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It has been almost 15 years since the first microarray-based studies creating multigene biomarkers to subtype and predict

survival of cancer patients. This Perspective looks at why only a handful of genomic biomarkers have reached clinical ap-

plication and what advances are needed over the next 15 years to grow this number. I discuss challenges in creating biomark-

ers and reproducing them at the genomic and computational levels, including the problem of spatio-genomic heterogeneity

in an individual cancer. I then outline the challenges in translating newly discovered genome-wide or regional events, like

trinucleotide mutation signatures, kataegis, and chromothripsis, into biomarkers, as well as the importance of incorporating

prior biological knowledge. Lastly, I outline the practical problems of pharmaco-economics and adoption: Are new bio-

markers viewed as economically rational by potential funders? And if they are, how can their results be communicated ef-

fectively to patients and their clinicians? Genomic-based diagnostics have immense potential for transforming the

management of cancer. The next 15 years will see a surge of research into the topics here that, when combined with a stream

of new targeted therapies being developed, will personalize the cancer clinic.

The potential of clinical cancer genomics

Cancer is, at its heart, a disease of the genome. Individual tumors
harbor from hundreds to hundreds of thousands of point muta-
tions (Lawrence et al. 2013). They can have global ploidy changes
or local chromosomal abnormalities that alter as much as 50% of
the genome (Zack et al. 2013). They can have dozens of geno-
mic rearrangements of various types (Yang et al. 2013). Large-scale
sequencing projects like the International Cancer Genome
Consortium (ICGC) and The Cancer Genome Atlas (TCGA) have
been sequencing hundreds of tumors of different subtypes to try
to create catalogs of those that are recurrent in any given cancer
type (The Cancer Genome Atlas Research Network 2008; Hudson
et al. 2010). These studies have led to the discovery of fundamental
new properties of cancer genomes, such as mutational signatures
(Alexandrov et al. 2013a,b), focal genomic abnormalities like
kataegis and chromothripsis (Stephens et al. 2011), robust esti-
mates of the distribution and number of driver genes (Lawrence
et al. 2014), and classification of many tumor types into distinct
subtypes (The Cancer Genome Atlas Network 2012a,b, 2015).

However, these discoveries by themselves are not sufficient to
impact patient care. Rather, bringing cancer genomics into the
clinic requires two separate and generally orthogonal arms. First,
genomic profiles need to be mined to identify candidate genes
that can be targeted by novel drugs. By targeting vulnerabilities
present in a tumor and not in normal cells, it is believed that drugs
can be developed with greater specificity and sensitivity. Second,
genomic profiles need to be used to create novel biomarkers that
can be used to diagnose disease, to predict patient survival, to pre-
dict response to treatment (e.g., companiondiagnostics to novel or
existing therapies), and tomonitor disease relapse. This reviewwill
focus on the second problem, discussing the barriers that are lim-

iting the routine use of genomic assays in shaping and improving
the care of cancer patients.

Barriers to adoption

Stable biomarkers

Inmany fields, a very large number of biomarkers have been devel-
oped. For example, there are at least 106 separate biomarkers to
prognose localized breast cancer, and these differ significantly in
accuracy, error profiles (including sensitivity-specificity trade-offs
and biases in errors towards specific clinical ormolecular character-
istics), number of genes, ease of interpretation, and biological ori-
gin (Tofigh et al. 2014). Most of these have not moved beyond the
research setting, but whichmight best benefit from additional val-
idation? Which have the most potential for clinical use? Even de-
veloping the answer to one of these questions is extremely
challenging, but the continual rapid development of new (and
sometimes only modestly improved) biomarkers poses several ma-
jor challenges.

First, because there are no gold standards used in the field for
validation, it is difficult or even impossible to assess whichmarkers
are performing best. Often, validation cohorts are insufficiently in-
dependent and poorly powered, although with some noteworthy
exceptions (Kratz et al. 2012). Although challenge-based assess-
ments are just now starting to create such data sets (Margolin
et al. 2013; Boutros et al. 2014b), they still remain both statistically
underpowered and underrepresentative of the broad diversity of
human cancer and of genomic technologies. Second, the sheer
number of biomarkers being developed in some fields can directly
hinder clinical application both by creating confusion and
by fostering an attitude that the field is too dynamic for practical
application—that waiting for future research and technologi-
cal advances is the best decision. Third, commercialization of

Corresponding author: Paul.Boutros@oicr.on.ca
Article and publication date are at http://www.genome.org/cgi/doi/10.1101/
gr.191114.115. Freely available online through the Genome Research Open
Access option.

