
RESEARCH ARTICLE

Estimation of the breadth of CD4bs targeting

HIV antibodies by molecular modeling and

machine learning

Simone ContiID
1*, Martin Karplus1,2*

1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United

States of America, 2 Laboratoire de Chimie Biophysique, ISIS, Université de Strasbourg, Strasbourg, France
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Abstract

HIV is a highly mutable virus for which all attempts to develop a vaccine have been unsuc-

cessful. Nevertheless, few long-infected patients develop antibodies, called broadly neutral-

izing antibodies (bnAbs), that have a high breadth and can neutralize multiple variants of the

virus. This suggests that a universal HIV vaccine should be possible. A measure of the effi-

cacy of a HIV vaccine is the neutralization breadth of the antibodies it generates. The

breadth is defined as the fraction of viruses in the Seaman panel that are neutralized by the

antibody. Experimentally the neutralization ability is measured as the half maximal inhibitory

concentration of the antibody (IC50). To avoid such time-consuming experimental measure-

ments, we developed a computational approach to estimate the IC50 and use it to determine

the antibody breadth. Given that no direct method exists for calculating IC50 values, we

resort to a combination of atomistic modeling and machine learning. For each antibody/virus

complex, an all-atoms model is built using the amino acid sequence and a known structure

of a related complex. Then a series of descriptors are derived from the atomistic models,

and these are used to train a Multi-Layer Perceptron (an Artificial Neural Network) to predict

the value of the IC50 (by regression), or if the antibody binds or not to the virus (by classifica-

tion). The neural networks are trained by use of experimental IC50 values collected in the

CATNAP database. The computed breadths obtained by regression and classification are

reported and the importance of having some related information in the data set for obtaining

accurate predictions is analyzed. This approach is expected to prove useful for the design of

HIV bnAbs, where the computation of the potency must be accompanied by a computation

of the breadth, and for evaluating the efficiency of potential vaccination schemes developed

through modeling and simulation.

Author summary

Although we are now almost 40 years into the AIDS epidemics, no approved vaccine for

HIV exists. This is due to the high mutability of HIV, which allows it to escape the

immune system control. Nevertheless, a few long-infected patients have been able to
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develop antibodies, called broadly neutralizing antibodies (bnAbs), that have a high neu-

tralization breadth and are effective against a variety of viral strains. The knowledge that

bnAbs can develop over time suggests that a HIV vaccine can be found that short-circuits

the production of bnAbs. In this study we present a computational approach to estimate

the breadth of HIV antibodies. Experimentally, the breadth is the fraction of viruses in a

panel that are neutralized by the antibody, where the ability to neutralize is quantified as

the half maximal inhibitory concentration of the antibody (IC50). A method to estimate

the IC50 by computer modeling and machine learning is described and used for estimating

the antibody breadth. This approach is likely to prove useful in the design of new antibod-

ies effective against HIV and for testing the efficiency of theoretically-designed vaccina-

tion protocols.

Introduction

Vaccination is a medical procedure which has played an essential role in protecting mankind

against viral and bacterial infections since the time of Edward Jenner, who developed a vaccine

for smallpox over 200 years ago. Although for some diseases caused by viruses, such as measles,

a small number of vaccinations provide almost permanent immunity, for other such as influ-

enza, an annual revaccination, which provides only limited protection, is required. Since the

measles virus, like the flu virus, undergoes error-prone replication that introduces mutations,

it is not clear why the measles vaccination works as well as it does. Recent research [1] suggests

that the measles virus remains antigenically monotypic because mutations are almost always

lethal, though the reason for that is not known.

For HIV, which is the focus of this paper, no approved vaccine exists, although we are now

almost forty years into the HIV/AIDS epidemic. As is the case for influenza virus, HIV evolves

rapidly so that there exist many different viral strains. Some of them can evade the immune

response to a vaccination directed against only a small number of strains. Thanks to the devel-

opment of antiretroviral therapies [2], people who are infected by HIV can live essentially nor-

mal lives, without succumbing to AIDS. Several years after infection, a small fraction of the

HIV infected individuals develop antibodies that are referred to as broadly neutralizing anti-

bodies (bnAbs), i.e. antibodies that are effective against many strains of the virus [3]; an exam-

ple of a detailed structural study of the germline and mature bnAbs from a single patient is

given in Fera et al. [4]. The fact that the immune system can develop bnAbs over time has led

to renewed interest in the possibility of developing a vaccine that would be effective against

HIV [5,6].

The “neutralization breadth” of an antibody is a measure of its ability to recognize and neu-

tralize different variants of the virus. An antibody with a high breadth can recognize effectively

many different variants, while a low breadth antibody is more specific. Experimentally, the

neutralization breadth of an antibody is evaluated by testing its ability to inhibit a panel of anti-

gens from different clades of the target virus [7]. In what follows we simply write “breadth”

when referring to “neutralization breadth”. For HIV, the Seaman virus panel contains 109 rep-

resentatives of HIV clades A, B, C and circulating recombinant forms [7]. To evaluate the

breadth of an antibody, the half maximal inhibitory concentration of the antibody (IC50) is

measured for each virus in the panel. The breadth is defined as the fraction of viruses for

which the IC50 is less than a given cutoff, usually set to 1 μg/ml.

The present paper describes a computational method to estimate the breadth of new HIV

antibodies using only the sequence of their heavy and light chains, and the assumption that

Estimation of the breadth of HIV antibodies by molecular modeling and machine learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006954 April 10, 2019 2 / 22

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1006954


they form antibody/antigen complexes that are similar to a known crystal structure of an anti-

body/antigen complex that may not have high sequence homology. Of the known HIV anti-

bodies, we select those that target the CD4 binding site (CD4bs) of the HIV Envelope

glycoprotein, a binding site used by diverse bnAbs [5]. Because the CD4bs is highly conserved,

an HIV vaccine designed to elicit bnAbs that bind to this site would have a high therapeutic

potential: bnAbs would likely recognize the conserved core, as well as the variable regions in

the neighborhood that are required for the broad-based character to develop [8].

However, a major obstacle to a successful computational design of bnAbs is a lack of accu-

rate methods for computing the antibody breadth. Here, we use machine learning [9] coupled

with descriptors obtained from all-atoms models of the antibody/antigen complex to predict

the IC50 values for the viruses in the Seaman panel from which the antibody breadth can be

estimated. To predict the IC50 we use a supervised artificial neural network [10,11], a multi-

layer perceptron (MLP); see Fig 1. The neural network is trained by backpropagation, where

the errors in the outputs are propagated backwards into the artificial network structure to opti-

mize the internal parameters of the model. An essential element for the successful application

of artificial neural networks is the availability of a large data set for training the networks [11].

