plate replicates tested 
produced an average CV of 17%, with a maximal CV of 30.7%.

Feature quality control and control well selection
A large number of numerical features can be extracted from micro-
scopic images, and it is not always clear in advance which ones are 
most useful or which are more sensitive to noise. For an unsupervised 
approach, eliminating noisy features is essential to avoid polluting 
the feature space in which unsupervised clustering is performed. 
Similarly, high-throughput experiments in multiwell plates can gener-
ate outlier wells, which also add noise to the clustering space.

After various trials, we decided to use a method that eliminated 
noisy image features and outlier control wells simultaneously (con-
trol wells refer to mock untransfected wells in Supplemental Figure 
1). This combined “feature–well” selection method was motivated 

FIGURE 3:  Feature–control-well QC. (A) Example of feature–well selection principle used in this workflow. 
(B) Reproducibility scores across all features used in this study in independent analysis with the presented workflow. 
Left features indicated with red arrow are commonly rejected while right features indicated with green are commonly 
accepted across all replicates used in this study.
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(Bishop, 2006). Figure 4A shows the decision boundary for the 
control space (green) learned by the control model in a two-dimen-
sional space spanned by the first two principal components of the 
selected Golgi features. This region encompasses 95% of control 
cells, the remaining 5% of control cells being considered outliers. All 
sample cells were then classified using the trained one-class SVM. 
This sorting exercise yielded the percentage of non–control-like 
cells for a treatment, which we call the penetrance score.

To determine the optimal number of control cells for defining the 
control-like Golgi model, we followed the penetrance scores for two 
test treatments as a function of the number of control cells. The test 
treatments were STX5 siRNA, a positive control with a marked dif-
fuse Golgi phenotype (Supplemental Figure 2B), and a nontargeting 
siRNA negative control (NT).

On the average, STX5 depletion had a higher penetrance score 
(> 30%) than that for NT controls (<8%) (Supplemental Figure 4). The 
penetrance score for both treatments increased significantly when 
the number of control cells was below ∼8000 (10 wells), whereas it 
was stable if the number of control wells was larger (Supplemental 
Figure 4). This suggests that if the control group is too small, the 
diversity of the wild-type morphologies is not fully captured, while 
the penetrance value is stable once a minimum number of control 
cells are provided to the control model.

For replicates tested in this work, we used around 20 control 
wells (∼16,000 cells) to define a control Golgi model. This approach 
resulted in the classification of between 1.8 × 105 and 2.5 × 105 
control-like cells and between 1.9 × 104 and 2.5 × 104 non–control-
like cells for the different replicates tested (Figure 4B).

Next, we eliminated all wells for which the penetrance score was 
less than 10% (red dotted line in Figure 5A). The NT siRNA pro-
duced a 5.4% (±2.8%) penetrance score. These scores were highly 
consistent between technical and biological replicates with a coef-
ficient of determination, R2, above 0.9 (Figure 5, B and C).

We used this measure of penetrance to evaluate siRNA on-
targeting of the treatments. We used four deconvoluted siRNAs for 
each treatment and repeated the analysis of penetrance for an effect 
on Golgi morphology. Treatments that showed at least two single 
siRNA with a penetrance score >10% were considered validated. 

features as each feature is eliminated, from left to right. The feature 
RS shown for all four experimental replicates increase from left to 
right as the poor-quality features are removed, until no further im-
provement in RS can be attained. The features delineated by the red 
arrow are eliminated across all four replicates, while those delin-
eated by the green arrow are high-quality robust features selected 
for all the replicates and hence are used for further analysis. Remark-
ably, not all Haralick features showed similar quality levels. Haralick 
coefficients 9, 6, 4, and 2, respectively equivalent to Haralick differ-
ence variance, sum variance, inverse difference moment, and cor-
relation, were highly reproducible, whereas Haralick coefficients 7, 
0, and 8, respectively equivalent to Haralick sum entropy, angular 
second moment, and entropy, were particularly unreproducible 
(Murphy et al., 2003).

