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Abstract
Bronchial asthma is a chronic inflammatory disease in which bronchial wall remodelling plays a significant role. This phe-
nomenon is related to enhanced proliferation of airway smooth muscle cells, elevated extracellular matrix protein secretion 
and an increased number of myofibroblasts. Phenotypic fibroblast-to-myofibroblast transition represents one of the primary 
mechanisms by which myofibroblasts arise in fibrotic lung tissue. Fibroblast-to-myofibroblast transition requires a combi-
nation of several types of factors, the most important of which are divided into humoural and mechanical factors, as well 
as certain extracellular matrix proteins. Despite intensive research on the nature of this process, its underlying mechanisms 
during bronchial airway wall remodelling in asthma are not yet fully clarified. This review focuses on what is known about 
the nature of fibroblast-to-myofibroblast transition in asthma. We aim to consider possible mechanisms and conditions that 
may play an important role in fibroblast-to-myofibroblast transition but have not yet been discussed in this context. Recent 
studies have shown that some inherent and previously undescribed features of fibroblasts can also play a significant role in 
fibroblast-to-myofibroblast transition. Differences observed between asthmatic and non-asthmatic bronchial fibroblasts (e.g., 
response to transforming growth factor β, cell shape, elasticity, and protein expression profile) may have a crucial influence 
on this phenomenon. An accurate understanding and recognition of all factors affecting fibroblast-to-myofibroblast transition 
might provide an opportunity to discover efficient methods of counteracting this phenomenon.
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Introduction

Bronchial asthma is one of the most common chronic dis-
eases in the world. It affects over 10% of the human popula-
tion, and its prevalence is still rising. Bronchial asthma is 
a clinically heterogeneous, chronic inflammatory disorder 
of the airways characterized by their hyperresponsiveness 
to environmental stimuli and by airflow limitation. The 
regulatory mechanisms and consequences of inflammation 
in asthma form a complicated network of reciprocal influ-
ences, including a sequence of events through which struc-
tural and infiltrating cells and their signalling molecules are 
involved in the irreversible rebuilding of the bronchial wall 
(called remodelling) [1, 2]. Airway remodelling is defined 
as a sequence of chronic structural changes that lead to 
thickening of the airway wall, epithelial damage, subepi-
thelial fibrosis, increased deposition of extracellular matrix 
(ECM), smooth muscle hypertrophy, and increased vascular-
ity [3–6]. Severe asthma, as defined by the clinical presenta-
tion, is most strongly associated with remodelling. However, 
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inflammatory cell subtypes in asthma are also relevant to 
the thickening of the bronchial wall. Eosinophilic inflam-
mation of the airways was found to correlate with the loss 
of lung function due to a decline in the FEV1/FVC ratio [7]. 
However, in a recent study, transgenic expression of inter-
leukin-8 in bronchial epithelium mimicked a severe asthma 
phenotype in mice and induced the neutrophilic phenotype 
and progressive remodelling of the airways [8].

Despite extensive research, several important questions 
concerning the pathogenesis of asthma remain unanswered. 
It is not clear whether airway remodelling is a normal 
response to chronic inflammation or, alternatively, whether 
the remodelling process itself may be a primary event in 
asthma development independent of inflammation [6]. Some 
evidence shows that airway inflammation is not the only 
cause of remodelling. First, changes in the bronchial wall 
can occur in early childhood, not necessarily subsequent to, 
but rather before inflammation [9–11]. Second, drugs spe-
cifically targeting inflammatory pathways that are commonly 
used in asthma treatment have had limited or no success in 
suppressing bronchial wall remodelling [12–14]. Moreover, 
many recent population and epidemiological studies have 
indicated that hereditary factors are very important in the 
development of asthma and in bronchial wall remodelling 
[15–20]. It is well documented that the lungs of patients with 
asthma are characterized by airway narrowing and increased 
thickness of the airway wall (thickening of muscle bundles 
and subepithelial fibrosis), which correlate with the severity 
of bronchial asthma [21, 22]. Subepithelial fibrosis occurs 
in the airway mucosa, which contains mainly fibroblasts, 
myofibroblasts, inflammatory cells, vessels and ECM pro-
teins [3, 5]. The thickening of muscle bundles results from 
hyperplasia and hypertrophy of airway smooth muscle cells 
(ASMC) and their distinct hyper-reactive (‘primed’) pheno-
type, which are characterized by increased release of pro-
inflammatory and immunomodulatory factors [6]. The key 
role of ASMC in remodelling has been intensively investi-
gated and fairly well clarified [6, 23–29]. The thickening of 
the asthmatic (AS) subepithelial layer is due to exaggerated 
deposition of ECM proteins (primarily collagen I, III, and 
V and non-collagenous proteins, including elastin, tenascin, 
fibronectin and laminin), which are predominantly produced 
by activated ASMC, fibroblasts and myofibroblasts [30–34]. 
To complete the picture of events occurring in AS bron-
chial walls, fibroblasts, myofibroblasts and their interactions 
should also be considered. These remarkable cells appear to 
be crucial for the changes leading to narrowing of the airway 
lumen. The contribution of myofibroblasts to the progression 
of bronchial wall remodelling in asthma is indisputable, but 
the role of fibroblasts in the subepithelial layer in myofi-
broblast transition, although frequently described, remains 
ambiguous. In this review, we aim to assemble the current 
knowledge on components and processes that may lead to 

