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a b s t r a c t

This article reports a dataset on the thermodynamic and elastic
properties of two important raw minerals exploited in geore-
sources and ore mining. The presented data refers to two zinc
sulphide polymorphs, namely zinc-blende (low-pressure poly-
morph, space group F4

�
3m) and rock-salt (high-pressure poly-

morph, space group Fm3
�
m) [1], and of type-A carbonated apatite,

[CAp, Ca10(PO4)6CO3, space group P1] [2]. The data here reported
were calculated from ab initio quantum mechanical simulations at
the DFT/B3LYP level, all-electron Gaussian-type orbitals basis sets
and from the analysis of the phonon properties of the zinc sul-
phide polymorphs and of type-A CAp by means of the quasi-
harmonic approximation. In addition, a correction to take into
account the effects of dispersive forces was considered to obtain
the dataset of type-A carbonated apatite. This dataset, which was
validated against experimental thermodynamic data reported in
literature, has been employed to construct the phase diagram
between the two zinc sulphide polymorphs and discuss their
stability over the temperature and pressure range 0e800 K and 0
e25 GPa. The thermodynamic and thermoelastic data of CAp were
obtained between 0 and 600 K and 0e3 GPa, below the temper-
ature of thermal decomposition of the mineral. The reported data
can be of use in several application fields, for instance fundamental
georesource exploration and exploitation, and also in applied
mineralogy, geology, material science, and as a reference to assess
the quality of other theoretical approaches. Furthermore, the data
ldr�e).
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1. Data description

1.1. Zinc sulphide polymorphs: zinc-blende and rock-salt ZnS

Zinc-blende (zb, also known as sphalerite from the mineralogical point of view) and rock-salt ZnS
(rs) are two polymorphs of zinc sulphide, belonging to the space group F43m and Fm3m, respectively.
zb-ZnS is stable at low pressure and temperatures, representing the main source of zinc from ore
smelting, whereas rs-ZnS is found at high pressures. Sphalerite is found in several locations worldwide,
such as Germany, Romania, Canada, USA and Mexico. To realize the present dataset, both polymorphs
were optimized at equilibrium conditions and under the effect of hydrostatic expansion/compression
at T¼ 0 K, starting from the experimental structures determined by Skinner [3]. The unit cell geometry
optimization results for both zinc-blende and rock-salt polymorphs of zinc sulphide are reported in
Table 1 [1], whereas Fig. 1 shows a graphical representation of the unit cell energy vs volume curves
fitted by a volume-integrated 3rd-order Birch-Murnaghan equation of state.

The thermodynamics and thermomechanics of both zb-ZnS and rs-ZnS were calculated from the
phonon properties of the mineral phases between 0 and 800 K. The effect of pressure was evaluated
from 0 GPa to 20 GPa for zinc-blende, whereas for the rock-salt polymorph, which presents phonon
instability at low pressure [1], the properties were calculated in the pressure range 12e25 GPa. The
results are reported in Tables S1eS22 in the Supplementary Material for both zb-ZnS (Tables S1eS11)
and rs-ZnS (Tables S12eS22), subdivided as follows:

� primitive unit cell volume (Tables S1 and S12);
� isothermal bulk modulus, KT (Tables S2 and S13);
� adiabatic bulk modulus, KS (Tables S3 and S14);
� coefficient of thermal expansion (CTE), aV (Tables S4 and S15);
� isochoric heat capacity, CV (Tables S5 and S16);
� isobaric heat capacity, CP (Tables S6 and S17);
� entropy, S (Tables S7 and S18);
� absolute enthalpy, H (Tables S8 and S19);
� absolute Helmholtz free energy, F (Tables S9 and S20);
� absolute Gibbs free energy, G (Tables S10 and S21);
� absolute internal energy, U (Tables S11 and S22).

The obtained reported data can be employed, for instance, to create bidimensional plots of the
desired thermodynamic and thermoelastic properties and to compare them to other theoretical or
experimental results. Fig. 2 reports an example of this application.
Table 1
Primitive unit cell volume (Vpc) and static energy (Epc), Crystallographic unit cell volume (Vcc) and lattice parameter (apc)
resulting from the geometry optimization results of zinc-blende and rock-salt ZnS polymorphs. Underlined values are related to
the equilibrium geometry.