Overall, we have established a method for selecting a large set 
of features and wells with high reproducibility for further processing 
without a priori knowledge. Given the diversity and complexity of 
image features and the inevitable occurrence of problematic wells in 
high-throughput experiments, such an automated approach should 
be highly valuable.

Control space modeling defines cells with altered Golgi 
morphology
We hypothesized that unsupervised clustering would be less effi-
cient at defining specific Golgi phenotypes if both wild-type, unal-
tered Golgi (control-like cells) and altered Golgi (non–control-like 
cells) were used together. Indeed, wild-type Golgi morphologies are 
relatively diverse and principal component analysis (PCA) shows that 
both cell populations distribute in a continuous manner in the mul-
tiparametric phenotypic space (Figure 4A). In contrast, if only non–
control-like cells are used, the clusters obtained are more likely to 
represent phenotypes clearly different from the wild type. In addi-
tion, removal of cells with control-like Golgi apparatus reduces the 
size of the data set used for unsupervised clustering, which shortens 
the processing time.

Therefore, to define the control Golgi phenotype, we modeled a 
control volume in the multiparametric space using cells from mock 
control wells by utilizing a one-class support vector machine (SVM) 

FIGURE 4:  Control modeling with one-class SVM. (A) Scatterplot example of control model learned using SVM 
approach with all cells depicted across two major components after PCA on all features. Control cells are depicted in 
red and the remaining cell population is depicted in blue. Green curve represents boundary learned for defining control 
cells space with one-class SVM. (B) Size of total control and non–control-like spaces produced by independent SVM 
control modeling on replicates tested.



3692  |  S. Hussain, X. Le Guezennec, et al.	 Molecular Biology of the Cell

Cluster analysis dendrogram plots 
illustrate cluster relationships
To provide insight into the relationships be-
tween the phenotypic clusters, we per-
formed hierarchical clustering on the means 
of the GMM components. The dendrograms 
plotted for the cluster means in GMM1 and 
GMM2 are shown in Supplemental Figure 6. 
The pairwise similarity between clusters was 
computed using Euclidean distance be-
tween means of clusters (y-axis) generated 
by a GMM. These cluster means are defined 
in the PCA space of the image features. For 
GMM1, pairs of clusters C3–C4 and C2–C5 
with diffuse morphology were found to be 
closest to each other, with the distance be-
tween these clusters being the smallest, 
compared with all other pairwise distances. 
Moreover, clusters C9 and C12 were found 
to be closer to each other than to any other 
clusters, as shown by the first split (blue 
lines), and C11 was the most different from 
all the remaining clusters (red lines). Similarly, 
for GMM2, distance between the most 
similar clusters C2, C4 with diffuse morphol-
ogy was the smallest, while C8 was found 
to be different from all the other clusters 
(first split).

Relevance of Golgi image features to 
the clustering structure
To identify the most relevant morphological 
features for the GMM clusters, we per-
formed feature analysis by first fitting a RF 

classifier to the feature data to learn the cluster outputs generated 
by the GMM. The use of a RF consisting of several decision trees 
provided a direct method for measuring the importance of features 
by computing the Gini impurity, which is used to decide how to 
branch the decision trees. Hence, importance scores were gener-
ated for each feature as the average decrease in impurity from each 
feature. For this purpose, we considered the 70 commonly selected 
high-quality features across all four replicates (Figure 3B), as dis-
cussed under Feature quality control and control well selection. 
Supplemental Figure 7 shows the bar plot for these features, ranked 
according to decreasing importance pertaining to the clustering 
structure for the GMM clusters in GMM1 and GMM4, where 
the most important image features common to both GMMs are 
mean, maximum, and SD values of Golgi image intensity, some 
Haralick coefficients (6, 9, 12) (matching respectively Haralick differ-
ence variance, difference entropy, and Haralick info measure of 
correlation 2) (Murphy et al., 2003), and Obj.nbSubstructures, Obj 
.avgDistFromObjectsToSegCenterSurf features.