© 2015 Boutros This article, published inGenome Research, is available under a
Creative Commons License (Attribution-NonCommercial 4.0 International), as
described at http://creativecommons.org/licenses/by-nc/4.0/.

Perspective

1508 Genome Research 25:1508–1513 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/15; www.genome.org
www.genome.org

mailto:Paul.Boutros@oicr.on.ca
mailto:Paul.Boutros@oicr.on.ca
mailto:Paul.Boutros@oicr.on.ca
mailto:Paul.Boutros@oicr.on.ca
http://www.genome.org/cgi/doi/10.1101/gr.191114.115
http://www.genome.org/cgi/doi/10.1101/gr.191114.115
http://www.genome.org/cgi/doi/10.1101/gr.191114.115
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


biomarkers is increasingly difficult as more biomarkers are created
in a field, because it reduces barriers to entry and limits the ability
of an individual biomarker to gain significant market share.
Indeed, as more biomarkers are created in a field, the development
and advancement of new and improved approaches can be hin-
dered both by intellectual property restrictions from prior art
and by reluctance of funders and commercialization offices to sup-
port validation studies. Fourth, the ultimate utility of a biomarker
is often unknown without long-term clinical follow-up studies in
multiple settings, often prospectively, leading to significant devel-
opment and validation costs.

Reproducibility of analyses

Clinical application of genomic techniques requires that the re-
sulting tests are highly accurate and highly reproducible.
Reproducibility can be considered in two different ways. First,
there is reproducibility in the actual genomic measurements.
Reproducibility of clinical tests is standardized under regulations
like CLIA and GLP. Targeted sequencing assays appear to perform
verywell (Tran et al. 2013), but this result is certainly driven in part
by the very high depth of coverage in such assays, and because
most mutation-detection algorithms have not been optimized to
distinguish low-frequency events from sequencing errors, these
panels can yield false negatives. Further, the error rates for se-
quencing-based discovery of genomic rearrangements (e.g., trans-
locations or inversions) are much less understood than those for
single-nucleotide variants. As a result, whole-genome studies—
which would be necessary to measure complex phenomena like
kataegis or chromothripsis, for example—are likely to be less repro-
ducible, especially given lower coverage levels. There has been a
small amount of research into quality control of genomic studies
(Daley and Smith 2013; Chong et al. 2014) and almost none
into howquality affects final prediction ofmutations and other ge-
nomic phenomena. An elegant study by the ICGC extracted DNA
once from each part of a tumor/normal pair and shipped aliquots
of this sample to five large international sequencing centers. Each
center sequenced and analyzed the same sample using their own
protocols, and the final somatic SNV predictions were compared.
Only ∼20% of mutations were common to all five centers, while
one third were predicted by only a single center (Buchhalter
et al. 2014). Clearly, significant work is needed to standardize glob-
al analyses of cancer genomes.

There is, similarly, significant diversity in the analysis of can-
cer genomic data. Even small differences in the way a data set is
preprocessed and analyzed can yield massive differences in the
predictions of a final biomarker, and it appears that themore com-
plex the biomarker, themore sensitive it is to processing differenc-
es, both in terms of computational methodologies (Starmans et al.
2012; Fox et al. 2014) and sample fixation processes (Van Allen
et al. 2014). However, analysis methods cannot yet be standard-
ized because there is very little consensus in the field about the
best methods for different problems. For example, several studies
of microarray processing techniques have yielded discordant re-
sults (Shedden et al. 2005; Shi et al. 2005, 2006, 2010; Canales
et al. 2006; Zhu et al. 2010). To understand the variability in cancer
genome analysis using next-generation sequencing data, the
ICGC-TCGA DREAM Somatic Mutation Calling (SMC-DNA)
Challenge has been launched (Boutros et al. 2014a). This crowd-
sourced challenge, along with efforts by the ICGC Pan-Cancer
Project and other groups, will start to create consensus in this
area over the next decade. In its first results, the SMC-DNA

Challenge has shown that even on relatively simple tumors (i.e.,
100% tumor cellularity, no subclonality, normal ploidy), most
groups made a significant number of errors: Across 119 submis-
sions the median F-score was 0.88 (Ewing et al. 2015).