For HIV, experimental IC50 values have been collected in the CATNAP database of neutraliz-

ing antibodies [12], which contains more than 40000 IC50 values; of these, 6179 satisfy the cri-

teria required for our machine learning approach.

In the body of the paper, we describe training of the MLP to predict either the actual value

of the IC50 (by regression), or whether or not the antibody recognizes the virus (by classifica-

tion). The outputs of the two artificial neural networks are then used to estimate the breadth of

known antibodies. In a Concluding Discussion, we consider the limitation and extension of

the methodology described here, as well as its utility for vaccine design.

Results

Neural network regression model for the IC50

The first step toward the estimation of the breadth of a given antibody is to evaluate the IC50

for the binding of the antibody with all the antigens in the Seaman virus panel [7]. Here, the

IC50 values are estimated using a Neural Network regression model (an MLP regressor),

trained over experimental IC50 values. Experimental values are obtained from the CATNAP

database, which contains a total of about 40000 IC50 values [12]. The values in the database

were filtered to make sure that the amino acid sequences of both the antibody and antigen are

available, that at least one crystallographic structure of the antibody bound to a related HIV

antigen is known, and that the antibody binds to the CD4 binding site (CD4bs). Upon filtering

the database for these attributes, a total of 6179 IC50 values were obtained. Of these, 3864 are

reported as exact values, while the remaining 2315 are reported as “greater than” a given cutoff

(e.g. “>50 μg/ml”); see Table 1. We refer to these as “approximated” values. To train the MLP

regression model, only the 3864 exact values are used; the approximate ones were discarded.

As inputs for the MLP regressor, we use the values of descriptors of the antibody/antigen

bound system obtained from an atomistic model of the complex. A total of 24 descriptors were

tested; they fall into four classes: atomic descriptors, protein/protein scoring functions, protein

stability scoring functions, and entropy models (see Methods). The procedure for building the

model for one antibody/antigen complex and evaluating all the descriptors requires about 13

minutes (see Methods); for evaluating the values of the subset of 19 chosen descriptors only

about 20 seconds are required, once the model has been constructed (see Methods).

For training the MLP regressor the available experimental IC50 values are randomly divided

in half to obtain a training set and a test set. The training is then performed, and the obtained
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neural network used to predict the IC50. The training is repeated 30 times using each time a

randomly generated training and validation set, and the results are averaged over the 30 neural

network results to estimate the error in the predictions.

Fig 1. Generic structure of an Artificial Neural Network. It is composed of an input layer (the Xi nodes) that

contains the descriptors developed for the system being studied, a hidden layer (Hi nodes) that combines non-linearly

the descriptors in the input layer (through a logistic activation function), and an output layer (Y), that again combines

non-linearly the nodes in the hidden layer and produces the output result.

https://doi.org/10.1371/journal.pcbi.1006954.g001
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The correlation between the experimental and computed IC50 is shown in Fig 2 for both the

training and the test sets. The Pearson correlation coefficient for the training set is 0.686

(Spearman coefficient is 0.682). For the test set, the correlation coefficients decrease to 0.410

(Pearson) and 0.408 (Spearman). This is a significant improvement over the use of individual

descriptors, which maximally reach a Pearson correlation coefficient of 0.28; see Fig 3 (last

column).

With these IC50 values, the breadth of known antibodies can be computed and compared

with the experimental values. In the CATNAP database, 24 antibodies have a known sequence

and bind to the CD4bs with a known crystallographic structure; see Table 1. The breadth is calcu-

lated for all of these using the computed IC50 values for the viruses in the Seaman panel. Specifi-

cally, for each virus in the Seaman panel, the IC50 is estimated using the MLP regressor, and the

fraction of viruses for which the IC50 is less than 1 μg/ml is counted. Fig 4 (left) compares the

experimental and computed breadths and their estimated errors (see Methods). For most anti-

bodies the predicted breadth is in reasonable agreement with the experiments, although there is a

tendency to overestimate it. The Pearson correlation coefficient is 0.800 (Spearman is 0.766) indi-

cating a meaningful correlation. The breadth of the antibody CAP257-RH1 is significantly

Table 1. Antibodies studied in this work. The second and third columns report the number of experimental IC50 values available as exact or approximate values. The

fourth column reports the experimental breadth calculated based on the Seaman antigen panel. The number in parenthesis is the number of antigens used to calculate the

breadth (the Seaman panel contains 109 antigens, but the experimental IC50 value is not available for all of them). The fifth column indicates the PDB ID used as the tem-

plate for modeling the antibody/antigen complex. If only one PDB is indicated, that is used for the modeling “as is”. If two are present, the first is used to model the anti-

body, the second for the antigen (after best-fit RMSD superimposition to the antigen in the first PDB). The last three columns report the breadth calculated using the IC50

regressor with and without approximated values and using the IC50 classifier (see text).

Antibody Exact Exact and

approximate

Breadth

(N. Ag)