Zinc-blende ZnS Rock-salt ZnS

P (Gpa) Vpc (Å
3) Epc (Ha) Vcc (Å

3) acc (Å) P (Gpa) Vpc (Å
3) Epc (Ha) Vcc (Å

3) acc (Å)

21.30 35.080 �2.177214945324Eþ03 140.321 5.197 25.65 29.042 �2.177192422262Eþ03 116.170 4.879
16.23 36.377 �2.177220509835Eþ03 145.506 5.260 19.48 30.116 �2.177197962616Eþ03 120.462 4.939
11.81 37.704 �2.177224760714Eþ03 150.818 5.323 14.14 31.215 �2.177202180969Eþ03 124.860 4.998
7.95 39.064 �2.177227823064Eþ03 156.257 5.386 9.51 32.341 �2.177205213821Eþ03 129.362 5.058
4.59 40.456 �2.177229808849Eþ03 161.825 5.449 5.51 33.493 �2.177207182795Eþ03 133.972 5.117
1.67 41.881 �2.177230818510Eþ03 167.524 5.513 2.07 34.672 �2.177208195666Eþ03 138.691 5.176
0.05 42.781 �2.177230994348Eþ03 171.123 5.552 0.18 35.418 �2.177208385989Eþ03 141.670 5.213
�0.87 43.339 �2.177230942467Eþ03 173.355 5.576 �0.90 35.880 �2.177208348407Eþ03 143.518 5.236
�3.06 44.830 �2.177230262298Eþ03 179.320 5.639 �3.44 37.114 �2.177207726602Eþ03 148.457 5.295
�4.95 46.355 �2.177228851914Eþ03 185.421 5.702 �5.61 38.377 �2.177206406104Eþ03 153.507 5.354
�6.57 47.915 �2.177226778287Eþ03 191.658 5.766 �7.46 39.668 �2.177204454375Eþ03 158.671 5.414



Fig. 1. Primitive unit-cell volume vs energy data (reported as DE ¼ E e Eeq, with Eeq equal to the energy of the unit cell at equilibrium
volume) of (a) zinc-blende and (b) rock-salt ZnS. The box reports the parameters obtained from fitting the data with a volume-
integrated 3rd-order Birch-Murnaghan equation of state.
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1.2. Type-A carbonated apatite

Type-A carbonated apatite [Ca10(PO4)6CO3, space group P1] belongs to the calcium apatite miner-
alogical family, which is used for several applications, such as production of fertilizers, gemstone
cutting and as source of rare-Earth elements through ore smelting. Carbonated apatite is also an
important mineral in the biomaterials field. Apatite minerals are commonly found in Canada, Brazil,
USA and Mexico.
Fig. 2. Bidimensional contour plots of (a,b) isobaric heat capacity and (c,d) primitive cell volume as a function of temperature and
pressure for (a,c) zb-ZnS and (b,d) rs-ZnS.
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The thermodynamic and thermoelastic data here provided were calculated from the structural and
vibrational properties of seven unit cell volumes in the temperature range 0e600 K (step of 1 K), below
the temperature of thermal decomposition of the mineral phase [4], and between 0 GPa and 3 GPa
(step of 0.5 GPa). The equilibrium geometry was theoretically determined in a previous work [5], where
the experimental results of Fleet and Liu [6] were employed to model the type-A carbonated apatite.
The results are reported in Tables S23eS33 in the Supplementary Material whose content is here
summarized:

� unit cell volume (Table S23);
� isothermal bulk modulus, KT (Table S24);
� adiabatic bulk modulus, KS (Table S25);
� coefficient of thermal expansion (CTE), aV (Table S26);
� isochoric heat capacity, CV (Table S27);
� isobaric heat capacity, CP (Table S28);
� entropy, S (Table S29);
� absolute enthalpy, H (Table S30);
� absolute Helmholtz free energy, F (Table S31);
� absolute Gibbs free energy, G (Table S32);
� absolute internal energy, U (Table S33).
2. Experimental design, materials, and methods

The data here presented was obtained by first principle simulations on periodic systems, using the
CRYSTAL17 code [7], which implements the HartreeeFock and KohneSham self-consistent field
method.