myofibroblast formation, especially as a result of fibroblast-
to-myofibroblast transition (FMT) in bronchial asthma.

Myofibroblasts in the bronchial wall

Myofibroblasts are mesenchymal cells that, due to their phe-
notype, are often described as a cross between fibroblasts 
and smooth muscle cells. Myofibroblasts are able to syn-
thesize ECM proteins (as are fibroblasts) and the myocyte-
specific isoform α-smooth muscle actin (α-SMA), which 
is visible in cells as stress fibres. These features enable 
myofibroblasts to induce a contractile force. It is generally 
accepted that myofibroblasts (including bronchial myofibro-
blasts from AS individuals), in addition to their expression 
of α-SMA, express transgelin (SM-22-α), smooth muscle 
myosin, osteopontin, and calponin-1 and are interconnected 
via gap junctions, highlighting their similarities with smooth 
muscle cells. As mesenchymal cells, myofibroblasts express 
vimentin and fibroblast surface protein (FSP) [35–41]. The 
contractile apparatus of myofibroblasts is composed of 
α-SMA-enriched bundles of microfilaments terminated 
with focal adhesions (FAs) positive for integrins (α1, α3, 
α4, α5, αV, β1), vinculin, paxillin, talin, and tensin [42–45]. 
It was shown that compared to fibroblasts, human bronchial 
myofibroblasts have a larger mean surface area and reduced 
extension of cell shape (extension is a measure of how much 
the shape differs from a circle, taking a value of zero if the 
shape is circular and increasing without limit when the shape 
becomes less circular) [46]. Human bronchial fibroblasts 
(HBFs) are generally smaller and less elongated than mature 
myofibroblasts [46–48].

Bronchial myofibroblasts are not only contractile but also 
metabolically active. AS myofibroblasts display increased 
expression and secretion of ECM components, such as col-
lagens I, III, and V, fibronectin [49, 50], tenascin [51] and 
proteoglycans (lumican, versican biglycan and decorin) 
[50, 52, 53]. Enhanced collagen production by fibroblasts 
and myofibroblasts leads to greater thickness of the lamina 
reticularis in bronchi of AS patients (between 4 and 12 μm, 
in comparison with 2–6 μm in non-asthmatic (NA) subjects) 
[49, 54–56]. Chu et al. suggest that although increased colla-
gen deposition in the subepithelial basement membrane is a 
characteristic of asthma, it may not explain the differences in 
severity of asthma [57]. It is known that myofibroblasts are 
also a source of matrix metalloproteinases (MMPs) and their 
inhibitors (tissue inhibitors of metalloproteinase, TIMP) [33, 
58, 59]. In bronchoalveolar lavage fluid (BALF), sputum, 
and airway biopsies from AS subjects, increased MMP-9 and 
TIMP-1 expressions were demonstrated [60–62]. However, 
compared to control subjects, AS subjects have a signifi-
cantly lower MMP-9 to TIMP-1 ratio, which correlates with 
the degree of airway obstruction. Weitoft and co-workers 
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demonstrated that in both controlled and uncontrolled 
asthma, the MMP-9/TIMP-3 ratio is decreased [50]. Many 
reports have also shown that myofibroblasts are an abundant 
source of inflammatory mediators, cytokines, chemokines, 
and growth factors, such as granulocyte–macrophage col-
ony-stimulating factor (GM-CSF), interleukins (IL-1, IL-6, 
IL-8), stem cell factor (SCF), transforming growth factor 
type β (TGF-β), and vascular endothelial growth factor 
(VEGF) [63–66]. Thus, myofibroblast-derived factors may 
act not only on themselves but also on other airway and 
immune cells, such as smooth muscle cells, by promoting 
cell migration, hyperplasia and hypertrophy [67, 68].