PDB Calculated Breadth

IC50 regressor w/o approx. IC50 regressor w/ approx. IC50 classifier

12A21 17 26 0.46 (13) 4JPW/5FYJ 0.44±0.14 0.10±0.09 0.38±0.13

1B2530 74 171 0.11 (76) 4YFL/5FYJ 0.05±0.05 0.00±0.00 0.03±0.04

3BNC117 351 444 0.78 (87) 4LSV/5FYJ 0.81±0.05 0.54±0.08 0.80±0.05

8ANC131 136 178 0.32 (76) 4RWY/5FYJ 0.13±0.06 0.03±0.03 0.22±0.09

8ANC134 86 169 0.31 (75) 4RX4/5FYJ 0.15±0.09 0.03±0.03 0.25±0.10

b12 242 690 0.18 (109) 2NY7/5D9Q 0.05±0.03 0.00±0.00 0.03±0.02

b13 18 176 0.03 (76) 2NY7/5D9Q 0.09±0.08 0.00±0.00 0.02±0.02

CAP257-RH1 1 191 0.01 (77) 5T33/5FYJ 0.61±0.30 0.00±0.00 0.00±0.00

CH103 162 191 0.39 (79) 4JAN/5FYJ 0.16±0.09 0.08±0.04 0.39±0.13

CH235 37 196 0.00 (77) 5F9W/5FYJ 0.02±0.02 0.00±0.00 0.00±0.01

CH235.12 174 194 0.64 (77) 5F96/5FYJ 0.20±0.09 0.06±0.05 0.48±0.14

HJ16 87 252 0.16 (97) 4YE4/5FYJ 0.24±0.08 0.00±0.00 0.06±0.06

IOMA 59 117 0.19 (53) 5T3X 0.17±0.10 0.01±0.01 0.10±0.06

N6 341 350 0.97 (76) 5TE6/5FYJ 0.96±0.02 0.89±0.04 0.96±0.03

NIH45-46 222 265 0.77 (86) 3U7Y/5FYJ 0.83±0.06 0.43±0.13 0.81±0.06

VRC01 501 609 0.70 (107) 5FYJ 0.48±0.14 0.21±0.10 0.79±0.08

VRC03 178 318 0.45 (107) 3SE8/5FYJ 0.36±0.09 0.02±0.02 0.28±0.06

VRC06 65 176 0.16 (76) 4JB9/5FYJ 0.27±0.09 0.01±0.01 0.16±0.05

VRC06b 80 174 0.31 (74) 4XNZ/5FYJ 0.35±0.18 0.01±0.02 0.22±0.15

VRC07 353 389 0.84 (87) 4OLU/5FYJ 0.85±0.05 0.69±0.08 0.91±0.04

VRC23 109 175 0.16 (76) 4J6R/5FYJ 0.04±0.02 0.00±0.01 0.05±0.05

VRC-CH31 213 265 0.67 (87) 4LSP/5FYJ 0.58±0.09 0.30±0.09 0.66±0.06

VRC-PG04 220 285 0.64 (86) 3J5M 0.65±0.09 0.31±0.09 0.65±0.06

VRC-PG20 138 178 0.58 (76) 4LSU/5FYJ 0.71±0.06 0.35±0.15 0.75±0.10

Total 3864 6179

https://doi.org/10.1371/journal.pcbi.1006954.t001
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overestimated (experimental is 0.013, computed is 0.61±0.30), but this antibody is the one for

which only a single exact IC50 value is available, and the computed uncertainty is highest.

Given the limited accuracy for the prediction of the IC50 values (Fig 2), this result is particu-

larly encouraging. It indicates a low sensitivity of the breadth to the actual IC50 values. This is

rooted in the definition of the breadth, which does not require the exact value of the IC50, but

only whether the antibody does or does not bind to a given virus.

As a further test, all 6179 experimental values are used in the regression model including

the “greater than” approximate values. For these, the maximum experimental value is used;

e.g. if the IC50 is expressed as>10 μg/ml and>50 μg/ml in two different studies, the value

50 μg/ml is used. The obtained regression model shows an increase in accuracy, in particular

an increase ability in ranking different antibodies (Spearman correlation coefficient increases

from 0.766 to 0.960), but it has a loss in sensitivity for all low-breadth antibodies predicting

zero breadth for most antibodies with experimental breadth less than 0.4; see Fig 4 (center.) As

a result, although the accuracy of the slope is improved, the regression line is shifted to the

right, yielding worse values.

Neural network classifier for the IC50

The breadth can be estimated more directly with an MLP classifier, which is trained to predict

whether the IC50 is less or greater than the 1 μg/ml cutoff. A higher accuracy in the correlation

Fig 2. Correlation between the computed and experimental pIC50 (= −logIC50). Blue dots represent the set of data used to

fit the MLP regressor, the red set represents the validation (or test) set of values. The Pearson correlation coefficient for

training set is 0.686 (Spearman coefficient is 0.682), and it decreases to 0.410 (Spearman 0.408) for the validation set.

https://doi.org/10.1371/journal.pcbi.1006954.g002
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between experiments and predictions is expected, because a classification is a simpler problem

than a regression. The methodology used for the MLP classifier is the same as that employed

for the MLP regressor, except that the whole set of 6179 experimental IC50 values is used; i.e.,

Fig 3. Cross correlation between all descriptors and the experimental IC50 values. The upper triangular reports the

Pearson coefficients, the lower triangular the Spearman coefficients. The last column/row report the correlation with

the experimental values.

https://doi.org/10.1371/journal.pcbi.1006954.g003

Fig 4. Comparison between experiments and predicted neutralization breadth for 24 antibodies evaluated using the IC50 values obtained via the MLP regressor without

approximate values (left), the MLP regressor with approximate values (center), and the MLP classifier (right).

https://doi.org/10.1371/journal.pcbi.1006954.g004
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the 2351 “approximate” values are included. Table 1 lists the antibodies and the number of

“exact” and “approximate” IC50 values available for each.

The correlation between the experimental and the computed breadth using the IC50 classi-

fier is shown in Fig 4 (right). As expected, the results are significantly better than for the MLP

regressor, with the correlation with the experimental breadth increasing from 0.800 for the

regressor to 0.973 for the classifier. Moreover, no outliers are present and the estimated

breadths of all 24 antibodies lie on the diagonal with near unit slope.

The performance of the MLP classifier is evaluated further by the analysis of its confusion

matrix, which contains the percentage of true negative, true positive, false negative and false

positive values. As reported in Table 2, the accuracy in the test set, corresponding to the sum

of true positives and true negatives, is 72.3±1.0, with an almost equal rate of false positive and

false negative of about 13%.

Test of MLP classifier on germline or immature antibodies

Although our primary purpose for developing the MLP classifier is to evaluate antibodies

designed to have increasing breadth (see Concluding Discussion), we decided to determine

whether it could be used to compute the breadth of putative germlines, as compared to the

breadth of the mature antibodies. We consider bnAbs VRC01, NIH45-46 and 3BNC60, for

which the experimental breadths of the mature antibodies are available, see Table 3. For the

putative germlines no experimental breadths are available, but the expected breadth should be

low, as they appears to have no affinity for native HIV antigens [13–15].

The computed breadth values are reported in Table 3. For the mature antibodies the com-

puted values are in good agreement with the experimental data. This is particularly interesting

for the 3BNC60 antibody, for which no published structure of any antibody/antigen complex

is currently available. For this reason, 3BNC60 was excluded from the training of the MLP

regressor and classifier. However, a bound crystallographic structure is available for its puta-

tive germline precursor [16]. Assuming no significant change in the binding pose upon affinity

maturation, the germline crystallographic structure was used for both the mature and germline

antibody. This is likely to be a valid assumption, as indicated by the VRC01 and NIH45-46

Table 2. Confusion matrix for the IC50 classifier. The accuracy (ACC) is defined as the sum of the true positive (TP) and true negative (TN): ACC = TP+TN; the bal-

anced accuracy (BACC) is defined as the average between the true positive divided by total positive samples (P) and true negative divided by total negative (N) samples:

BACC = (TP/P + TN/N)/2.

