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Purpose: A former rodent study showed that cerebral traumatic microbleeds (TMBs)
may temporarily become invisible shortly after injury when detected by susceptibility
weighted imaging (SWI). The present study aims to validate this phenomenon in human
SWI.

Methods: In this retrospective study, 46 traumatic brain injury (TBI) patients in various
forms of severity were included and willingly complied with our strict selection criteria.
Clinical parameters potentially affecting TMB count, Rotterdam and Marshall CT score,
Mayo Clinic Classification, contusion number, and total volume were registered. The
precise time between trauma and MRI [5 h 19 min to 141 h 54 min, including SWI and
fluid-attenuated inversion recovery (FLAIR)] was individually recorded; TMB and FLAIR
lesion counts were assessed. Four groups were created based on elapsed time between
the trauma and MRI: 0–24, 24–48, 48–72, and >72 h. Kruskal–Wallis, ANOVA, Chi-
square, and Fisher’s exact tests were used to reveal differences among the groups
within clinical and imaging parameters; statistical power was calculated retrospectively
for each comparison.

Results: The Kruskal–Wallis ANOVA with Conover post hoc analysis showed significant
(p = 0.01; 1−β > 0.9) median TMB number differences in the subacute period: 0–
24 h = 4.00 (n = 11); 24–48 h = 1 (n = 14); 48–72 h = 1 (n = 11); and 72 h ≤ 7.5
(n = 10). Neither clinical parameters nor FLAIR lesions depicted significant differences
among the groups.

Conclusion: Our results demonstrate that TMBs on SWI MRI may temporarily become
less detectable at 24–72 h following TBI.

Keywords: SWI MRI, traumatic brain injury, diffuse axonal injury, white matter, microbleeds, SWI, TMB

Abbreviations: DAI, diffuse axonal injury; FA, fractional anisotropy; FA-SPM, fractional anisotropy images analyzed by
statistical parametric mapping; FLIRT, FMRIB’s Linear Image Registration Tool; TBI, traumatic brain injury; TMB, traumatic
microbleed; UP MS, University of Pécs, Medical School.
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INTRODUCTION

Traumatic brain injury (TBI) has become a devastating health
problem in developed countries (Cole, 2004; Keenan and Bratton,
2006; Mathers and Loncar, 2006; Thompson et al., 2006; Chiu
et al., 2007). TBI affects healthy, young, and often employed
individuals, resulting in a heavy burden placed on society in
both sociological and economic context (Berg et al., 2005; Lu
et al., 2005; Keenan and Bratton, 2006; Tagliaferri et al., 2006;
Thompson et al., 2006). Diffuse axonal injury (DAI) caused
by shear forces due to acceleration and deceleration of brain
compartments of different consistency during an accident is a
common pathological factor regarding TBI (Moenninghoff et al.,
2015; McGinn and Povlishock, 2016). DAI has been found in all
severities of TBI and is referenced as an important determining
factor regarding severity and outcome (Tang et al., 2012; Blennow
et al., 2016). DAI encompasses a vast spectrum, dependent upon
the severity and extent of injury, which can acutely manifest as
immediate loss of consciousness or confusion resulting in a coma
and/or cognitive dysfunction, or in other circumstances leads
to reversible impairments to full axonal disruption (Gennarelli
et al., 1986). A specific imaging marker regarding DAI will
likely contribute to (1) early diagnosis and severity assessment,
(2) timely onset of rehabilitation, (3) estimation of return to
normal activity, (4) improved patient management, and (5)
effectively following up on the patients’ condition and assuring
the efficacy of the applied therapy (Paterakis et al., 2000; Wallesch
et al., 2001). Currently, DAI is considered an exclusionary
diagnosis; conventional imaging techniques are considered not
to be sensitive enough to fully visualize it (Gennarelli et al.,
1986). Certain modern MRI techniques however are capable of
detecting pathological components regarding DAI (Blitstein and
Tung, 2007; Sharma et al., 2018).