However, biomarker reproducibility is not only challenged by
the reproducibility of high-throughput assays or their analysis, but
also by the inherent biology of a tumor. A series of seminal studies
have used high-throughput sequencing to profile the intra-tumor-
al heterogeneity of kidney (Gerlinger et al. 2012, 2014; Gulati et al.
2014), prostate (Boutros et al. 2015; Cooper et al. 2015; Gundem
et al. 2015), breast (Shah et al. 2012; Eirew et al. 2015), lung (de
Bruin et al. 2014; Zhang et al. 2014), ovarian (Bashashati et al.
2013; Anglesio et al. 2015), and other tumors. These studies have
universally shown that individual tumors are comprised of myriad
cell types present at different frequencies in different spatial sites.
Importantly, some of these studies have demonstrated that exist-
ing biomarkers would give distinct predictions if derived from spa-
tially distinct regions of the tumor. While a few studies have made
preliminary estimates of the number of biopsy specimens needed
to yield robust conclusions in the face of intra-tumoral heterogene-
ity (Bachtiary et al. 2006), it remains unclear exactly how biomark-
ers should be handled in general. For example, should multiple
regions be tested and the prediction of the most adverse clinical
outcome (e.g., highest drug resistance or shortest survival) used?
The average across multiple regions? Should biomarkers focus on
clonal driver mutations and, if so, how should variation in the fre-
quencies of truncal mutations be handled (Shah et al. 2009)?
Entirely new computational methods may be needed that directly
account for intra-tumoral heterogeneity. Indeed, it has been re-
ported that, for poorly understood reasons, some tumors are fun-
damentally more difficult to develop robust biomarkers for or to
make accurate predictions on (Tofigh et al. 2014).

Defining complex phenomena

Some recently uncovered genomic abnormalities are highly com-
plex. For example, several groups have recently shown that geno-
mic instability is a robust biomarker for several tumor types
(Vollan et al. 2015). However, there are many potential proxies
for genomic instability for use in biomarker studies: number of
copy number aberrations (CNAs), the fraction of the genome al-
tered by a CNA, the number of genes showing a CNA, and so forth.
Othergenomicalterations in cancerare so complex thatno real def-
inition exists. Chromothripsis, for example, is generally described
as a chromosome “shattering” event where a single chromosome
acquires a large number of mutations of different types (Stephens
et al. 2011). There is no singular definition of chromothripsis and
even only a few operational ways of identifying it (Lapuk et al.
2012; Govind et al. 2014). Similarly, there is not yet a standard li-
brary of mutational signatures or standard algorithms to call them
uniformly across data sets. The same is true for localized hypermu-
tationatthepoint-mutation level suchaskataegis (Alexandrovetal.
2013a) or for “complex” multichromosomal genomic rearrange-
ments (Berger et al. 2011; Baca et al. 2013).Nevertheless, there is al-
ready evidence that global mutation burden can be prognostic in
multiple tumor types (Lalonde et al. 2014; Vollan et al. 2015) and
that trinucleotide signatures and mutation burden may be predic-
tive of response to targeted therapies (Rizvi et al. 2015), making re-
producible measurement critical. This problem is only going to be
exacerbated as new methods (Ha et al. 2014; Oesper et al. 2014;
Roth et al. 2014; Deshwar et al. 2015) and better understanding
of the diversity of cells within a tumor and their evolution (Navin
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et al. 2011; Wang et al. 2014; Eirew et al. 2015) start creating pop-
ulation-level features that can be used in biomarker analysis. The
next decade will likely see the rise of biomarkers based on nebu-
lous terms such as “subclone number,” “total genetic diversity,”
and “tumorheterogeneity index” thatwill be challenging todefine
and reproduce, but that will reflect a key aspect of tumor biology
with significant predictive potential.

The current round of “compendium” cancer genomic studies
thus identify a large number of interesting features that can poten-
tially serve as biomarkers, but these have not yet been defined well
enough to serve as components of clinical diagnostics.

