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Abstract 

Background:  Trypanosoma cruzi and Trypanosoma brucei are protozoan parasites causing Chagas disease and African 
sleeping sickness, displaying unique features of cellular and molecular biology. Remarkably, no canonical signals for 
RNA polymerase II promoters, which drive protein coding genes transcription, have been identified so far. The second‑
ary structure of DNA has long been recognized as a signal in biological processes and more recently, its involvement 
in transcription initiation in Leishmania was proposed. In order to study whether this feature is conserved in trypano‑
somatids, we undertook a genome wide search for intrinsic DNA curvature in T. cruzi and T. brucei.

Results:  Using a region integrated intrinsic curvature (RIIC) scoring that we previously developed, a non-random 
distribution of sequence-dependent curvature was observed. High RIIC scores were found to be significantly cor‑
related with transcription start sites in T. cruzi, which have been mapped in divergent switch regions, whereas in T. 
brucei, the high RIIC scores correlated with sites that have been involved not only in RNA polymerase II initiation but 
also in termination. In addition, we observed regions with high RIIC score presenting in-phase tracts of Adenines, in 
the subtelomeric regions of the T. brucei chromosomes that harbor the variable surface glycoproteins genes.

Conclusions:  In both T. cruzi and T. brucei genomes, a link between DNA conformational signals and gene expression 
was found. High sequence dependent curvature is associated with transcriptional regulation regions. High intrinsic 
curvature also occurs at the T. brucei chromosome subtelomeric regions where the recombination processes involved 
in the evasion of the immune host system take place. These findings underscore the relevance of indirect DNA read‑
out in these ancient eukaryotes.
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Background
Trypanosoma cruzi and Trypanosoma brucei (family 
Trypanosomatidae, order Kinetoplastida) are flagellated 
protozoan parasites that cause Chagas disease and Afri-
can sleeping sickness, respectively. They infect the poor-
est rural populations in developing countries in tropical 
and subtropical regions leading to tens of thousands of 
human deaths every year [1].

Although trypanosomes share many characteristics at 
the molecular and biochemical levels, they exhibit dif-
ferent life cycles. T. cruzi has a complex life cycle alter-
nating between two extracellular forms in the triatomine 
insect: the epimastigote and the infective metacyclic try-
pomastigote, and two forms in the mammalian host: the 

intracellular amastigote and the infective bloodstream 
trypomastigote. In contrast, T. brucei is exclusively extra-
cellular, alternating between the procyclic form in the 
tsetse fly and the bloodstream form in the mammalian 
host [2]. In order to evade the immune system, T. brucei 
forms a dense coat of variant surface glycoproteins (VSG) 
that are expressed one at a time from telomeric expres-
sion sites and are derived from a repertoire of up to 2000 
genes [3, 4]. The high expression of a single VSG gene is 
carried out by an RNA polymerase I (RNAPI) capable of 
high transcription initiation rates [5]. This mRNA synthe-
sis property by RNAPI is one of the molecular character-
istics that distinguish this parasite from other eukaryotic 
organisms. Recently, we determined that the eukaryotic 
conserved intrinsic curvature, which is a characteristic 
of the RNAPI core promoters, is present not only at the 
rDNA loci of T. brucei, T. cruzi and Leishmania but also 
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within RNAPI promoters involved in transcribing pro-
tein coding genes in T. brucei (VSG and procyclins) [6].

Trypanosomes have additional unique gene organiza-
tion and expression features, including the organization 
of genes in directional clusters, the constitutive tran-
scription of large polycistronic gene units, the ampli-
fication of genes in response to environmental stimuli, 
the trans-splicing of mRNAs, the extensive editing of 
mitochondrial transcripts [7, 8] and the dependence on 
post transcriptional regulation mechanisms to coordi-
nate gene expression [2, 9]. Subtelomeric regions are 
composed of variable repetitive elements and contain 
genes involved in antigenic variation in T. brucei or genes 
encoding surface antigens in T. cruzi [10, 11]. The hyper-
modified base J (β-d-Glucopyranosyloxymethyluracil), 
predominantly present in repetitive DNA sequences in 
telomeres and subtelomeres of trypanosomatids, has 
been more recently localized in RNA polymerase II tran-
scription initiation and termination sites [12]. Canonical 
signals for RNA polymerase II promoters have only been 
described for the genes encoding the spliced leader (SL), 
a small RNA added by trans-splicing to all the protein 
coding genes [13]. Nonetheless, transcription starting 
sites (TSS) [14, 15] and histone variants implicated in the 
initiation process [16, 17] have been described mainly at 
the strand switch regions (SSRs) that separate the heads 
of the polycistronic gene units, named divergent SSRs 
(DSSRs). On the contrary, the SSRs that separate the tails 
of the polycistronic gene units, named convergent SSRs 
(CSSRs), have been shown to preferentially contain sites 
of transcription termination as well as polymerase III 
transcribed tRNA genes [15, 18]. Transcription also ter-
minates and initiates at internal TSSs, where transcrip-
tion of an upstream polycistronic unit terminates and 
transcription of a downstream polycistronic unit on the 
same strand initiates [17, 19, 20]. A bias in poly-dinucleo-
tides abundance has also been reported for those regions 
[21]. A link between transcription and DNA replication 
has been recently described in T. brucei [22]. In spite of 
the important insights achieved (reviewed in [23]), the 
molecular signals underlying these processes remain 
mostly under investigation [24, 25].