Clusters are reproducibly associated with specific siRNA 
treatments
Next, we explored how these various phenotypic clusters relate to 
different siRNA treatments. A signature composed of the specific 
fractional number of cells present in each cluster was defined for 
each siRNA treatment and demonstrated using a polar plot. Repre-
sentative examples are shown in Figure 8 and all signatures are 
available in Supplemental Table 3. Replicate well siRNA treatment 
signatures were overlaid on the same polar plot to visualize how 

Using this approach, we could validate ∼75% of our siRNA pools, a 
proportion consistent with previous screens (Supplemental Figure 5).

Unsupervised clustering identifies multiple Golgi 
morphologies
To run the unsupervised clustering, we first performed dimension-
ality reduction using PCA on the image features. The use of PCA 
reduced data dimension from ∼100 to ∼30, preserving 95% of the 
total variance. Unsupervised clustering was then performed on the 
selected non–control-like population using a GMM. This resulted 
in splitting of non–control-like cells into 12, 10, 10, and 14 clusters 
in the different GMM runs (Figure 6A). A major cluster was defined 
as a group of non–control-like cells with an arbitrary minimal 
number of 100 cells/cluster. Clusters with low cell numbers were 
excluded. Cell count/cluster could scale up to ∼2000 cells/cluster, 
depending on the cluster.

We plotted the five main clusters in GMM2 in the first four prin-
cipal components space in a pairwise manner (Figure 6B). The 
density maps indicated that the centers of mass of the clusters are 
well separated, but that cluster boundaries tend to overlap. Im-
ages of representative cells for each cluster group were extracted 
from the bank of cell vignettes, and examples of typical non–con-
trol-like Golgi morphologies in each cluster group were assembled 
(Figure 7). Morphologies produced by unsupervised clustering 
agreed to some extent with our previously reported visual Golgi 
phenotypic classification of diffuse/condensed/fragmented, but 
obviously extended beyond these three visual classes (Chia et al., 
2012).

FIGURE 5:  Detection of penetrance (% non–control-like cells) in biological/technical replicates. 
(A) Bar chart with mean and SD of % non–control-like cells for indicated siRNA treatments (from 
HPL–derived fluorescence channel) on horizontal axis based on four wells replicate. Control 
modeling was performed on various replicates. Red dotted line represents threshold for 
significant penetrance cutoff at 10%. (B) Correlation analysis of penetrance presented in 
A between sets of technical replicates for biological replicates 1 (red) and 2 (blue). Pearson 
correlation coefficient R and R2 are indicated in respective replicate colors. (C) Correlation 
analysis of penetrance presented in A between biological replicates 1 and 2
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results of clustering appear reproducible, with slight variations, in 
completely independent experiments. This reproducibility was also 
apparent in the similarity of signature profiles between different 
siRNA. For example, GMM1, GMM2, and GMM3 runs produced 
USE1 signatures closely related to STX1A, with a majority of non–
control-like cells shared in similar clusters (Figure 8, A–C, Middle). 
This similarity is further explored below through the quantification of 
Hellinger distances. Overall, these few examples illustrate how inde-
pendent clustering runs yield largely similar results.

COG4 depletion yields a unique phenotypic signature
Some treatment signatures also appeared to be very distinctive. For 
instance, the COG4 signature was composed of two major clusters 
in all the GMMs: C7/C9, C3/C8, C6/C8, and C8/C10 for GMM1–
GMM4, respectively (Figure 8, A–C, for GMM1–GMM3). Visually, 
these Golgi morphologies presented a unique aspect: a perinuclear 
highly intense fragmented morphology for GMM1-C9, GMM2-C8, 
and GMM-C8 and a medium-intensity fragmented morphology for 
GMM1-C7, GMM2-C3, and GMM-C6. The aforementioned clusters 
C9, C8, and C8 (C10 for GMM4) were almost exclusively associated 
with COG4 siRNA (Figure 7 and Supplemental Tables 3 and 4). 
Therefore, the pipeline produced a unique phenotypic signature for 
COG4, a result that would have been difficult to obtain or predict 