Integrating multiple levels of data

Interrogation of any single type of genomic data may provide lim-
ited predictive accuracy: Several groups have tested large numbers
of random biomarkers to evaluate the probable upper limit of
prediction accuracies (Boutros et al. 2009; Starmans et al. 2011;
Venet et al. 2011). In several cases, these limits have been surpris-
ingly low. In a recent study, KRAS mutation status could only
be predicted, at most, with ∼75% accuracy frommRNA abundanc-
es (Starmans et al. 2015). Thus, while almost all well-validated
genomic tests exploit data of a single class (e.g., copy number ab-
errations, mRNA abundances, etc.), it is hypothesized that incor-
porating multiple types of genomic data will improve biomarker
accuracy. For example, in the same status of KRAS, it was shown
that different prognostic mRNA signatures were optimal in KRAS
mutant and KRAS wild-type lung cancers, highlighting the syn-
ergy of combining somatic SNV and tumor mRNA abundance in-
formation into a composite biomarker (Starmans et al. 2015).

There are not yet any examples of biomarkers that predict
clinically relevant endpoints based on simultaneous analysis of
methylation levels, specific copy number aberrations or point mu-
tations (both germline and somatic), mRNA abundances, and spe-
cific splice-isoform presence or absence. The algorithms required
to create such complex biomarkers are now in development
(Gonzalez-Perez et al. 2013; Creixell et al. 2015) but are necessarily
very complex to develop and require harmonized, multimodal
data sets with deep clinical information for both training and test-
ing. Such data sets are not yet broadly available, although some
groups have sought to mine TCGA data, despite its somewhat lim-
ited clinical follow-up (Yuan et al. 2014), and the METABRIC con-
sortium has profiled miRNA, mRNA, germline SNPs, and somatic
copy number aberrations on a coherent set of samples (Curtis
et al. 2012; Dvinge et al. 2013). There will be an urgent need for
standard data sets to be generated and used for groups to testmeth-
ods for creating multimodal signatures. There will also be signifi-
cant challenges in bringing such markers to clinical use, because
clinical specimens—particularly those derived from patient biop-
sies—may not yield sufficient quantity or quality of analytes for
simultaneous measurement of all desired biomolecule types. As a
result, algorithms will need to be capable of handling missing en-
tire data types, such as when high-quality DNA-based measure-
ments are available but RNA-based ones are not.

However, interrogation ofmultiple levels of data goes beyond
different types of -omic data. For example, several groups have
shown that there is significant biomarker content present in the
stroma surrounding a tumor (Finak et al. 2008; Hoshida et al.
2008). Others have demonstrated synergy between genomic mea-
surements and tumor microenvironmental factors like hypoxia
(Lalonde et al. 2014). A major research direction moving forward
will be the integration of clinical imaging data with genomic stud-

ies both through the emergent field of “radiomics” (Aerts et al.
2014) and by exploiting standard pathology images (Yuan et al.
2012). These data types may be generally available on a large frac-
tion of patients, but again, algorithms will be required that can
handle missing data types.

Pharmaco-economics of genomic tests

A genomic biomarker may have good accuracy and reproducibility
across a range of independent validation data sets. To reach routine
adoption, however, it must also guide clinical decisionmaking in a
way that is demonstrably and economically efficient for the fund-
ers of a healthcare system. That is, one needs to determine if apply-
ing a biomarker to specific clinical subgroup will be financially
efficient. Consider the use of prostate-specific antigen (PSA) as a
population-screening tool to diagnose prostate cancer. Although
there is some controversy about the statistical modeling, even con-
servative estimates suggest that >1250 individuals must be
screened and >40 treated to save one life (Loeb et al. 2011). Thus
there aremany biomarkers that are statistically superior to random
chance, but may not be beneficial for the health-care system as a
whole. There are many ways of assessing the financial efficiency
of a biomarker, although the number of quality-adjusted life years
saved per dollar spent (QALY/$) is often used in formal modeling
exercises. There are only a limited number of pharmaco-economic
studies for genomic biomarkers to date. It is likely, moving for-
ward, that the pharmaco-economic modeling will be built directly
into modeling activities: For example, the cost functions in ma-
chine-learning exercises can bemodeled explicitly based on the fi-
nancial benefits or costs of different types of errors or successes.