Intrinsically curved DNA structures are often found 
around origins of DNA replication, DNA recombina-
tion loci and in regions that regulate transcription. In 
eukaryotes, this feature is common not only to the pro-
moters of genes transcribed by RNA polymerase I, but 
also to many promoters of RNA polymerase II (reviewed 
in [26]). We have previously reported an association of 
transcription start sites with regions of high regional 
integrated intrinsic curvature (RIIC) score in Leishma-
nia [27]. Though differences between trypanosomes and 
Leishmania, due to different base composition content 

and derived intrinsic curvature (IC) may exist, here we 
studied whether high RIIC regions could also be associ-
ated to a biological phenomenon in T. cruzi and T. brucei. 
We found that high RIIC scores were indeed associated 
with regions involved in transcriptional regulation, such 
as DSSRs in T. cruzi and regions enriched in base J in 
T. brucei. A concentration of high curvature regions in 
the T. brucei subtelomeres, overlapping regions of silent 
VSGs, was also observed, and a canonical signal for DNA 
bending consisting on A tracts repeated in phase was 
discovered therein. Our findings suggest a link between 
DNA conformational signals and gene expression in 
trypanosomes.

Results
Since we have previously shown that sequence-depend-
ent DNA curvature may have a role in transcription ini-
tiation in Leishmania [27], we investigated its genomic 
distribution in the related trypanosomatid parasites T. 
cruzi and T. brucei. The T. cruzi CL Brener Esmeraldo-
like haplotype [11] and the T. brucei 11 Megabase-sized 
chromosomes [28] were used. Among the various pro-
grams to determine sequence dependent DNA curvature 
in silico, we selected the bend.it calculation because it is 
based on multiple dinucleotide and trinucleotide models 
[29]. The output consists on predicted curvature angles 
per helical turn of the double helix (degrees/hel. turn) for 
each nucleotide calculated on short DNA windows which 
slide along each chromosome sequence. An initial DNA 
curvature analysis was carried on both genomes as previ-
ously described [30]. Concurrently, we analyzed genomic 
curvatures using the RIIC scoring function we previously 
developed, that specifically finds regions that accumulate 
curved sites [27]. A sample distribution of regions of high 
sequence-dependent curvature using both approaches 
for T. cruzi chromosome 9 and T. brucei chromosome 5 is 
shown in Fig. 1 (see Additional file 3: Figure S1 and Addi-
tional file  4: Figure S2 for all the T. cruzi and T.  brucei 
chromosomes, respectively. Wiggle format files contain-
ing the positions and magnitude of plotted intrinsic cur-
vature are provided as Additional file 2). While in T. cruzi 
the high RIIC regions are apparently associated with 
strand switch regions, this observation is not so obvious 
for T. brucei. Nevertheless, it seems that also in T. brucei, 
regions of high curvature are not randomly distributed. 
Indeed, a clear concentration of regions of high curvature 
can readily be observed at subtelomeric positions.

In order to explore the correlations of high RIIC with 
SSRs in T. cruzi, a necessary first step consisted of iden-
tifying SSRs in the T. cruzi genome. We restricted the 
definition of SSRs to those separating polycistronic units 
containing at least six CDSs and excluded SSRs con-
taining sequencing gaps. Using these stringent criteria, 
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we identified 115 SSRs. Following a scan of the T. cruzi 
genome for high RIIC regions, we computed their over-
lap with the two types of SSRs (Fig. 2). An association of 
high RIIC scoring regions and DSSRs was found (72% of 
the 68 considered DSSRs) being this association specific 
(Fisher’s test P < 0.0001, Matthews’ correlation coefficient 
of 0.33). In contrast, only 19% of CSSRs (9 out of 47) were 
associated with high RIIC scoring regions (not significant 
Fisher’s test, Matthews’ correlation coefficient of 0.005).