Multielectron wave functions are constructed as an antisymmetrized product (Slater determinant)
of monoelectronic crystalline orbitals (CO) that are linear combination of local functions (atomic or-
bitals, AO) centred on each atom in the system. In turn, atomic orbitals (basis set) are linear combi-
nations of Gaussian-type functions (GTF). The all-electron basis sets employed for both Zn2þ and S2�

were described by the double-z basis set with polarization functions designed by Peintinger-Bredow-
Oliveira (POB) [8]. For type-A CAp, it was the same basis sets adopted in previous works on OHAp and
type A CAp [2,5]. Calcium has been described with a 86-511G(2d), with outer shell exponents
asp ¼ 0.453 bohr�2, ad1 ¼ 3.1910 and 0.8683 bohr�2 and ad2 ¼ 0.2891 bohr�2. The phosphorus atom is
described by the basis 85-21G(d), asp ¼ 0.48105 bohr�2 and ad ¼ 0.135 and 0.74583 bohr�2, respec-
tively. Oxygen was represented by a 6-31G* basis set with the outer shell exponents asp ¼ 0.2742 and
0.190 bohr�2 and ad ¼ 0.538 bohr�2. The carbon atom is described by a 6-21G* basis set with asp ¼ 0.26
bohr�2 and ad ¼ 0.8 bohr�2.

The hybrid B3LYP functional [9,10], which is well-known for its ability to produce high quality of
crystal-chemical, vibrational/thermodynamic and elastic results [11,12], has been adopted for all cal-
culations. Only in the case of type-A carbonated apatite, the DFT-D2 correction schemewas included in
its recently adjusted form for B3LYP (B3LYP-D* approach) to take into account the effect of dispersive
forces on both structural and thermodynamic properties [13]. The exchangeecorrelation contribution
is performed over a grid of points and is the result of a numerical integration of the electron density and
its gradient. The adopted pruned grid is given by 75 points and 974 angular points (XLGRID) and ob-
tained from The GausseLegendre quadrature and Lebedev schemes. The tolerance thresholds that
control accuracy of the Coulomb and exchange integrals were set to 10�7 and 10�16, respectively [7].
The Hamiltonian matrix has been diagonalized using a Monkhorst grid of k-points of size 8 � 8 � 8 for
both zinc-blende and rock-salt polymorphs. The convergence on total energy was reached when the
difference between the energy of two subsequent self-consistent field cycles was less than 10�8 Har-
tree during geometry optimization and less than 10�10 Hartree during phonon calculations.

The compressional behaviour of zinc sulphide and type-A carbonated apatite has been investigated
carrying out a symmetry-preserving relaxation procedure by exploring ten volumes between 0.82�Veq
and 1.12�Veq (step of 0.03�Vinit) for both zinc-blende and rock-salt ZnS, whereas for type-A Cap seven
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unit cell volumes were considered between 0.92�Veq and 1.08�Veq, with a step of 0.04�Veq under
compression (two unit cell volumes) and 0.02�Veq under expansion (four unit cell volumes). Here, Vinit

represents the volume of the unit cell of each mineral (zinc-blende, rock-salt ZnS, CAp) at equilibrium
conditions. Each model was then geometrically optimized.

At each unit cell compressive state, the energy vs volume data, E(V) curve, was fitted with a volume-
integrated 3rd-order Birch-Murnaghan equation of state (EoS) formulation [14]:

E ¼ E0 þ
9
16

K0V0

n
K

0ðh2�1Þ3 þ
h�

h2 � 1
�2�

6� 4h2
�io

(1)

h ¼
�
V0

V

�1=3
(2)

where V0 is the unit cell volume at 0 GPa, E0 its energy, K0 the bulk modulus and K0 the pressure first
derivative of the bulk modulus. The obtained parameters were employed in the well-known PeV
formulation of the Birch-Murnaghan EoS to calculate the pressure state of the system:

P ¼ 3
2
K0

h
h�7=3 � h�5=3

i�
1� 3

4
ð4� K

0 Þ
�
h�2=3 � 1

��
þ P0 (3)

Thermodynamic and thermomechanics properties of each mineral phase were obtained from lat-
tice dynamics results by means of the quasi-harmonic approximation (QHA) approach as described by
Erba and co-workers [15]. Lattice dynamics was calculated on 4 � 4 � 4 supercells in the case of zinc
sulphide polymorphs [1], whereas only G-point frequencies were considered for type-A carbonated
apatite [2].
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