Functional MRI, diffusion tensor imaging (DTI), or MR
spectroscopy promises a comprehensive understanding of DAI;
however, these methods are mostly applicable in the form
of statistical group analysis. To date, their individual routine
clinical application is not entirely clarified (Kumar et al., 2009;
Asano et al., 2012; Toth et al., 2013). T2 × MRI techniques—
sensitive in visualizing magnetic susceptibility—are capable of
visualizing microscopic bleeding; among them, susceptibility
weighted imaging (SWI) is reported to be the most sensitive
(Haacke et al., 2009; Mittal et al., 2009; Cheng et al., 2013).

By definition, traumatic microbleeds (TMBs) in SWI appear as
ovoid or curvilinear hypointensities localized in the white matter
(WM), mostly at the WM–gray matter (WM-GM) junction, in
the brainstem, or in the corpus callosum and the region of
the basal ganglia. Imaging of TMBs is indeed challenging: their
visibility and number are influenced by numerous clinical and
technical factors (e.g., age, SWI field strength, SWI slice thickness,
TBI severity, and neurological comorbidities) (Parizel et al., 2001;
Ripoll et al., 2003; Greenberg et al., 2009).

Although TMBs are reportedly potential markers of DAI (Di
Ieva et al., 2015), there is a lack of consensus regarding how DAI
exactly relates to hemorrhagic lesions. A DTI study implies that
DAI may develop without focal MRI lesions in TBI (Kumar et al.,
2009) and that DTI is also capable of revealing minute lesions of

the WM and deep brain structures, which may not be visualized
on T2 × GRE or fluid-attenuated inversion recovery (FLAIR)
images (Asano et al., 2012; Spitz et al., 2013). According to an
increasing number of studies, hemorrhagic lesion localization
seemingly is more important than the overall number associated
with DAI severity assessment (Toth et al., 2018; Andreasen
et al., 2019). Based on histological analysis of one patient, a
very recent study suggests DAI does not co-localize with TMBs
(Griffin et al., 2019). Nevertheless, nearly all studies concur that
a certain number, form, or localization of TMBs are associated
with more severe injuries and less favorable outcomes; therefore,
their detection is of clinical importance (Beauchamp et al., 2013;
Kim and Lee, 2013; Yuh et al., 2013; Akoudad et al., 2016;
de Haan et al., 2017; van der Horn et al., 2018). Interestingly,
some human case studies reported significant temporal changes
regarding TMB morphology in the acute to subacute phase
following injury, yet it was unclear if these changes mean
only changes in appearance, or true biophysical–biochemical
changes in reference to the hemorrhages (Ezaki et al., 2006;
Kallakuri et al., 2015; Toth et al., 2016; Watanabe et al., 2016;
Lawrence et al., 2017).

In our recent study, we managed to better understand this
phenomenon based on a rodent cerebral microbleed model:
surgically created artificial microscopic WM bleedings showed
a significant and transient intensity increase (i.e., decrease in
visibility) between 24 and 96 h following surgery. Additionally,
69% of the lesions became “invisible,” i.e., isointense to the WM,
which was followed by a reappearance. Histology confirmed
that microbleeds were present at every time point when
MRI measurements were made; therefore, we regarded this
phenomenon to be due to changes in biophysical properties of
microbleeds. We concluded that the timing of SWI may be critical
to avoid false-negative results (Tóth et al., 2019). Additionally, the
relative inconsistency in previous studies regarding the clinical
applicability of SWI MRI in TBI may be explained by our
findings. In the present study, we aimed to reveal if such transient
reduction in TMB visibility occurs in humans as well, and we
aimed to define the typical time frame of this phenomenon.

MATERIALS AND METHODS

Subjects
A total of 195 adults with closed TBI, compliant to our
MRI protocol, were initially included retrospectively from a
prospectively collected observational cohort at UP Clinical
Center Department of Neurosurgery and Pécs Diagnostic Center.
A crucial criterion was precise TBI time documentation.
Additionally, the exact time of admission, and CT and MRI
acquisition were also recorded. Exclusion criteria included any
diagnoses of comorbidities capable of causing WM TMBs
[e.g., fat embolism, chronic hypertension, cerebral amyloid
angiopathy, cavernous malformations, epilepsy, Alzheimer’s
disease, dementia or migraine, brain tumor, or cerebral metastasis
(Susman et al., 2002; Nakata-Kudo et al., 2006; Brain Trauma
Foundation et al., 2007; Haacke et al., 2007; Oh et al., 2008;
Ayaz et al., 2010; Beauchamp et al., 2013; Kim and Lee, 2013;
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Nakagami et al., 2014; Shams et al., 2015; Yamauchi et al.,
2016; Trifan et al., 2017)] based on patient medical records.
Grubbs’ test was applied to exclude patients with outlier
TMB numbers. Figure 1 shows our algorithm and criteria of
inclusion and exclusion.