True

Negative

False

Negative

False

Positive

True

Positive

Accuracy Balanced

Accuracy

Training set: 48.1±1.0 9.6±0.8 8.8±0.9 33.5±1.0 81.6±0.6 81.1±0.7

Validation set: 43.3±1.0 14.0±1.0 13.6±1.1 29.2±0.9 72.5±0.9 71.9±0.9

https://doi.org/10.1371/journal.pcbi.1006954.t002

Table 3. Comparison between calculated and experimental breadths for mature and germline forms of three anti-

bodies. The experimental breadth of the germline antibodies is assumed to be zero (no quantitative data are available).

The intermediate VRC01 antibody is DRVIA7.

Antibody Breadth

Germline Intermediate Mature

Exp. Calc. Exp. Calc. Exp. Calc.

VRC01 (0) 0.45±0.23 0.23 0.45±0.17 0.70 0.79±0.08

NIH45-46 (0) 0.20±0.17 0.77 0.81±0.06

3BNC60 (0) 0.27±0.23 0.78 0.53±0.21

https://doi.org/10.1371/journal.pcbi.1006954.t003
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antibodies for which crystallographic structures are available for both mature and germline

forms bound to an antigen (see PDB 4JPK and 3NGB for VRC01 and 5IGX and 3U7Y for

NIH45-46). The breadth of antibody 3BNC60 is slightly underestimated (0.53±0.21 vs 0.78),

but it also has a higher than usual uncertainty.

For the putative germlines, the calculated breadths range between 0.27 and 0.45. Impor-

tantly, in all cases the breadth of the germline is significantly lower than the breadth of the

mature antibody. This finding is encouraging, because only mature antibodies were used in

the training of the MLP classifier, as no quantitative information for germline binding to HIV

viruses is available in the CATNAP database. The MLP classifier is thus biased towards mature

antibodies.

Finally, we consider the DRVIA7 antibody, which is an immature form of a VRC01-class

antibody [17]. Few experimental IC50 values are available for this antibody; they show a

breadth of about 0.23. The estimated value by modeling is 0.45±0.17, which is again higher

than expected, but lower than the VRC01 mature value (0.79±0.08) and similar to the germline

(0.45±0.23).

Analysis of descriptors used in the MLP classifier

An important aspect in the present application of machine learning for the prediction of anti-

body breadth is the choice of descriptors. The 24 descriptors considered can be broadly

divided into four categories: atomic descriptors such as buried surface area or number of

hydrogen bonds (15 descriptors in total), protein/protein binding affinity measures (4 descrip-

tors: Prodigy, ZRANK, ZRANK2 and DFIRE), protein folding scoring functions (FoldX and

two pairwise statistical potentials: RFHA and RFCB), and entropy models (normal mode

entropy from two different elastic network models: ENM_EXP and ENM_R6); see Methods

for more details. Their relative correlation coefficients and their correlation with the experi-

mental values are reported in Fig 3. As expected, some descriptors are highly correlated with

each other, such as the number of hydrogen bonds evaluated using different definitions, or the

van der Waals energy with the buried solvent accessible surface area.

Selecting too few descriptors would risk making the model less general. Consequently, we

kept a large number of descriptors, using as discriminant the computational cost needed to

evaluate them. From the full set of 24 descriptors, 5 are initially removed due to their computa-

tional cost. The remaining 19 descriptors are all very quick to evaluate, about 20 seconds in

total for one model, obtaining a 12.8x speedup in the calculation of the descriptors with respect

to whole set of 24 descriptors. No decrease in accuracy is observed.

If too many descriptors are used, there is risk of overfitting. This is avoided here by the very

large number of available experimental values. For the MLP classifier 6179 experimental values

are available, half of which are used in the fitting. The MLP classifier with 19 descriptors and

10 hidden nodes contains 200 fitting parameters (see Methods), versus the 3089 (6179/2)

experimental values used in the fitting. A ratio between the number of experimental values in

the training and number of parameters in the model of ten or greater is suggested [11]; here

the ratio is >15. As supporting evidence, Table 2 shows that the accuracy of the MLP classifier

in the training and test sets is similar.

We also studied the effects of the number of descriptors used in the MLP classifier on the

accuracy of the model as measured by the confusion matrix; see Fig 5. Each sample in these

two plots is a different MLP classifier model fitted over a different set of descriptors. The first

graph shows the accuracy of the given model, as measured by the confusion matrix as sum of

the percentages of true positive and true negative, while the second one shows the Pearson cor-

relation coefficients obtained when comparing the calculated and experimental breadths. The

Estimation of the breadth of HIV antibodies by molecular modeling and machine learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006954 April 10, 2019 9 / 22

https://doi.org/10.1371/journal.pcbi.1006954


blue points correspond to models with randomly-chosen descriptors, while the red points rep-

resent models obtained by successively removing the descriptor that is most correlated with all

other descriptors and less correlated with the experimental IC50 (see Methods). The accuracy

starts to decrease significantly when the number of descriptors is less than about 10. The Pear-

son coefficient is more robust and starts decreasing at around 7 descriptors. At this point, the

maximum cross-correlation (Pearson coefficient) between the descriptors is about 0.4. These

data suggest that a simpler model of about 7–10 descriptors could be used, which would have

(approximately) the same accuracy of the 19-descriptors model; see Table 4. As expected from

the earlier analysis, the breadth results converge more rapidly than the accuracy.

This raises the question of which descriptors are most important in the prediction of the

neutralization ability of an antibody. There are a variety of methods to extract descriptor

importance from an artificial neural network, but there is no apparent consensus on which is

better, in particular if the descriptors show a relative high level of cross correlation [18]. How-

ever, it is possible to extract some information from the correlation of the descriptors with the

experimental IC50 values and with the deletion order reported in Table 4. The protein/protein

scoring functions are on average more important than molecular descriptors, in particular the

protein folding propensity descriptors (FoldX) and the two statistical pairwise potentials for

estimating protein stability (RFHA and RFCB). Also, the entropy from elastic network models

(ENM_EXP and ENM_R6) plays an important role, with ENM_EXP the last deleted descrip-

tors with a relatively high correlation with the experiments (0.292 correlation coefficient).

These highlight the importance of entropy in the binding, and the usefulness of complex pro-

tein potentials, with respect to simple molecular descriptors.