Several sources of myofibroblasts have been identi-
fied thus far. Myofibroblasts may arise as a result of both 
epithelial-to-mesenchymal transition (EMT) [69–72] and 
endothelial-to-mesenchymal transition (EndoMT) [73]. 
Fibrocytes and mesenchymal stem cells circulating in the 
blood and originating from bone marrow may also be a 
source of myofibroblasts [74–81]. Fibrocytes are an impor-
tant source of myofibroblasts in chronic severe asthma [82]. 
Myofibroblasts can also be derived from differentiated peri-
cytes [83, 84] or smooth muscle cells [40]. However, the 
most common source of myofibroblasts is the population of 
fibroblasts residing in the connective tissue of bronchi, as 
under the influence of various stimuli, fibroblasts can change 
their phenotype to that of myofibroblasts.

FMT

FMT is a phenomenon that occurs in the human body under 
both physiological and pathological circumstances. An 
increase in myofibroblast formation in the connective tissue 
as well as disturbances in apoptosis is related to impaired 
wound healing and chronic inflammation. Thus, abnormal 
myofibroblast formation is often described in the pathogen-
esis of fibrotic diseases. Enhanced formation of myofibro-
blasts has also been reported in subepithelial remodelling 
in asthma [85, 86].

The primary mechanism of FMT has been discovered 
and described in wound healing [87]. Numerous in vitro 
studies have suggested that the FMT process requires two 
stages. In the initial phase, fibroblasts develop a transitional 
phenotype known as proto-myofibroblasts, which are then 
converted into fully differentiated (mature) myofibroblasts 
[42, 88]. Fibroblast-to-proto-myofibroblast transition is 
facilitated by mechanical tension within the wound and is 
accompanied by ED-A fibronectin [89] and platelet-derived 
growth factor (PDGF) secretion. PDGF is able to induce the 
formation of stress fibres and increase the motility of cells 
[90]. The formed proto-myofibroblasts express both β- and 
γ-actin isoforms (incorporated into stress fibres) and N-cad-
herin, which exert less adhesion force than OB-cadherin but 

facilitate the increased motility of proto-myofibroblasts [91]. 
Distinguishing between fibroblasts and proto-myofibroblasts 
is very difficult in vitro because most of the fibroblasts in 
culture exhibit a proto-myofibroblast phenotype [88]. A 
prolonged state of high stress and the presence of FMT-
stimulating cytokines, growth factors and ECM proteins 
cause proto-myofibroblasts to initiate synthesis of α-SMA 
and gradually form α-SMA-containing stress fibres. Fully 
differentiated myofibroblasts express OB-cadherin, possess 
mature FAs (containing de novo expression of focal adhe-
sion kinase (FAK) and tensin), and exhibit less motility, a 
reduced proliferation rate and enhanced contractility [42, 
64, 91].

In asthma and other fibrotic lung disorders, FMT pro-
ceeds in a similar manner, but its effect on the bronchi 
microenvironment seems to be different. Typically, myofi-
broblasts enter the apoptosis pathway after fulfilling their 
function. Some in vitro studies have suggested that normal 
lung myofibroblasts can differentiate back into fibroblasts 
[92, 93]. In asthma, myofibroblasts seem to remain within 
the tissue and actively participate in bronchial wall remodel-
ling by inducing a contractile force on the surrounding cells 
and ECM as well as by secreting growth factors and ECM 
components [94].