The availability of genome-wide epigenetic data asso-
ciated with transcription starting sites such as modified 
histones [17], enabled us to directly perform a correla-
tion analysis of genome wide putative TSSs with high 
RIIC in T. brucei, instead to correlate just with DSSRs. 

So, the number of regions associated with the H4K10ac 
marker and the extent of their overlap with regions of 
high RIIC were analyzed (Additional file 1: Table S1 and 
Additional file 5: Figure S3). Only 34.4% (43 out of 125) of 
the regions associated with peaks of H4K10ac overlapped 
with high RIIC. In addition, the univocal association of 
high RIIC to peaks of H4K10ac is questioned by the great 
abundance of high RIIC regions not associated with this 
marker (73.3%, 118 out of 161). This yields a non-sig-
nificant association for most chromosomes (Fisher test 
p  <  0. 1) and in addition, the global Matthews’ correla-
tion coefficient in this case is only 0.16, while in Leish-
mania it reaches 0.78 [27]. Since a role for the base J in 
global transcription by RNA polymerase II as well as at 
telomeric expression sites involved in antigenic variation 
has been proposed in T. brucei [12, 31], we compared its 
location with the high RIIC regions’ profile (Additional 
file 1: Table S1 and Additional file 5: Figure S3). Figure 3 
shows a representative profile. Globally, a statistically sig-
nificant overlap of core genome base J containing regions 
(47.9%, 101 out of 211) with regions of high RIIC was 
observed and only few of the regions with high RIIC were 
not associated with base J (37.3%, 60 out of 161) (Fisher’s 
test P  <  0.0001 and Matthews’ correlation coefficient of 
0.42).

The striking concentration of high IC at subtelomeric 
regions prompted us to look at these regions in detail. 
These regions which inactive VSG genes and pseudogenes, 
are characterized by a high content of repetitive sequences 
[32]. Manual inspection of these high IC sequences 
revealed that they do not correspond to direct or inverted 
repetitive DNA sequences. This result prompted us to 
investigate the presence of a sequence motif in the VSG 
region that would explain the high concentration of 
sequence-dependent curvature. A pattern of two runs 
of 4–6 adenine tracts separated by 10 bp constituted the 

Fig. 1  Graphical representation of sequence dependent curvature. A schematic representation of the indicated trypanosomatid chromosomes are 
presented. Upper panel: Bar plots of chromosome positions with an IC value greater than 13  per helical turn. Middle panel: bar plots of chromo‑
some positions with an RIIC value greater than the selected cutoff. Lower panel: both DNA strands are depicted in grey, overlaid with CDS features 
shown in blue. Features labeled as ncRNA, snRNA or snoRNAs are shown in green. tRNAs are shown in red. Assembly gaps are shown in brown. For 
T. brucei chromosome 5 subtelomeric VSG clusters are underlined

Fig. 2  Overlap analysis of high RIIC in T. cruzi SSRs. Strand switch 
regions were identified and their RIIC scores calculated. The bar plot 
shows the number of DSSR and CSSR regions overlapping high RIIC 
scoring regions (dark grey) and non-overlapping (light grey)
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highest scoring motif detected (MEME e-value 4e −  66) 
(Fig. 4). The motif can be considered a common character-
istic in subtelomeric regions since this conserved sequence 
pattern is present in 50 out of the 103 sequences used for 
input. However, we found that in the core genome, the 
ubiquitous short runs of adenines are not clearly associ-
ated with high IC peaks (data not shown).

Discussion
Here we present data demonstrating that regions of high 
curvature are not randomly distributed along T. brucei 
and T. cruzi chromosomes. In both cases the high cur-
vature signals seem more widespread than the profile 
observed for Leish, particularly for T. brucei. It is worth 
noting that the Leishmania intrinsic curvature distri-
bution, compared to other organisms, ranging from 
prokaryotes to humans, including trypanosomes, showed 
fewer regions with high curvature and a higher density of 
regions with lower curvature. So the T. cruzi and T. bru-
cei profile could be attributed to the presence of more 
regions of high curvature leading to higher median IC 
(3.32° and 3.52° per helical turn, respectively) compared 
to Leishmania (2.63 per helical turn).