MLP classifier generalization ability

An issue in machine learning models is how good they are at generalizing to inputs outside

their training set [11,19,20]. In computational studies about HIV neutralization epitopes it is

relatively common to have one model trained for each antibody under study [21–23]. By

Fig 5. Accuracy (left) and correlation with the experimental breadth (right) obtained for MLP classifier trained with different sets of descriptors. On the abscissa is the

number of descriptors used in each model. Blue points represent randomly generated models (selecting randomly between 1 and 24 descriptors among the 24 available),

red points represent models obtained by systematic reduction of the full 19-descriptors model by successive removal of the most correlated descriptor (the 5 most

computationally expensive descriptors are removed first to bring from 24 to 19 descriptors, and then the most correlated are removed).

https://doi.org/10.1371/journal.pcbi.1006954.g005
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contrast, in this work only one model was trained to predict the neutralization breadth of all

antibodies. We note that our training set did contain some experimental data from each anti-

body under study. This suggests the generalization ability of the model should be examined.

Fig 6 shows how the predicted breadth of each antibody changes when an increasing number

of experimental data relative to that antibody are included in the training set. At zero, no rele-

vant experimental data are included; e.g. for the VRC01 antibody, at zero no experimental

IC50 value of the VRC01 antibody is included in the training set. In these plots, the blue line is

the breath computed using all available experimental data in the training set, while the red line

is the experimental neutralization breadth. Comparing the plots for different antibodies, about

half of them have a good breadth prediction even at zero, and the predicted breadth does not

change significantly upon inclusion of more data; see for examples antibodies 1B2530,

8ANC131, 8ANC134, CH103, VRC01, VRC07, VRC-PG20. For other antibodies the predic-

tion at zero is quite far from the experimental value; e.g. antibodies NIH45-46, CAP257-RH1,

CH235.12, or N6. However, all these antibodies converge to the correct experimental value

when a relatively small number of experimental values are included in the training set, usually

between 10 and 20, relative to the total number of values available (see Table 1). The Pearson

correlation coefficient between the computed and experimental breadth is 0.50 for the classi-

fier with zero experimental data when all but 4 out of the 23 antibodies studied are included in

the analysis (excluded antibodies are N6, CAP257-RH1, CH235.12 and NIH45-46, which have

the highest error in the computed breadth). When the entire set of antibodies is considered,

the correlation coefficient is 0.14; including just one experimental value per antibody, the Pear-

son coefficient increases to 0.54, and it reaches 0.90 when including only four experimental

values. Another point to consider is that the good results obtained for some antibodies are due

to their close similarity to other antibodies in the training set; e.g. the 8ANC131/8ANC134

pair and the VRC01/VRC07 pair. These results show that the neural network model is able to

Table 4. Successive simplification of the 19-descriptors neural network model by elimination of the highest correlated descriptors. The first column contains the

number of descriptors in the current model. Columns two and three list the two descriptors with the highest pairwise correlation coefficient, which is reported in the fourth

column. The correlations with the experimental IC50 values are reported next. The last column reports the descriptor which is deleted.

No. of descriptors Highest correlation between Correlation Correlations with

experiments are

Descriptor deleted

19 MD_h1 MD_h2 0.964 0.028 0.057 MD_h1

18 ZRANK ZRANKr 0.845 0.022 0.175 ZRANK

17 ENM_EXP ENM_R6 0.833 0.292 0.239 ENM_R6

16 ZRANKr DFIRE 0.731 0.175 0.044 DFIRE

15 IC_CP RFCB 0.675 0.185 0.242 IC_CP

14 RFHA ZRANKr 0.642 0.286 0.175 ZRANKr

13 MD_h2 IC_CC 0.632 0.057 0.041 IC_CC

12 MD_sasa ENM_EXP -0.590 0.094 0.292 MD_sasa

11 RFCB RFHA 0.573 0.242 0.286 RFCB

10 IC_AP IC_AC -0.549 0.158 0.124 IC_AC

9 IC_AA RFHA -0.488 0.087 0.286 IC_AA

8 IC_PP ENM_EXP 0.426 0.196 0.292 IC_PP

7 RFHA NIS_A 0.407 0.286 0.116 NIS_A

6 ENM_EXP RFHA 0.401 0.292 0.286 RFHA

5 ENM_EXP NIS_C -0.185 0.292 0.056 NIS_C

4 MD_h2 MD_h3 -0.154 0.057 0.084 MD_h2

3 IC_AP ENM_EXP 0.113 0.158 0.292 IC_AP

2 MD_h3 ENM_EXP 0.028 0.084 0.292 MD_h3

https://doi.org/10.1371/journal.pcbi.1006954.t004
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predict accurate values for the breadth in instances when a small number of experimental data

for the antibody under study, or a close relative, are included in the training set.

Comparison with other machine learning techniques

It is of interest to compare the results from MLP classifier used here with other machine learn-

ing techniques. We compared the Neural Network with one hidden layer used in this paper

with a Neural Network with two hidden layers, k-nearest neighbors (kNN) [24], random for-

ests (RF) [25,26], and Support Vector Machine (SVM) [27]; see Methods. All methods produce

very similar results, in both the correlation with the experimental breadths and the estimated

error in the single breadth values; see Table 5. This is supporting evidence of the robustness of

the results obtained with the MLP. Moreover, it suggests that to improve the results new infor-

mation about the system needs to be introduced, e.g. in the form of different descriptors.

Discussion

To the best of our knowledge, we report in this paper the first attempt to estimate the breadth

of HIV antibodies by the use atomistic modeling and machine learning techniques. We devel-

oped a method based on a Multi-Layer Perceptron (an artificial neural network), which is able

to accurately reproduce and predict the breadth of CD4bs targeting HIV antibodies.

For the development of such a model, many experimental IC50 values to train the neural

networks have to be available. Here we used experimental IC50 values from the CATNAP data-

base [12]. After cleaning and filtering the data, 6179 IC50 values were obtained for the training

of the classifier and 3864 for the regressor. These significantly outnumber the number of

parameters in the neural network (200), reducing the possibility of overfitting. For best results,

a small number of experimental values specific for the antibody under study, or a related anti-

body, need to be present in the training set. For the application of the same techniques to dif-

ferent HIV binding sites or different viruses, such as influenza, sufficient high-quality

experimental data would have to be collected and validated.

An important concern in any HIV model is the glycosylation of the virus since the HIV

Envelope protein is heavily glycosylated. In the CD4bs, the focus of this work, there are at least

Fig 6. Computed breadth for the 24 antibodies studied in this work as a function of the number of experimental IC50 values for that particular

antibody used in the training of the MLP classifier. The blue line is the computed breadth using all available experimental data in the training set,

the red line is the experimental breadth. The graphs are shown up to 50 included experimental data, the total number of available experimental data is

reported in Table 1.

https://doi.org/10.1371/journal.pcbi.1006954.g006

Table 5. Comparison of the MLP classifier results with other machine learning techniques: MLP classifier with two hidden layers, Random Forests (RF with 31

trees), Supported Vector Machine (SVM with radial basis function kernel), and k-nearest neighbors (with 15 neighbors and weights assigned inversely proportional

to the distance). The reported data are the accuracy of the classifier (from the confusion matrix), and the Pearson, Spearman, slope and intercept for the correlation of the

calculated and experimental breadths.