The final number of patients eventually was narrowed to 46
cases who were eligible for the study [37 male and nine female; 6
symptomatic, eight mild, and 32 severe according to the Mayo
Clinic Classification of Traumatic Brain Injury (Malec et al.,
2007)]. Investigations were carried out compliant to the rules of
the Declaration of Helsinki, and ethical approval was granted
from the Institutional Review Board of the University of Pécs
(No. 4525). Written informed consent was obtained from all the
participants or their legally authorized representatives regarding
the MRI scans used in the study.

Clinical Data and Admission CT
Parameters
Traumatic brain injury severity was individually defined
according to the Mayo Clinic Classification of Traumatic Brain
Injury (symptomatic, mild, and moderate–severe) (Malec et al.,
2007). Age at the time of trauma, gender, Rotterdam (Maas et al.,
2005) and Marshall CT scores (Marshall et al., 1992) (assessed
on admission CT), MRI field strength (1.5 or 3 T), FLAIR lesion
number, and macroscopic injuries were recorded. Furthermore,
the total approximate volume of contusions was recorded on
admission, through individual CTs (MedViewTM) in accordance
to the following formula developed by Kothari et al. (1996;
Tables 1–3):

CV =
LPD× NSL× SL

2

where CV is the contusion volume, LPD is the product of the
longest perpendicular diagonals of the contusion appearing on
admission CT, NSL is the number of slices on which the contusion
is present, and SL is slice thickness.

MRI Acquisition
Susceptibility weighted imaging, T1-weighted MPRAGE and
FLAIR images were assessed. Brain MRI was performed using
1.5T (Avanto/Avantofit) and 3T (Magnetom Trio/Prisma Fit)
Siemens (Munich, Germany) MR scanners; and, in the case of
SWI, special attention was given to the evaluation of MRI images
with higher field strength and thinner slices in the estimated time
frame of TMB disappearance (24–72 h) as shown in Table 2.

T1-weighted high-resolution images were obtained using a
three-dimensional (3D) magnetization-prepared rapid gradient-
echo (MP-RAGE) sequence [inversion time (TI) = 900 ms;
repetition time (TR) = 1,400 ms; echo time (TE) = 3 ms; slice
thickness = 1.0 mm; field of view (FOV) = 192 mm × 256 mm;
matrix size = 192× 256. 3D and 2D FLAIR images were acquired
using the following: TI = 1,888.1–2,713.4 ms; TR = 5,000–
8,910 ms; slice thickness = 4.0 mm; FOV = 192–225 mm × 225–
256 mm; matrix size = 187–384 × 256–512. 3D SWI images
were acquired as follows: TR = 46–49 ms; TE = 40 ms; slice
thickness = 2.0–3.0 mm; FOV = 158—01 mm × 230 mm; matrix
size = 137–177 × 192–256, with no inter-slice gap for 1.5 T and

FIGURE 1 | Algorithm of patient inclusion.

(3D) MP-RAGE sequence (TI = 900 or 1,100 ms; TR = 1,380 or
2,530 ms; TE = 2.2 or 3.4 ms; slice thickness = 1.0 or 1.1 mm;
FOV = 211 or 256 mm × 211 or 256 mm; matrix size = 192
or 256 × 192 or 256. 3D and 2D FLAIR images were acquired

Frontiers in Neuroscience | www.frontiersin.org 3 September 2021 | Volume 15 | Article 711074

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-711074 September 25, 2021 Time: 16:49 # 4

Környei et al. Temporary SWI Invisibility of TMBs

TABLE 1 | Age, causes, and symptoms of TBI according to admission data.