Considering the additive contribution to the DNA 
curvature of each sequential nucleotides in a given 
region, we compiled the data by using the region inte-
grated intrinsic curvature score, we have previously 
developed. The enrichment of high RIIC in DSSRs in 
T. cruzi is suggestive of a putative association of DNA 
intrinsic curvature with transcription initiation as pre-
viously observed in Leishmania. Such curvatures may 
either facilitate the binding of the RNA polymerase and/
or help enable the formation of the open DNA com-
plex. Although an enrichment of histone acetylation in 
the DSSR has been described in T. cruzi [16], no studies 
have been carried out to investigate the presence of TSS 
markers inside the polycistronic units which prevents a 
genome wide association study. Considering that high 
curvature regions are also associated with internal TSSs 
in Leishmania, one can only speculate that a high per-
centage of the 172 internal high RIIC scoring regions 
found in T. cruzi may also serve as internal TSSs. If this 
consideration holds true, and some of the 172 inter-
nal sites are actual TSS regions, then the number of 
true positives would increase while the number of false 
positives will decrease resulting in a more significant 

Fig. 3  Graphical representation of transcription markers’ signals and sequence dependent curvature RIIC score in T. brucei. For T. brucei chromosome 
4, the graphical representation of regions with RIIC value greater than the selected cutoff (lower panel) are shown above the schematic representa‑
tion of both chromosome DNA strands depicted in grey, overlaid with CDS features shown in blue. Modified histone locations (H4K10ac) from [17] 
and base J from [12] are indicated as following: regions associated to H4K10ac but not associated with base J (*); regions associated to H4K10ac and 
also with base J (!); regions associated with base J and not with H4K10ac (+). Features labeled as ncRNA, snRNA or snoRNAs are shown in green. 
tRNAs are shown in red. Assembly gaps are shown in brown

Fig. 4  Logo representation of the main motif found by MEME analysis around high curvature peaks in T. brucei subtelomeric VSG clusters. The 
sequences surrounding high IC peaks were analyzed by MEME as described in Materials and “Methods”, and the logo representation for the most 
significant motif is shown
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association (with an overall increase in the Mathews 
correlation coefficient).

A difference between the pattern observed here in T. 
brucei and the one previously seen in Leishmania is evi-
dent. In the latter, the association of high RIIC with tran-
scription initiation is clear [27]. Besides, for this parasite, 
the location of base J in the core genome corresponds to 
transcription termination sites [33–35]. In contrast, in T. 
brucei, a high of RIIC is seen with base J, which in this 
organism is considered a marker of transcription bound-
aries [12], while the correlation with H4K10ac (marker 
of transcription initiation) is not significant. Indeed, the 
coincidence in some regions of high RIIC and H4K10ac 
enriched regions, might be just the consequence of high 
association of base J with these regions [12] (68.8%, 86 
out of 125). However, since base J is not present in the 
procyclic stage of the parasite [36], these coincidences 
may be only restricted to the bloodstream stage. Recently, 
an attenuation role in gene expression at specific sites 
within the polycistronic gene units has been proposed for 
base J in T. brucei [34]. It is tempting to speculate that the 
bulky glucosyl moiety of the base J affects the intrinsic 
curvature and bendability of regulatory regions involved 
in facilitating the transcription initiation or processiv-
ity. This modification being stage-specific, the location 
of stage-specific genes downstream to the regions with 
base J would be expected. Interestingly, in addition to the 
dispersed internal location of base J, its presence is espe-
cially abundant at telomeric and subtelomeric regions in 
T. brucei [36] where stage-specific genes are located.

From our analysis, in phase A runs emerge as a com-
mon motif in the subtelomeric regions in T. brucei. It has 
been well established that runs of 4 or more adenines 
with a 10  bp phasing cause DNA bending [37–40]. The 
molecular structures of these DNA tracts are unusual 
and vary depending on the genome context [40]. Multi-
ple roles for the A-tract curvature have been proposed 
[41]. Among those, A tracts have been implicated in 
organizing DNA architecture, enhancing the recombina-
tion process and assisting chromatin structure. It is also 
worthwhile noting that curved DNA may vary its shape 
depending on temperature and physiological changes 
encompassing the VSG expression silencing in the insect 
form [42] and tight control in the bloodstream stage.

Although drugs that bind DNA through the recogni-
tion and distortion of DNA structure are known to act 
as trypanocides, their use has been mostly discarded due 
to the collateral effects on the host [43]. Nonetheless, the 
work presented here, draws attention to the potential rel-
evance of refining the design of chemotherapeutic agents 
focusing on the high curvature occurring at regions 
important for regulation of gene expression and in the 
case of T. brucei, for host immune evasion.