Method Accuracy Breadth correlation

rp rs Slope Intercept

MLP classifier

(1 hidden layer)

72.5±0.9 0.973 0.979 1.11 -0.079

MLP classifier

(2 hidden layers)

72.5±0.8 0.969 0.979 1.167 -0.081

Random Forest (31) 75.5±0.6 0.969 0.973 1.151 -0.104

SVM (rbf) 76.0±0.6 0.909 0.935 1.424 -0.216

K-nearest neighbors

(15, distance)

75.5±0.7 0.979 0.984 1.225 -0.097

https://doi.org/10.1371/journal.pcbi.1006954.t005
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five glycans (N197, N234, N276, N363, and N462) that can interact, and interfere, with the

antibody binding. One glycan, N276, is particularly problematic in a comparison between

germline and mature antibodies, as it has been observed that mature antibodies, like VRC01,

introduce deletions or mutations to glycine in CDRL1 to avoid clashes and to accommodate

the glycan [28,29]. This could be a major reason why the current model overestimates the

breadth of putative germlines.

The tools presented here are important for the computational design and screening of

potential HIV antibodies. The usual focus in antibody design is in the optimization of the

potency and specificity for a particular antigen [30]. As pointed out in the Introduction, this is

only one part of the problem for highly mutable virus like HIV, for which the exposed antigens

have a high variability, so that bnAbs are required. Thus, it is important to couple the calcula-

tion of the potency with an estimation of the breadth.

The present technique for estimating antibody breadth based on IC50 values could prove

useful in the computational design of vaccination protocols to elicit HIV bnAbs. Promising

computational/theoretical approaches for the design of vaccination strategies include a

description of the affinity maturation (AM) process [31,32]. This is achieved by simulating

how antibodies mutate during the AM from the germline precursors to the mature antibodies.

One essential step in these simulations is evaluating the breadth of the produced antibodies.

Since the method described here requires as inputs only the sequence of the antibody and a

template for the bound structure, it is likely to be a useful part of the design process. Moreover,

the techniques developed here can, in principle, be applied to other highly variables viruses for

which a definition of antibody breadth is important, such as influenza or hepatitis C viruses, if

sufficient experimental neutralization data are available for training the models. From prelimi-

nary examination of the literature, this appears to be true at least for influenza.

An alternative perspective is to consider the evaluation of the breadth from the antibody/

antigen binding affinity, see S1 Appendix. This requires an accurate, relatively rapid, method

for the calculation of the binding affinity. Research on developing such a methodology is in

progress [33]. The use of the “free energy of binding breadth”, rather than the “IC50 neutraliz-

ing breadth”, would, in principle, bypass the need for machine learning techniques.

Methods

First, the source of experimental IC50 values used in the training of the neural network is

described. Then, the procedure to create an atomistic model of antibody/antigen complexes is

presented, followed by the computation of all molecular descriptors derived from the atomistic

models. The computational cost of creating the models and evaluating the descriptors is then

reported. The final section is dedicated to the details of the neural network models.

Experimental IC50 database

To calculate the breadth of an antibody, the IC50 values for the antigens in the virus panel are

required. In this work the experimental IC50 are used to both calculate the experimental

breadth and to train a neural network (see below) to predict the IC50 values and breadth of

new antibodies.

Experimental values of the IC50 for different antibody/antigen complexes were obtained

from the CATNAP database [12] (accessed on March 5, 2018). The IC50 values are presented

in the database in two forms. If available, the exact value is reported; if the complex has a low

binding affinity, the exact value is not available, and the IC50 is reported to be greater than a

given cutoff, e.g. “IC50>50μg/ml”. The full database contains information for 1024 HIV viruses

and 334 antibodies, for a total of 23851 exact and 16467 approximate IC50 values (most
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antibodies are tested on different viruses). Of interest in this work are antibodies binding on

the CD4bs. Because our method requires atomistic models of the antibody/antigen complex,

IC50 values are selected such that the binding is at the CD4bs (based on known crystallographic

structures of the bound antibody/antigen complex), the amino acid sequences of both the anti-

body and the antigen are known, and at least one crystallographic structure of the complex is

experimentally available. After applying these filters, 24 antibodies (over the 334 available) are

selected, for which a total of 3864 exact and 2315 approximate IC50 values are available; see

Table 1.

Creating 3D atomistic models

The protocol described in this work requires building of atomistic models for arbitrary anti-

body/antigen complexes and computing molecular descriptors to train the neural network

models. The first task is to build a full 3D atomistic model of the antibody/antigen complex

given only the sequences of the two proteins. A requirement is to have a template of the com-

plex, which is used for homology modeling. We select one template for each antibody, neglect-

ing differences in the antigens. The underlying assumption is that the binding mode of a given

antibody to any antigen is very similar and can be approximated to be constant. Moreover, the

structure of the antigen is assumed to be conserved over the sequence space. This is not gener-

ally true for antigens with significant insertion or deletions in their (hyper)variable loops.

Because we focus on the CD4bs, the assumption is reasonable. Crystallographic structures of

antibody/antigen complexes were used as templates for the 24 antibodies. In most cases, the

antibody was not bound to naturally-occurring antigens, but to engineered monomeric

(gp120) domains. In these cases, the engineered protein was substituted with the BG505

SOSIP structure (PDB 5FYJ) using best-fit RMSD alignment for the superimposition. The

PDB codes used for each antibody are reported in Table 1.

Given the sequences of the antigen and the antibody and a template crystallographic struc-

ture for the complex, Modeller [34] was used to create a model of the complex. The structure

was then refined by CHARMM [35], including adding missing hydrogen atoms, creating

disulfide bonds, and minimizing the all-atom structure by 100 steps steepest descent. The sys-

tem was then further minimized using OpenMM [36] until the potential energy was changing

by less than 1 KJ/mol. The CHARMM36 force field [37] was used for the all-atoms energy

minimizations. In the modeling, only one monomer of the Env gp160 trimer was built, the

gp41 deleted, and only the variable part of the antibody was kept. Glycosylation was not

included.

Molecular descriptors

The optimized structure obtained by molecular modeling (see previous paragraph) was used

for the computation of all descriptors to train the neural networks. 24 molecular descriptors

were computed. These are divided in four main classes: atomic descriptors, protein/protein

binding scoring functions, protein stability scoring, and entropy models.