reproducibly treatments associate with specific clusters. As seen for 
replicate wells D12, D22, and K22 for STX1A, a high level of agree-
ment was apparent, with similar fractions of cells obtained in clusters 
C1, C2, C3, and C6 in GMM1 (Figure 8A, Top). Therefore, our unsu-
pervised workflow yields an almost identical phenotypic signature in 
wells processed completely independently and containing cells with 
the same perturbation. This strongly argues that the pipeline is de-
fining a Golgi phenotypic signature unique for each treatment. Then 
we compared signatures between technical replicates. SXT1A sig-
nature generated independently from a technical replicate with 
GMM2 produced a large fraction of non–control-like cells in clusters 
C1, C2, and C5 (Figure 8B, Top). The number of clusters and the 
order changed between GMM1 and GMM2, but C1, C2, and C5 of 
GMM2 appeared highly related morphologically to C1, C2, C3, and 
C6 of GMM1 (Figure 7). This observation suggests that independent 
clustering performed on highly similar data sets returns very similar 
results.

Similarly, a biological replicate with GMM3 produced for STX1A 
a major fraction of non–control-like cells in clusters C1, C2, and C4 
(Figure 8C, Top). The number of clusters and the order changed 
again from GMM1 or GMM2, but the morphology types in clusters 
C1, C2, and C4 from GMM3 were closely related to C1, C2, C3, and 
C6 in GMM1 or C1, C2, and C5 in GMM2 (Figure 7). Therefore, the 

FIGURE 6:  Unsupervised clustering of non–control-like cells. (A) Key cluster characteristics from unsupervised clustering 
performed on non–control-like cells. Bar charts depict cluster key output from GMM1 to GMM4. Cluster ID is indicated 
on horizontal axis; cell counts are indicated on vertical axis. Red dotted line represents threshold at 100 cells/cluster for 
significant cluster size. (B) Major clusters of GMM2 represented as density maps across several major components of 
PCA. C1, C2, C3, C4, and C5 are represented.
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established players in retrograde and an-
terograde trafficking between ER and Golgi 
apparatus (Xu et  al., 2000; Shorter et  al., 
2002; Dilcher et al., 2003).

The COG complex has been well de-
scribed as a regulator of Golgi organization 
and is generally described as composed of 
two lobes, A and B. Surprisingly, we mostly 
recovered interactions between members 
of the lobe A, COG 1, 2, and 3. As previ-
ously reported, COG4 depletion produced 
a unique signature, while COG6 was more 
linked to STX7, with mostly condensed mor-
phology–type clusters. These surprisingly 
different signatures suggest that depletion 
of these proteins has different effects on the 
Golgi apparatus. By extension, it is possible 
that different proteins of the COG complex 
could have additional, different effects in 
addition to their proposed role in the COG 
complex.

GOSR2 and USE1 are not reported to 
interact in the STRING database, but they 
clearly generated very similar phenotypic 
signatures with many diffuse cluster mor-
phologies (Supplemental Table 3). Interest-
ingly, a recent yeast study reported that 
GOSR2 and USE1 have a shared critical role 
during haploid nuclei fusion during yeast 

mating (Rogers et al., 2013). The diffuse morphology of the clusters 
suggests a similar relocation of GalNAc-Ts from the Golgi to the ER 
upon GOSR2 or USE1 siRNA treatments (Dinter and Berger, 1998; 
Gill et al., 2013).