Conclusions
Highly curved DNA has been recognized as a signal in 
transcriptional processes both in prokaryotes and eukar-
yotes (reviewed in [26]). Using the regional integrated 
intrinsic curvature scoring, we have previously shown 
the association of regions of high intrinsic curvature with 
those related to the transcription initiation in Leishmania 
[27]. Here we show that in T. cruzi, the divergent strand 
switches, which are the only regions up to now known 
to be associated to transcription initiation, are also dis-
tinctively characterized by high RIIC scores, supporting 
the extrapolation of the same conclusion. Meanwhile in 
T. brucei, the association of regions of high intrinsic cur-
vature with the locations of base J was found to be sig-
nificant. Since base J has been involved in transcription 
initiation and termination, this result may indicate a role 
for DNA intrinsic curvature in these processes.

These findings point out to the existence of putative 
conserved process- and species specific-DNA architec-
tural signals in kinetoplastids. Further studies would be 
necessary to deeply analyze the recognition signal com-
monalities and differences that may be involved in differ-
ent steps of the transcriptional mechanisms.

In addition, in T. brucei, the remarkable concentration 
of regions with high intrinsic curvature at the chromo-
some subtelomeric regions, where the species-specific 
genes for the gene family of the highly variable sur-
face glycoproteins are located, may suggest a putative 
involvement of this structural signal either facilitating 
the recombinational process or mediating the chromatin 
silencing and/or granting the vast antigenic variability 
needed for the efficient evasion of the immune host sys-
tem that T. brucei has developed.

Globally, the data here presented, while establishing par-
ticularities within kinetoplastids, underscore the relevance 
of indirect DNA readout in these ancient eukaryotes.

Methods
Data source
The genome data for T. brucei strain TREU 927 and the 
T. cruzi CL Brener Esmeraldo-like contigs were down-
loaded from TritrypDB (version 2.1). T. brucei chromo-
some regions were classified as ‘core’ and ‘subtelomeric’ 
regions as described in [22].

Genome‑wide intrinsic curvature calculation
The bend.it algorithm [29], kindly provided by Dr. S. Pon-
gor for local runs, was used to obtain the IC values (°/hel-
ical turn) for each base on the individual chromosomes 
which were binned into 200 Kbase segments. The default 
window size (31 bp), bendability values from nucleosome 
binding and DNaseI parameters were used. In-house 
scripts either in Python or in R programming languages 
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were developed to filter and/or further analyze results. 
For visualization, wiggle (WIG) files were generated for 
each chromosome.

Genome‑wide regional integrated intrinsic curvature 
calculation
The RIIC score was calculated as the area under the cur-
vature plot using the Riemann sum. To assess if the T. 
brucei subtelomeric and VSG array regions have a sig-
nificantly higher RIIC score than the rest of the genome, 
their RIIC score was compared to a density function rep-
resenting the population of RIIC scores for equal-length 
regions in the genome as in [27]. A region was considered 
highly curved if the RIIC score was bigger than the 95% 
confidence interval for the population. The genome wide 
search for high RIIC regions was performed as in [27] 
with minor modifications. Briefly, every chromosome 
was scanned for 600 bp regions with a RIIC score greater 
than the 80th percentile value for that chromosome. For 
the counting of T. cruzi SSRs associated with high RIIC, 
two criteria were established. Namely, a SSR was not con-
sidered if it presented internal sequencing gaps and/or 
was defined by polycistronic units of less than 6 genes.

Statistical analysis
To test the association between high RIIC containing and 
H4K10ac containing regions a contingency matrix was 
built for each chromosome. The matrix was constructed 
by classifying genomic regions as containing both sig-
nals, only one signal or none and counting each instance. 
The independence of both variables was tested using the 
Fisher exact test in R using a p value of 0.01 to define sig-
nificance. The statistical correlation of these regions was 
tested using the Mathews correlation coefficient working 
on the previously generated contingency matrix.

Motif search
For the analysis of motif-based sequence associated to 
the regions of high intrinsic curvature, the MEME suite 
was used. The search was performed on a fragment of T. 
brucei chromosome 9 spanning bases from 1 to 319,439 
(the VSG array region). A total of 103 sequences sur-
rounding 30 bp each high IC peak were selected for motif 
discovery. The randomly shuffled sequences were also 
submitted to the MEME suite as control.
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