As “atomic descriptors” we consider descriptors that are simple function of the atomic

coordinates. The two most obvious are the electrostatic (Coulomb) interaction between the

antibody and the antigen (E_elec) and the dispersive (Lennard-Jones) interaction (E_vdw).

These are modeled according to the CHARMM36 force field [37] and computed using

OpenMM [36]. To approximate the solvation of the protein, the GBn2 [38,39] generalized

Born implicit model was used as third descriptor (E_gbsa). No cutoff in either electrostatic or

dispersion force was used. Other used descriptors are the buried surface area [40] (MD_sasa)

upon binding, the number of hydrogen bonds according to Baker & Hubbard [41] (MD_h1)
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and according to Wernet, Nilsson et al. [42] (MD_h2) definitions, and hydrogen bond energy

according to Kabsch & Sander [43] (MD_h3). These four descriptors were computed using the

MDTraj [44] python module. To these, the number of interchain contacts classified according

to polarity and charge are added (a total of six descriptors: IC_AA, IC_PP, IC_CC, IC_AP,

IC_CP, IC_AC), as well as the apolar and charged non-interacting surface area (NIS_A and

NIS_C). These last eight descriptors were computed using Prodigy [45].

More complex descriptors are scoring functions developed for estimating the binding affin-

ity of two proteins. These methods have been developed to score binding modes in protein/

protein docking software. Here, they are not used as independent scoring functions (as origi-

nally intended), but as descriptors. The used methods are: Prodigy [45], ZRANK [46],

ZRANKr [47,48], and DFIRE [49].

The third class of descriptors consists of scoring functions optimized to reproduce the fold-

ing propensity of a protein or its stability. With these scoring functions, the binding affinity

can be estimated as the difference between the “stability” of the complex and that of the sepa-

rated antibody and antigen. The methods tested are: FoldX [50,51] (sidechains are optimized),

and two pairwise statistical potentials (RF_HA_SRS and RF_CB_SRS_OD) [52,53].

The fourth class of descriptors contains two methods used to estimate the entropy change

upon binding. Two classical approaches to evaluate the entropy of a macromolecule are the

use of the normal mode analysis (NMA) or quasi-harmonic (QHA) [54]. Neither of these can

be used here directly: NMA requires that the structure is at an energy minimum, and QHA

requires a large ensemble of structures. Alternatives are Elastic Network Models (ENM)

[55,56]. In these models, the protein is modeled as a set of atoms interconnected by elastic

springs, which vibrate around the given input structure. The total energy E of the system is

obtained as sum of pairwise potentials, each acting between a pair of atoms whose distance is

under a given cutoff: E = ∑ijk(d0)�(dij−d0)2. The sum is over all pairs of atoms ij, dij is the dis-

tance between them, d0 is the reference distance (from the input structure), and k(d0) is the

force constant. k(d0) can take different expressions. The first developed used a constant for

each pairs under a given distance cutoff [55]. More accurate models use force constants that

depend on the reference distance d0. In this paper two expressions are tested. In the first

(ENM_EXP) the force constant decreases exponentially with d0: k d0ð Þ ¼ aexp d0

r

� �2
h i

, with

r = 7Å [57]. In the second (ENM_R6), the force constant decreases proportionally to d� 6
0

:

kðd0Þ ¼ ad� 6
0

[58]. In both cases an arbitrary proportionality constant a has to be set. Here the

value of 1000 is used (in arbitrary units). A 100-fold increase in the force constant caused no

significant change in the results. From the energy expression, the Hessian matrix can be calcu-

lated, and, upon diagonalization of the mass-weighted Hessian matrix, the normal frequencies

are obtained, and from them the harmonic entropy. These calculations are fast and do not

require energy minimization as the input structure is considered to be the minimum.

A problem with most of the descriptors used in this work is their high sensitivity to the val-

ues of the atomic coordinates. To alleviate this problem, six models for each complex are gen-

erated with Modeller using random initial seeds, and the descriptors are averaged over the six

models.

Timing

An important factor to consider when designing and choosing descriptors to use in neural net-

works and regressor models is the computational cost, or timing, needed to compute them. In

this work, two are the main steps: first, generate the 3D atomistic model; second, compute all

the descriptors.
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As described above, preparation of the atomistic model consists of three steps. Modeller

takes on average 69 seconds to generate one model. CHARMM, used to fix the structure and

run a quick minimization takes an insignificant amount of time. A deeper energy minimiza-

tion with OpenMM takes on average 37 seconds. A total of about 100 seconds are thus needed

to generate one model.

The time required for each descriptor varies significantly. Most descriptors are computed

almost instantaneously, requiring one second or less. There are three exceptions: evaluating

the OpenMM-based descriptors (electrostatic, dispersive and generalized born energies) takes

about 51 second per model, the ENM entropy takes 15 seconds, and FoldX is the slowest

descriptor used, requiring 233 seconds on average. Computing all descriptors requires about 5

minutes. Skipping FoldX and OpenMM (the two most expensive steps) decreases the time

from 5 minutes to 20 seconds.

These timings are for one single model. For each antibody/antigen complex six models are

used, and the descriptors are averaged. This means that to create the six models 10.6 minutes

are required, and to get all the descriptors, an additional 30.8 minutes are needed, for a total of

41 minutes. Without FoldX and OpenMM, the timing for the descriptors decreases to 2.4 min-

utes, reducing the total time to about 13 minutes.

Neural network models

To predict the IC50 values a Multi-Layer Perceptron regressor (MLP regressor) is used. This

type of artificial neural network takes as input a number of descriptors, parse them in a hidden

layer composed, in this case, of ten nodes, and outputs the predicted IC50 value. For the train-

ing, the 3864 exact IC50 values are split randomly in half into a training set and a validation set.

The total number of parameters Np to fit in the MLP is given by Np = NiNh+NhNo where Ni,

Nh, and No are the number of input descriptors, hidden nodes, and outputs. Using 19 descrip-

tors, and requiring one output (the IC50 value), the total number of parameters to fit is 200. As

an empirical rule, the ratio between the available experimental values used in the training and

the number of parameters to fit has to be much greater than one. In our case, the number of

experimental IC50 values used for the training is 3864/2, which is 9 times higher than the num-

ber of parameters to fit. A logistic activation function is used in the hidden nodes, and the

lbfgs solver is used for optimization. Fig 3 shows the cross correlation between all descriptors

and the experimental IC50 values.