Signature comparison between STX1A and STX5 or between 
STX1A and GOSR2/USE1/USO1 indicated a high level of similarity, 
with these signatures sharing a high fractional content of diffuse 
clusters also. Homologues of STX1A in Drosophila have been shown 
recently to associate with USE1, STX5, and GOSR2 in a mass spec-
trometry affinity approach (Guruharsha et al., 2011). BNIP1 was also 
consistently connected to GOSR2/STX1A/STX5 from multiple GMM 
outputs. In line with our findings, Nakajima et al showed association 
between USE1 with BNIP1 and also a weak association with STX5. 
Furthermore, Drosophila and yeast studies also support these 
associations (Nakajima et al., 2004; Guruharsha et al., 2011; Rogers 
et al., 2013).

DISCUSSION
Understanding the mammalian Golgi apparatus is a major scientific 
challenge. The range of physiological functions dependent on this 
organelle keeps expanding (Makowski et al., 2017). Yet the debate 
about how cargo proteins flow through this organelle while resident 
proteins are retained remains ongoing after decades of publications 
(Farquhar, 1985; Pfeffer, 2010; Papanikou and Glick, 2014). Further-
more, how this organelle regulates the complex protein modifica-
tions that take place in its heart is still mostly unknown (Stanley, 
2011; Chia et al., 2012).

To understand the mammalian Golgi apparatus, the molecular 
machinery supporting its complex structural organization needs to 
be deciphered (Lowe, 2011; Stanley, 2011). It is clear that an elabo-
rate genetic network coordinates the Golgi structural organization. 
More than 2000 proteins are thought to be present in this organelle 
(Makowski et  al., 2017). A set of large peripheral proteins and 

with a supervised approach, in the absence of specific labels for this 
morphology.

Comparison of phenotypic signatures using Hellinger 
distances
To compare cluster-based phenotypic signatures, we calculated the 
Hellinger distance for each siRNA treatment pair (Vajda, 1989). Dis-
tances closer to 0 reflect similarity while distances closer to 1 reflect 
dissimilar treatments (Figure 8). All measured Hellinger distances 
between treatments were compared between technical replicates 
(Figure 9A). The tight correlation (R > 0.9) indicates that the pheno-
typic similarities thus computed are highly reproducible between 
independent clustering analyses. Interestingly, the correlation 
between biological replicates was not much lower (R = 0.89), sug-
gesting that the method is relatively robust to experimental noise 
(Figure 9B). Overall, the definition of phenotypic similarity appears 
to be highly reproducible, despite the variation in cluster numbers 
with different GMM modeling.

A phenotypic network of SNARE and COG subunits
We next constructed a hive plot where the nodes were genes with a 
significant level of penetrance. We plotted edges corresponding to 
Hellinger distance <0.2, which accounts for the top ∼10% of dis-
tances measured (Supplemental Figure 8). An overlay of networks 
derived from the four GMM runs illustrates the variable degree of 
reproducibility in Hellinger scores (Figure 10 and Supplemental 
Figure 9).

We also compared the phenotypic network with a network de-
rived from STRING predictions, adjusted for a high confidence at 
0.7, based on experimental evidence (Figure 10). A network com-
posed of STX18, STX5, GOSR2, USE1, and USO1 appeared and 
they were referenced as interacting in the STRING database. 
Interestingly, STX18, GOSR2, USE1, USO1, and STX5 are common 

FIGURE 7:  Representative phenotypic clusters for HPL Golgi stain. From left to right, output 
from GMM1–GMM4. Four representative non–control-like cells are shown for each cluster 
group. Clusters are oriented top to bottom in decreasing size order as in Figure 6. Each cell 
vignette is originally generated by HCSU interface from initial input of 20× Opera Phenix–
acquired images with HPL Alexa647 fluorescent dye.
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Genetic approaches have long relied on the inference that phe-
notypic similarities indicate close functional relationships (Fuchs 
et al., 2010). In the case of intracellular structures, however, visual 
phenotypic characterization can be limiting and challenging. Here, 
we presented a workflow to detect and analyze Golgi phenotypes 
independent of visual input using high-throughput imaging screens. 
The workflow presented includes several quality control steps and a 
module defined for exclusion of the control-like morphologies pop-
ulation. We showed that this workflow is reproducible and has inte-
grated several quality control steps to handle issues such as outlier 
wells or irreproducible features. The main output of this workflow is 

multisubunit tethering complexes operate together with GTPase 
networks. Finally, a complex signaling network is coordinating and 
regulating this large transport machinery (Bard and Chia, 2016; Luini 
and Parashuraman, 2016).