6 Groups

0–24 h 24–48 h 48–72 h 72 h <

Number of patients 46 11 14 11 10

Median age for whole set of patients, mean for groups in years 50 (IQR 27–67) 34.45
(SD = 25.72)

52.00
(SD = 25.45)

53.91
(SD = 18.65)

42.00
(SD = 24.59)

Causes of TBI Falls 21 2 9 5 5

Traffic
accident

15 6 2 3 4

Violence 3 1 0 2 0

Other* 7 2 3 1 1

Symptoms
of tBI

Physical
symptoms

Nausea/vomiting 11 2 2 4 3

Amnesia 9 1 2 5 1

Headache 7 2 0 3 2

Loss of
consciousness

6 1 1 3 1

Somnolence 2 1 0 0 1

Dizziness 2 1 0 1 0

Sensory symptoms** 2 1 0 1 0

History could not be obtained 12 3 3 3 3

Other*** 7 3 1 1 2

Asymptomatic 6 0 5 0 1

TBI, traumatic brain injury; PTSD, post-traumatic stress disorder.
*Unknown, intoxicated, GM, sports, etc.
**For example, blurred or double vision, numbness, hearing impairment, etc.
***Disorientation, agitation, seizures, PTSD, and thoracic emphysema all occurred.

using the following: TI = 1,800–2,500 ms; TR = 5,000–9,000 ms;
slice thickness = 0.9–4.0 mm; FOV = 193–230 mm × 220 or
230 mm; matrix size = 192–512 × 256 or 512. 3D SWI images
were acquired as follows: TR = 27 ms; TE = 20 ms; slice
thickness = 1.5 mm; FOV = 158–199 mm × 220 or 230 mm;
matrix size = 167–223 × 256, with no inter-slice gap for 3T
measurements (Supplementary Table 1).

Elapsed time expressed as hours between the trauma and
the nearest SWI imaging was recorded as follows: time of the
trauma was registered according to admission documentation,
recorded by the National Ambulance Service or the Emergency
Department of UP MS, and the exact time of scans was
documented from the MRI scans’ DICOM data.

Hemorrhagic and Nonhemorrhagic MRI
Lesion Detection
Anonymized CT and MRI scans were read by AT and BK, with
both authors having more than 6 years of experience in human

brain CT and MRI data processing, blinded to clinical and time-
to-scan data. Final lesion counts were described as per agreement.
Lesion parameters were validated by PB, who specializes in
neuroradiology with more than 10 years of experience.

Susceptibility weighted imaging TMBs were defined as ovoid
or curvilinear hypointensities localized in the WM, mostly at
the WM-GM junction, in the brainstem, or in the corpus
callosum and the region of the basal ganglia. For precise TMB
identification, exclusion of SWI lesion mimics (intersects of
veins, bottom of sulci, calcium deposits, artifacts caused by air–
tissue interfaces, or macroscopic bleeding caused by, e.g., an
intraventricular drain) had to be performed. Therefore, SWI
images were registered with high-resolution T1-weighted images
using FMRIB’s Linear Image Registration Tool (FLIRT), which
allowed a multimodal and anatomically accurate assessment of
TMBs (Jenkinson and Smith, 2001; Jenkinson et al., 2002; Greve
and Fischl, 2009).

Lesions adjacent to contusions, intraventricular hemorrhage,
or bone–air interface artifacts (e.g., near mastoid process) or
an external ventricular drain were excluded. The overall TMB
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TABLE 2 | Influential factors of TMB count: age, TBI severity, and relevant SWI imaging data, level of significance of differences between groups.

6 Groups Significance

0–24 h 24–48 h 48–72 h 72 h <

Number of patients 46 11 14 11 10

Median age for whole set of patients, mean for groups in years* 50 (IQR
27–67)

34.45
(SD = 25.72)

52.00
(SD = 25.45)

53.91
(SD = 18.65)