Stimuli affecting FMT in asthma

Previous studies on the nature of FMT have led to the iden-
tification of various factors involved in the induction of 
this phenomenon in asthma. The humoural agents primar-
ily include growth factors, cytokines and chemokines. The 
second group of FMT-triggering agents are mechanical fac-
tors, among which intercellular interactions and the inter-
action of cells with different substrates and ECM proteins 
should be distinguished. Due to the complicated pathogen-
esis of asthma, many FMT stimuli may interact with one 
another, thereby leading to further induction of FMT. The 
most important and best-described FMT-triggering factors 
in asthma are summarized in Table 1.

Humoural factors

According to the current literature, the role of growth fac-
tors in triggering FMT is unquestionable and fundamental. 
Among all the identified pro-fibrotic factors, the best known 
is TGF-β. Three homologous isoforms of TGF-β have been 
identified (TGF-β1, TGF-β2 and TGF-β3). TGF-β is secreted 
into the extracellular space by both bronchial structural cells 
(epithelial cells, fibroblasts, endothelial cells, vascular cells 
and ASMC) and inflammatory cells infiltrating the bron-
chial wall (eosinophils, macrophages) [95–98]. Literature 
data indicate that all TGF-β isoforms are secreted in the AS 
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lung, but among them, the β1 and β2 isoforms seem to be 
the most significant [99–103]. Increased levels of TGF-β 
in the bronchi [95, 104] and BALF of AS subjects have 
been described [105, 106]. The existence of a relationship 
between the amount of TGF-β present in the respiratory tract 
and the severity of asthma has also been suggested [106, 
107]. Nevertheless, several studies investigating the expres-
sion of TGF-β1 in asthma have shown conflicting results. It 
has been demonstrated in human bronchial biopsy speci-
mens that there are no differences in the immunohistochemi-
cal staining of TGF-β1 between AS and control subjects [56, 
108, 109]. However, TGF-β has been confirmed to play an 
important role in most cellular biological processes leading 
to airway remodelling in asthma. TGF-β affects different 
cell types and exhibits pleiotropic and immunomodulatory 
functions [95, 106, 110–115]. Depending on the chemical 
and mechanical conditions, TGF-β may have pro- or anti-
apoptotic effects on epithelial cells [116] and can induce 
EMT in airway epithelial cells from AS subjects [117]. It 
is well documented that TGF-β is able to trigger FMT in 
AS subjects both in vitro [95, 97, 98, 118, 119] and in vivo 
[120–122]. It was also shown that in AS subjects, TGF-β 
can indirectly contribute to fibrosis by triggering the produc-
tion of other fibrosis mediators, such as interleukin-6 (IL-6) 
[123]. TGF-β can also induce or enhance the secretion of 
fibroblast growth factor-2 (FGF-2), connective tissue growth 
factor (CTGF) and VEGF from fibroblasts, myofibroblasts 
or airway smooth muscle [124–128].

CTGF (also known as CCN2) is another important 
growth factor that participates in fibrotic processes in bron-
chial asthma. CTGF is also involved in the course of chronic 
inflammatory diseases [129] and is overexpressed in the lung 
tissue and plasma of AS subjects [130]. This growth fac-
tor in bronchi is mainly produced by fibroblasts, epithelial 

cells, endothelial cells and ASMC. The role of CTGF in 
bronchial wall remodelling, similar to that of FMT, mainly 
involves mediating many of the effects of TGF-β [126–128, 
131]. For example, it was demonstrated that TGF-β-induced 
CTGF release can enhance fibronectin, collagen I and VEGF 
production by ASMC [132–134] as well as induce FMT 
[126–128, 135].

There is no doubt that in addition to the well-coordinated 
activities of TGF-β and CTGF, other growth factors directly 
or indirectly participate in FMT induction in asthma. PDGF, 
for example, increases the migration and phenotypical shifts 
of lung fibroblasts from AS patients [90] and has been shown 
to induce procollagen I expression in lung fibroblasts derived 
from patients with severe asthma [136] and increase the lung 
fibroblast proliferation rate in AS subjects [137]. In turn, 
nerve growth factor (NGF), the level of which is elevated 
in AS airways, [138] is able to induce fibroblast activation, 
fibronectin-induced fibroblast migration, and α-SMA and 
matrix contraction in pulmonary fibroblasts [139–141]. It 
also seems that basic fibroblast growth factor (bFGF), PDGF 
and insulin growth factor 1 (IGF-1) can positively regulate 
lung fibroblast proliferation in asthma [118, 142].