A similar artificial neural network is used to predict whether the IC50 is less or greater than

the experimentally-derived 1 μg/ml cutoff, which is used to calculate the antibody breadth. In

this case, a Multi-Layer Perceptron classifier (MLP classifier) is trained instead of a regressor

on the same set of descriptors. The same settings as for the MLP regressor were used, with the

only difference that the output is filtered with a logistic function to be between 0 and 1. Here

the total number of experimental values is 6179. Of these, 3089 are randomly selected and used

to train the model. The ratio between the number of experimental values in the training (3089)

and the number of parameters (200) is more than 15, decreasing the chance of overfitting.

Table 6 compares the composition of the full dataset and a randomly generated set containing

50% of the values. All antibodies are represented in the training set, with the same percentages

of binders and not-binders as in the whole set.

It was observed that the outputs of both the MLP regressor and MLP classifier would

change, in some cases significantly, upon repeated training using different random splitting of

the experimental values into training and validation sets, and upon fitting the neural networks

using different random seeds. For this reason, we average over 30 independently generated

neural networks using each time a new splitting of the training and validation set and a new
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Table 6. Composition of the IC50 database used to train the IC50 classifier. One set of data is available for each antibody: the line “All” indicates the statistics for the

whole data set, “Random” for a randomly generated set of containing 50% of the data. Count is the number of complexes containing that antibody, with percentages rela-

tive to the full data set. “Bind” and “Not bind” are the numbers (percentages) of complexes for which binding and no binding is detected.

Antibody Data set Count (%) Bind (%) Not bind (%)

VRC01 All 609 (9.9%) 363 (59.6%) 246 (40.4%)

Random 297 (9.6%) 172 (57.9%) 125 (42.1%)

b12 All 690 (11.2%) 81 (11.7%) 609 (88.3%)

Random 362 (11.7%) 37 (10.2%) 325 (89.8%)

VRC03 All 318 (5.1%) 111 (34.9%) 207 (65.1%)

Random 159 (5.1%) 47 (29.6%) 112 (70.4%)

N6 All 350 (5.7%) 332 (94.9%) 18 (5.1%)

Random 186 (6.0%) 179 (96.2%) 7 (3.8%)

3BNC117 All 444 (7.2%) 300 (67.6%) 144 (32.4%)

Random 192 (6.2%) 135 (70.3%) 57 (29.7%)

b13 All 176 (2.8%) 4 (2.3%) 172 (97.7%)

Random 79 (2.6%) 2 (2.5%) 77 (97.5%)

NIH45-46 All 265 (4.3%) 193 (72.8%) 72 (27.2%)

Random 127 (4.1%) 100 (78.7%) 27 (21.3%)

VRC07 All 389 (6.3%) 312 (80.2%) 77 (19.8%)

Random 197 (6.4%) 150 (76.1%) 47 (23.9%)

VRC-CH31 All 265 (4.3%) 167 (63.0%) 98 (37.0%)

Random 117 (3.8%) 75 (64.1%) 42 (35.9%)

VRC-PG04 All 285 (4.6%) 173 (60.7%) 112 (39.3%)

Random 139 (4.5%) 82 (59.0%) 57 (41.0%)

CH103 All 191 (3.1%) 86 (45.0%) 105 (55.0%)

Random 103 (3.3%) 49 (47.6%) 54 (52.4%)

CH235 All 196 (3.2%) 2 (1.0%) 194 (99.0%)

Random 105 (3.4%) 0 (0.0%) 105 (100.0%)

CH235.12 All 194 (3.1%) 112 (57.7%) 82 (42.3%)

Random 109 (3.5%) 61 (56.0%) 48 (44.0%)

IOMA All 117 (1.9%) 17 (14.5%) 100 (85.5%)

Random 64 (2.1%) 9 (14.1%) 55 (85.9%)

1B2530 All 171 (2.8%) 29 (17.0%) 142 (83.0%)

Random 80 (2.6%) 9 (11.2%) 71 (88.8%)

8ANC131 All 178 (2.9%) 52 (29.2%) 126 (70.8%)

Random 89 (2.9%) 27 (30.3%) 62 (69.7%)

8ANC134 All 169 (2.7%) 48 (28.4%) 121 (71.6%)

Random 90 (2.9%) 27 (30.0%) 63 (70.0%)

CAP257-RH1 All 191 (3.1%) 1 (0.5%) 190 (99.5%)

Random 91 (2.9%) 1 (1.1%) 90 (98.9%)

HJ16 All 252 (4.1%) 39 (15.5%) 213 (84.5%)

Random 133 (4.3%) 23 (17.3%) 110 (82.7%)

VRC06 All 176 (2.8%) 24 (13.6%) 152 (86.4%)

Random 95 (3.1%) 11 (11.6%) 84 (88.4%)

VRC06b All 174 (2.8%) 51 (29.3%) 123 (70.7%)

Random 93 (3.0%) 24 (25.8%) 69 (74.2%)

VRC23 All 175 (2.8%) 29 (16.6%) 146 (83.4%)

Random 90 (2.9%) 16 (17.8%) 74 (82.2%)

VRC-PG20 All 178 (2.9%) 113 (63.5%) 65 (36.5%)

Random 79 (2.6%) 56 (70.9%) 23 (29.1%)

(Continued)
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random seed in the training. The standard deviation between the 30 replicas is used as an esti-

mate of the statistical error.

To select which descriptors to use in the neural network, the first criterium was to keep the

scoring function as fast as possible, avoiding the more computationally expensive OpenMM

energy-based terms and FoldX. Removing these four descriptors does not cause a decrease in

accuracy, while reducing the required time by a factor of 12.8. Prodigy was also removed, as it

is a linear combination of other descriptors (no effect is observed in the accuracy after

removal). This way, the number of descriptors used decreases from 24 to 19 without loss in

accuracy. To study the performance of simplified models including fewer descriptors, the

models are sequentially simplified by removing the highest correlated descriptor. To do this,

the cross-correlation matrix with all descriptors is analyzed to find the pair of descriptors with

the highest correlation among themselves; see Fig 3. The descriptor with the lowest correlation

with the experimental IC50 values is removed. The process is repeated until only one descriptor

is present. The list of descriptors which are deleted at each step (and their correlation coeffi-

cients) are reported in Table 4. All descriptors are normalized to zero mean and unit variance

(standard scaler).

To verify the robustness of the neural network, the same analyses were repeated using other

machine learning methods: k-nearest neighbors (kNN) [24], random forests (RF) [25,26], and

support vector machine (SVM) [27]. First, the MLP were compared with a second MLP con-

taining two hidden layers instead of one. Having observed the same results, it was compared

with a kNN (with distance weighting), a RF (composed of 31 trees) and a SVM (with radial

basis function kernel) and no significant improvement was observed with any of them.

All machine learning methods (MLP, kNN, RF, SVM) and the standard scaler are used as

implemented in the scikit-learn [59] python module.
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