42.00
(SD = 24.59)

p = 0.19

Gender*** Male 37 10 10 9 8 p = 0.72

Female 9 1 4 2 2

TBI severity
(MAYO)***

Symptomatic 6 0 3 3 0 p = 0.11

Mild 8 3 0 3 2

Moderate-
severe

32 8 11 5 8

MARSHALL
score***

I 13 4 5 2 2 p = 0.73

II 8 2 2 1 3

III 8 2 1 4 1

IV 0 0 0 0 0

V 0 0 0 0 0

VI 17 3 6 4 4

Rotterdam
score***

1 27 6 12 4 5 p = 0.09

2 14 3 1 7 3

3 2 1 0 0 1

4 2 1 0 0 1

5 0 0 0 0 0

6 0 0 0 0 0

SWI field
strength***

1.5 T 11
(23.91%)

4 (36.36%) 3 (21.43%) 2 (18.18%) 2 (20.00%) p = 0.77

3 T 35 7 11 9 8

SWI slice
thickness
(mm)***

1.15 1 1 0 0 0 p = 0.59

1.2 1 1 0 0 0

1.5 32 5 10 9 8

2 8 2 2 2 2

3 3 2 1 0 0

Results of one-way ANOVA (*) and Fisher’s exact test (***).
TMB, traumatic microbleed; TBI, traumatic brain injury; SWI, susceptibility weighted imaging.
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TABLE 3 | Traumatic microbleeds count and localization, macroscopic pathologies, FLAIR lesion counts, contusion number, and volume and the level of significance of
differences between groups.

Number of patients 6 Groups Significance

0–24 h 24–48 h 48–72 h 72 h <

46 11 14 11 10

TMB load** Total 248 95 26 33 94 p = 0.011

Median 3.00 (IQR
0.00–7.00)

4.00 (IQR
1.50–
11.00)

1.00 (IQR
0.00–3.00)

1.00 (IQR
0.00–6.00)

7.50 (IQR
3.00–
10.00)

TMB
localization***

Subcortical 220 85 25 27 83 p = 0.68

Corpus
callosum

19 7 1 3 8

Brainstem 9 3 0 3 3

FLAIR lesion
Number**

Total 277 20 124 32 101 p = 0.18

Median 2.00 (IQR
0.00–7.25)

0.00 (IQR
0.00–1.75)

0.50 (IQR
0.00–
14.00)

3.00 (IQR
1.00–4.00)

5.00 (IQR
1.00–
14.00)

Contusion
Number**

Total 16 7 3 5 1 p = 0.66

Median 0.00 (IQR
0.00–0.75)

0.00 (IQR
0.00–1.50)

0.00 (IQR
0.00–0.00)

0.00 (IQR
0.00–1.00)

0.00 (IQR
0.00–0.00)

Contusion
volume**

Total 19837.8 2741.00 4064.50 12902.7 129.60 p = 0.69

Median 378.25
(IQR

124.65–
1446.00)

842.00
(IQR

539.29–
1316.00)

331.50
(IQR 0.00–
1642.25)

214.00
(IQR

143.28–
9480.25)

129.60

Macroscopic
pathologies***

Intraventricular
hematoma

2 1 0 1 p = 0.79

Skull fracture 13 5 5 3

Epidural
hematoma

3 3 0 0

Subdural
hematoma

7 1 3 3

Subarachnoideal
hematoma

7 2 4 1

Atrophy 4 1 3 0

Results of the Kruskal–Wallis with Conover post hoc test (**) and Fisher’s exact test (***).
TMB, traumatic microbleed; FLAIR, fluid-attenuated inversion recovery.

number and localization according to Adams et al. (1989) was
individually recorded.

Fluid-attenuated inversion recovery lesions were defined
as focal, round to ovoid hyperintensities and strictly
localized within the WM.

Examples of SWI and FLAIR lesions at different time points
are shown in Figures 2, 3.

Statistical Analysis
MedCalc for Windows, version 19.1.1 (MedCalc Software,
Ostend, Belgium) was used regarding all statistical analyses on

the anonymized data except for Fisher’s exact test, which was
processed using the IBM SPSS Statistics for Windows, Version
25.0 (IBM Corp., Armonk, NY, United States). Descriptive
statistics were applied to summarize clinical, CT, and MRI
data. In cases of non-normal distributed data median and the
interquartile range, and in cases of normally distributed data,
mean and SD are depicted in Table 2.