Systematic approaches such as RNAi screening can help to 
approach this high degree of complexity. For instance, we and 
others previously described 160 new nodes in the form of kinase 
and related genes (Chia et al., 2012, 2014; Galea et al., 2015). 
However, the classification of these players and other known 
Golgi regulators into functional modules presents a considerable 
challenge.

FIGURE 8:  Phenotypic signature. Cluster signature composition in polar plot format for representative examples in 
different replicates. (A) USE1, STX1A, and COG4 siRNA treatments in GMM1 (Biological Replicate 1, Technical Replicate 
1), (B) GMM2 (Biological Replicate 1, Technical Replicate 2), and (C) GMM3 (Biological Replicate 2, Technical Replicate 1). 
Clusters are oriented in a clockwise manner in decreasing order of size as presented in Figures 6 and 7. Radial axis 
indicates fraction of total non–control-like cells. Each color-coded plot corresponds to one replicate well. A replicate 
well reference is indicated in the top left box of each graph with total non–control-like cells number in parentheses. 
Hellinger distance measuring similarity of signatures is indicated for adjacent signatures.
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the penetrance scores and the signatures 
defined by phenotypic clusters.

At this stage, it is not clear whether the 
penetrance constitutes part of a gene signa-
ture or if it is mostly a reflection of knock-
down efficiency. The continuous distribution 
of phenotypic intensity in large-scale studies 
has been well documented, suggesting that 
penetrance reflects, at least partly, a biologi-
cal parameter (Friedman and Perrimon, 
2007). Consistent with this notion, the pen-
etrance of phenotypically related perturba-
tions such as STX18, GOSR2, USE1, USO1, 
and STX5 was comparable. COG1, COG2, 
and COG3 subunits, all implicated in trans-
port within the Golgi, also shared similar 
penetrance levels.

At any rate, phenotypes defined by clus-
ters are sufficient to obtain highly informa-
tive signatures. The strong association of 
clusters with specific treatments suggests 
that these disturbed Golgi phenotypes are 
not disorganized structures but rather alter-
native metastable states. It is currently un-
clear how many states Golgi can have, and it 
is likely that with more siRNA treatments, we 
would find more than 10 phenotypic clus-
ters. The fact that different clusters are re-
producibly occurring in a single condition 
suggests either that the Golgi can evolve 
along two (or more) phenotypic paths or 
that cells oscillate between these cooccur-
ring states over time.

One important aspect of our workflow is 
the use of a single marker, in our case HPL. 
This lectin reveals the activity of GalNAc-Ts, 
which are typically localized in the Golgi ap-
paratus. However, we have shown previ-
ously that GalNAc-Ts can traffic to the ER in 
an inducible manner independent of other 
Golgi enzymes (Gill et  al., 2010). The ge-
netic network controlling the localization of 
GalNAc-Ts is therefore likely to be different 
from that for other enzymes in the Golgi. 
Using a different marker, for example a dif-
ferent enzyme, could therefore reveal a dif-
ferent network.

Our method would make it possible to 
generate different networks relatively easily, 
either with different markers or under differ-
ent physiological conditions, which could be 
a significant advantage of these phenotypic 
networks. Indeed, as highlighted recently, 
different networks are highly informative for 
understanding biological responses (Ideker 
and Krogan, 2012). To be most effective, 
these approaches might need to be con-
ducted at the genomewide level or at least at 
a large scale. This up-scaling might require 
some technical improvements for handling 
multiple plates with a larger multidimen-
sional space.