Explainability

Even if a biomarker is demonstrated to be accurate and economic,
this is not always sufficient to guarantee its routine use; that re-
quires adoption and interpretation by clinicians and patients.
The development of biomarkers from large genomic data can occur
in several ways. Many times a specific drug target is its own bio-
marker, as with levels of ERBB2 (i.e., HER2) predicting a response
to Herceptin or presence of BCR-ABL1 predicting sensitivity to
Gleevec. In these cases, the same molecule serves as both bio-
marker and target. However, single-molecule biomarkers are wide-
ly used in many clinical contexts outside of predicting response to
treatment. For example, single-molecule biomarkers are widely
used to predict prognosis or monitor disease relapse, as in the
routine measurement of serum levels of PSA in prostate cancer
patients.

Single-gene markers have the immense advantage of simplic-
ity, both in terms of genomics interrogation and in terms of data
analysis. However, the biology of a tumor can be extremely com-
plex, especially when considering endpoints like prognosis: No
single molecule can fully capture all the determinants of the
processes of tumor initiation, progression, or metastasis. Indeed,
classically 6–10 distinct molecular or biochemical functions have
been identified as associated with these processes (Hanahan and
Weinberg 2000, 2011). As a result, modern biomarkers are being
developed using statistical and machine-learning techniques, of-
ten under the rubric of “data science” or “big-data analysis.”
These types of analytical approaches can either be agnostic to
the underlying biology or can incorporate domain knowledge
such as known pathways (Vaske et al. 2010) or protein complexes
(Leiserson et al. 2015), types of information flow between biomol-
ecules, or other types of biological information (Wu et al. 2010).
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Independent of whether or not domain knowledge is used,
these complex models can use tens to thousands of genes, tran-
scripts, or proteins (Monzon et al. 2009). To better reflect the non-
linearities of biological pathways, this large number of genes is
often weighted usingmathematical models such as support vector
machines, random forests, and network models. Despite the po-
tential greater predictive accuracy introduced by the better fit be-
tween true biology and these types of mathematical models,
another challenge is introduced: that of interpretability. Patients
and their caregivers need to be ready to interpret the results of ge-
nomic tests. When these tests involve complex multigene models
or sophisticated statistical terminology, that communication can
be challenging and can limit uptake.

At least fourmajor changes are likely to occur in this area over
the next decade. First, new generations of clinicians are much
more familiar with and better trained in genomic techniques,
which will facilitate interpretation of final models. Second, pa-
tients will become more comfortable with genomics and genomic
techniques andbemore capable of conversingwith their clinicians
in this area. Third, standardization of genomic approaches across
multiple areas of medicine will create more familiarity and consis-
tency. Fourth, ongoing work by many groups in visualization and
communication will provide technical solutions.

The path forward

At times it seems inevitable to those doing genomic research that
multimodal -omic biomarkers will become prevalent in routine
clinical practice over the next 25 years. However, the path to
move from current targeted sequencing panels of specific, careful-
ly selected point mutations to genome-wide assays at multiple lev-
els is unclear. It will require significant advances in genomics and
computational biology. The seminal paper demonstrating that
gene expression can predict outcome in breast cancer was pub-
lished 13 years ago (van’t Veer et al. 2002), and in the intervening
time, few other -omic clinical diagnostics have reached routine
clinical practice. In part, this is a function of incomplete clinical
annotation of many cohorts with genomic data, particularly
with regard to long-term outcomes and response to treatment.
This will change as the raw data sets underpinning biomarker dis-
covery and application improve, with more consistent genomic
data, better access to and sharing of clinical trial-linked data (as
proposed in the next iteration of the ICGC), challenge-based
methods assessments, and more frequent assessment of spatial
heterogeneity within a tumor. These changes in the raw data will
be complemented by improvements in data analysis, particularly
in handling heterogeneity, incorporating prior biological knowl-
edge, and in scoring large-scale genomic phenomena. Finally,
these improvements in genomics and computational biology
will reach their full potential as large numbers of new, targeted
therapies continue to be developed, providing the clinical need
to drive the development and application of genomic biomarkers
for the cancer clinic.
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