To model temporal trends of lesions, linear, exponential,
and second-degree polynomial trend lines were aligned to
the number of SWI TMBs and FLAIR hyperintensities in
function of elapsed time following TBI; Grubbs’ test was
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FIGURE 2 | Representative examples of TMBs in SWI images in <24, 24–48, 48–72, and 72 h < groups. All four SWI measurements were performed on a 3T
Siemens Magnetom Prisma MRI scanner. According to Mayo Clinic Classification, both cases (top left, 21-year-old male; top right, 50-year-old male; bottom left,
64-year-old male; and bottom right, 60-year-old male) were classified as severe TBI. TMBs are indicated by red circles. In the bottom left image, hypointensity
caused by the intraventricular drain is indicated by a blue circle. TMB, traumatic microbleed; SWI, susceptibility weighted imaging; TBI, traumatic brain injury.

applied to exclude outliers. For further analysis, the best-
fitting trend line (the one with the highest R2 value) was
selected. For both TMBs and FLAIR lesions, a second-order
polynomial trend line aligned the best (R2 = 0.20). The
solution of this trend line’s equation regarding the average TMB
count defined the exact time frame in which TMB numbers
were below average.

The commonly referred defined time frame was adapted
considering clinical and practical applicability; thus, four groups
were created based on the elapsed time between the trauma
and the earliest MRI: 0–24 h (n = 11); 24–48 h (n = 14);
48–72 h (n = 11); and 72 h < (n = 10). The Shapiro–Wilk
normality test was applied to test the distribution of TMB, and
FLAIR lesion numbers, age, contusion number, and total volume.
Fisher’s exact test with continuity correction was used to elucidate
differences in occurrence of categorical variables between the
groups, possibly affecting lesion count such as gender, Mayo
Clinic TBI classification, Rotterdam and Marshall scores, TMB

localization, slice thickness, and scanner field strength. The
Kruskal–Wallis ANOVA with Conover post hoc test was applied
to assess the average TMB and FLAIR lesion count, contusion
number, and volume differences between the groups; statistical
power of the comparisons was calculated with R Statistical
Software’s MultNonParam-kwpower package (version 3.6.0.; R
Foundation for Statistical Computing, Vienna, Austria).

RESULTS

According to the Mayo Clinic Classification System regarding
TBI, severity distributed was as 6 = symptomatic, 8 = mild,
and 32 = moderate–severe in the set of 46 patients. The
distribution of age in our entire set of patients was not normally
distributed (p = 0.02); mean age in time of the trauma was
46.09 (SD = 24.39) years. A total of 248 TMBs (131 on 3-T
and 117 on 1.5-T scanners) and 220 hyperintense focal lesions
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FIGURE 3 | Representative images of nonhemorrhagic/FLAIR lesions in <24, 24–48, 48–72, and 72 h < groups. All four FLAIR measurements were performed on a
3T Siemens Magnetom Prisma MRI scanner. According to Mayo Clinic Classification, two of the four patients (top right, 77-year-old female; bottom left, 31-year-old
male) suffered symptomatic TBI, and two of them (top left, 75-year-old female; bottom right, 27-year-old male) were classified as severe TBI; lesions are indicated by
red circles. FLAIR, fluid-attenuated inversion recovery; TBI, traumatic brain injury.

FIGURE 4 | Individual TMB number over time, fitted second-order polynomial trend line. TMB, traumatic microbleed.

in FLAIR were identified among 46 patients. In reference to
acute CTs, 16 contusions were detectable in nine of our patients.
Detailed demographic and admission clinical data are presented
in Tables 1–3. A second-order polynomial trend line is depicted
regarding the individual TMB number over time with the highest
R2 value. In reference to the TMB number R2 = 0.2, p = 0.002,
y = 3.0206X2

− 13.065X + 15.04 values were yielded (Figure 4).
The average TMB number with respect to the entire population
was 5.4. Substituting this value in the quadratic formula:

x1; 2 =
−b±

√
b2 − 4ac

2a

X1 = 85 h 55 min and X2 = 21 h 50 min were yielded.
The nearest two acquisitions in our set of patients to these
results were 21 h 11 min and 79 h 45 min following trauma.
This result supported a strong tendency regarding the further
division of our data into the groups described in methods [0–24 h
(n = 11); 24–48 h (n = 14); 48–72 h (n = 11) 72 h < (n = 10)].
Additionally, a polynomial tendency line was represented with
the highest R2 value for FLAIR lesion numbers (R2 = 0.07,
p = 0.08, Figure 5).