FIGURE 9:  Reproducibility analysis of Hellinger distance measured between siRNA phenotypic 
signatures for HPL Golgi stain. (A) Treatment pair Hellinger distances from technical replicates. 
(B) Treatment pair Hellinger distances from biological replicates. A well-to-well reproducibility 
factor was set at 0.3 for all data set comparisons (Supplemental Method). Pearson correlation 
coefficients R and R2 are indicated.

FIGURE 10:  Phenotypic network: hive network plot analysis showing predicted phenotypic 
association in red. Each association is reproduced at least in a technical and biological replicate 
on the basis of Hellinger distance <0.2 for indicated paired association. A string network 
prediction is presented in gray (based on experimental evidence and a 0.7 threshold). A 
well-to-well reproducibility factor was set at 0.3 for all our Hellinger distance calculations 
(Supplemental Method).
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Overall, we expect that this context-dependent, function-based 
approach to the discovery of genetic modules and networks will 
greatly enhance our capacity to obtain a system-level understand-
ing of the regulation of Golgi organization and could be applied to 
many other systems within the cell.

MATERIALS AND METHODS
Cell line antibodies and reagents
HeLa cells originated from V. Malhotra (Centre for Genomic Regu-
lation, Barcelona, Spain). HeLa cells were grown with high-glucose 
DMEM supplemented with 10% fetal bovine serum (FBS) at 37°C 
in a 10% CO2 humidified incubator. HeLa cells from the same 
passage (number 23 in our lab) were exclusively used for each 
biological replicate tested in this study. H. pomatia lectin A (HPL) 
conjugated with 647 nm fluorophore (#L32454) and Hoechst were 
obtained from Invitrogen/Life technologies. On target plus siRNA 
pools were obtained from Dharmacon. Optimem was purchased 
from Invitrogen, and Hiperfect transfection reagents were from 
Qiagen (#301705).

siRNA transfection and imaging
A quantity of 2.5 µl of 500 nM siRNA was printed into 384 CellCar-
rier-Ultra Microplates (#6057308, Perkin Elmer-Cetus) with velocity 
11. Reverse siRNA transfection used a defined well mixture of 
0.25 µl of Hiperfect mixed with 7.25 µl of Optimem for 5 min, which 
was added subsequently to siRNA for complexation for 20 min. 
Subsequently, 40 µl of cells was added, with a content of 1000 cells/
well. After 3 d of siRNA knockdown, fixing of cells was performed 
with 4% paraformaldehyde in Dulbecco's phosphate-buffered sa-
line (D-PBS) for 10 min. Cells were then washed with D-PBS at pH 
7.2, followed by permeabilization for 10 min with 0.2% Triton X-100. 
Cell staining was then performed in 2% FBS in D-PBS at pH 7.2 with 
HPL conjugated to Alexa Fluor 647 and Hoechst diluted in 2% FBS 
in PBS at pH 7.2 for 20 min on a 1 cm–span orbital shaker at 150 rpm. 
The plate was then washed three times with 30 µl/well D-PBS at pH 
7.2 before being scanned in a high-throughput confocal imager. A 
multidrop combi with a small cassette was used for addition of 
Hiperfect mixture and cells in a 384-well plate. A standard cassette 
was used for fixing and washing of cells (Thermo Fisher).

Image acquisition and single-cell HCSU processing
Eight fields per well on one plan were acquired sequentially with an 
Opera Phenix content imager configured with CMOS cameras and 
a 20× NA 1.0 water objective (Perkin Elmer). Sequential measure-
ment was performed with the pair excitation wavelength for 100 ms 
with Hoechst followed by Alexa647. The image data set was then 
used by a high-content screening unit (HCSU) to perform single-cell 
extraction and feature calculation (Tjhi et al., 2011; Chia et al., 2012). 
A 20× source images data set from Phenix Opera and a HCSU auto-
matic features extraction program are available at http://dx.doi.org/ 
10.17632/vk4yhs8h6s.1.
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