The Shapiro–Wilk normality test revealed that both TMB (0–
24 h, p = 0.003; 24–48 h, p = 0.005; 48–72 h, p = 0.003; and
72 h <, p = 0.04) and FLAIR lesion count significantly differed
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FIGURE 5 | Individual FLAIR lesion number over time, representing the second-order polynomial trend line. FLAIR, fluid-attenuated inversion recovery.

FIGURE 6 | Kruskal–Wallis with Conover post hoc test: results for TMB number differences. The symbol “*” represents significant (p < 0.05) differences of TMB
count; the blue circle and the red square stand for the two patients with the highest TMB count. TMB, traumatic microbleed. * represents significant (p < 0.05)
differences of TMB count.

from normal distribution in every group (0–24 h, p = 0.003; 24–
48 h, p = 0.004; 48–72 h, p = 0.003; and 72 h <, p = 0.04) and
in the entire population, as well (p < 0.001 for both TMB and
FLAIR lesion count). Contusion numbers did not show normal
distribution (p < 0.001 in every group); contusion volumes as
continuous variables also failed to show normal distribution;

median contusion volumes were 0–24 h = 842.00 (IQR 539.29–
1,316.00) mm3; 24–48 h = 331.50 (IQR 0.00–1,642.25) mm3; 48–
72 h = 214.00 (IQR 143.28–9,480.25) mm3; 72 h ≤ 129.60 mm3.
Patients’ age in each group did not significantly differ from
that which is normally distributed: 0–24, p = 0.12; 24–48 h,
p = 0.16; 48–72 h, p = 0.28; and 72 h <, p = 0.14. Results
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for comparison of clinical and CT data among groups were as
follows: mean age in years were 0–24 h = 34.45 (SD = 25.72);
24–48 h = 52.00 (SD = 25.45); 48–72 h = 53.91 (SD = 18.65);
and 72 h ≤ 42.00 (SD = 24.59). One-way ANOVA revealed
that there were no significant differences in relation to age,
p = 0.19 (Table 2). Fisher’s exact test did not reveal significant
differences with respect to the Mayo Clinic TBI classification
(p = 0.11), Rotterdam (p = 0.09) and Marshall (p = 0.73) scores,
SWI field strength (p = 0.77), and slice thickness (p = 0.59), in
the distribution of macroscopic pathologies (p = 0.79) or the
gender of our patients (p = 0.72) (Table 2). Median TMB count
in each group was as follows: 0–24 h = 4.0 (IQR 1.50–11.00);
24–48 h = 1.0 (IQR 0.00–3.00); 48–72 h = 1.0 (IQR 0.00–6.00);
and >72 h = 7.5 (IQR 3.00–10.00). Median FLAIR lesion count
was 0–24 h = 0.00 (IQR 0.00–1.75); 24–48 h = 0.50 (IQR 0.00–
14.00); 48–72 h = 3.00 (IQR 1.00–4.00); and >72 h = 5.00
(IQR 1.00–14.00) (Table 3). The Kruskal–Wallis test for TMBs
revealed significant differences (p = 0.01) between the groups but
showed no significant correlations with respect to FLAIR lesions
(p = 0.18) and number of contusions (p = 0.66) or in respect to the
average contusion volume (p = 0.69), as it is shown in Table 3 and
Figure 6. Statistical power was 1− β > 0.9 for TMB, FLAIR lesion
count, and contusion volume comparisons. TMB localization did
not show differences among the groups (p = 0.68).

DISCUSSION

This retrospective study on cross-sectional imaging data enabled
an indirect validation of the phenomenon of general transient
TMB visibility decrease in human SWI scans. A trend line
representing the individual TMB count revealed a nadir between
approximately 21 and 80 h following trauma. According to
practical considerations, these time points were adjusted to 24
and 72 h for further analysis. Due to the cross-sectional nature
of the study, it was crucial to check the presence regarding
factors potentially posing as a bias. TBI severity (according
to Mayo Clinic Classification and Marshall score), distribution
of macroscopic pathologies, SWI field strength, age, gender
distribution, or any of the influential factors among the time
groups significantly did not differ. Thus, these time groups
proved ideally suitable to examine the influence of elapsed time
between TBI and SWI on TMB visibility. Median TMB count in
the 24–72 h period was significantly lower than in the hyperacute
(0–24 h) period or than in the 72 h < period. Although TMB
formation is reported to be significantly more frequent among
older patients, we experienced lower median TMB numbers in
groups in which the average age was higher.

As an internal control of our study, we examined the
occurrence of FLAIR lesions, as markers of edema developing
along with DAI, over time. Distinctly, FLAIR lesion count did not
significantly differ in the examined time period, which suggests
that we are confronting a phenomenon specific for TMBs. FLAIR
lesions are also regarded as markers of DAI and injury severity
and may be more stable over the acute to subacute phase;
however, previous studies suggest that they are not so specific and
clearly related to the extent of actual DAI and prognosis (Marquez

De La Plata et al., 2007; Ding et al., 2008; Bigler et al., 2013;
Amyot et al., 2015) as TMBs (Tong et al., 2003).

The findings of this study are congruent with our
former results: in our rat model, TMBs showed significant
temporal visibility reduction in SWI; they often became
completely invisible in the 24–96 h period, while microbleeds’
consistent presence was histologically proven. Reappearance
was demonstrated after 96 h. In this article, the authors
expressed that the most possible explanation regarding acute
TMB disappearance may be clot retraction caused by voxel
level homogenization resulting in signal gain. The authors
also suspected the possible role of methemoglobin formation
and consequential T1 shine through. The reappearance of
microbleeds could be explained by the development of late
breakdown products of hemoglobin as hemosiderin and
ferritin, known to be superparamagnetic (Bradley, 1993;
Tóth et al., 2019).

Our findings support former case studies reporting TMBs’
morphological changes in SWI, which, moreover coincide with
case observations by Watanabe et al. that TMB invisibility
may occur roughly between 24 h and 7 days after formation
(Watanabe et al., 2016). Furthermore, in a study focusing on
cerebral blood flow changes in an experimental closed head injury
rat model, the authors reported some ancillary cases in which
hypointense foci congruent with TMBs disappeared and later
reappeared (Kallakuri et al., 2015).

The main practical consequence of these results implies
that SWI may be false-negative for TMBs between 24 and
72 h following injury. Half of our patients (23 of 46)
were examined in this time period. This demonstrates at
least in our institution that there is a considerable chance
for patients being MRI scanned within the “decreased TMB
visibility” period. We assume that this may be a general
problem, since MRI is almost always electively, secondarily
performed to admission CTs, often after clinical stabilization.
Additionally, our finding may be applicable in relation to not
only TMBs but also the acute examination of every pathology
capable of causing WM TMBs. Although 1.5T and 3T field
strength acquisition rates were rather evenly distributed among
time points, considering overall lesion counts, 3T detected
somewhat more lesions (131) than 1.5T (117), supporting the
fact that 3T has a higher sensitivity for TMBs irrespective
of imaging timing.

The main limitations of this study are the limited sample
size, as a result of our strict inclusion criteria; and temporal
features of TMBs were indirectly investigated based on cross-
sectional data. Also, according to the assumed nature of temporal
changes of TMB visibility, there could be an uncertainty of TMB
development in patients examined between 24 and 72 h. Direct
investigation of the temporal visibility changes of TMBs would
have been only possible by a longitudinal study. Unfortunately,
the implementation of multiple time point follow-up MRI studies
in TBI, especially when including severely injured patients, is
almost impossible: although MRI itself can be regarded as a safe
imaging technique, the relatively long acquisition time can be
inconvenient for TBI patients or may even pose risk for severely
injured patients due to patient and anesthesiological/intensive
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care gear transportation. However, very strict patient selection
criteria were applied, and factors most possibly affecting TMB
presence were considered to minimize biased results.

CONCLUSION

This retrospective study indirectly substantiates that short-term
temporary TMB visibility decrease is generally present not only
in rodents but in humans as well. Based on our results, TMB
visibility decrease seems to occur from 24 to 72 h following
TBI. MRI for detecting TMBs in this period may result in false-
negative findings, leading to an under-diagnosis of injury severity
and false prognosis estimation.
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