Other substances that are of great importance in trigger-
ing FMT are pro-inflammatory cytokines and chemokines 
(Table 1). Inflammation clearly plays a key role in asthma 
pathogenesis [1, 143–145]. An elevated influx of immune 
cells is associated with increased vascular permeability, and 
a release of cytokines and chemokines has been observed in 
AS airways during disease exacerbation. Presumably, inter-
leukins, including IL-4 and IL-13, are strongly associated 
with inflammatory reactions in asthma. The participation 
of interleukins in FMT is also quite well understood. IL-4 
and IL-13 may directly act on lung fibroblasts and induce 
myofibroblastic transition through the downregulation of 

Table 1   Overview of factors affecting FMT in asthma

Humoural factors

Growth factors Interleukins Chemokines Others

TGF-β (β1, -β2) [95, 97, 98, 
118−128]

CTGF [126–128, 135]
PDGF [90, 136, 137]
NGF [139–141]

IL-4 [146–151, 154, 155, 157]
IL-13 [146–154, 156–159]
IL-5 [150]
IL-11  [160, 161]
IL-17 [162–166]
IL-25 [167–170]
IL-33 [171, 172]
Oncostatin M [173]
TNF-α [118]

Osteopontin [184]
Eotaxin-1 [183]
Eotaxin-2 [182, 185]
Eotaxin-3 [182, 185]
Periostin [154, 187, 198]

Bradykinin [204]
Cysteinyl leukotrienes (LTD4) [202, 203]
Fizz1 [199–201]
Endothelin-1 [205, 206]

Mechanical factors ECM proteins

Mechanical forces/stress [91, 208–211, 218–222]
Substrate stiffness [212, 217]
Cell–cell adhesions [44, 223]
Epithelial cells with an asthmatic phenotype [34, 224]

Fibronectin domain (ED-A) [226]
Tenascin [229]
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cyclooxygenase (COX) gene expression and reduction of 
prostaglandin E2 production [146]. Moreover, IL-4 and 
IL-13 can induce FMT through the c-Jun NH2-terminal 
kinase-dependent pathway [147]. In addition, both interleu-
kins are important players in the induction of the myofibro-
blast phenotype [148–159]. How other interleukins affect 
the induction of FMT in asthma has not been explained, 
but several in vitro and in vivo studies have suggested that 
many interleukins may increase the potential of FMT in 
a TGF-β-dependent or TGF-β-independent manner. For 
example, cytokines that can indirectly and directly induce 
FMT are IL-5 [150], IL-11 [160, 161], IL-17 [162], IL-17A 
[163–166], IL-25 [167–170], IL-33 [171, 172], tumour 
necrosis factor type α (TNF-α) [118], interleukin-6 (IL-6) 
superfamily members, and oncostatin M (OSM) [173]. All 
of the above cytokines have also been reported to be over-
expressed in asthma [150, 174–180].

In the group of chemokines, special interest within 
the context of FMT induction should be paid to eotaxins 
(eotaxin-1, eotaxin-2 and eotaxin-3) [181–184], osteopontin 
(OPN) [39, 185, 186], and periostin [154, 187–190]. First, 
OPN is upregulated in asthma and associated with bron-
chial remodelling in humans. In addition, increased subepi-
thelial expression of OPN correlates with disease severity 
[39, 186]. In mice, OPN has been demonstrated to induce 
the transition of lung fibroblasts into myofibroblasts [185]. 
Another set of chemokines, eotaxins, can selectively modu-
late lung and bronchial fibroblast activity by increasing 
fibroblast proliferation and by regulating MMP-2 activity, 
collagen synthesis, and cell migration [182, 183]. Recently, 
there has been particular interest in periostin as a pro-fibrotic 
factor in asthma [154, 188–191]. This biomarker of eosino-
philia and type 2 inflammation in asthma is produced mainly 
by epithelial cells, fibroblasts, eosinophils, and fibrocytes 
[103, 154, 192–196]. The participation of periostin in the 
promotion of fibroblast transition into myofibroblasts and the 
induction of fibroblast migration has been described [187, 
197]. It is also possible that periostin, as a co-factor of TGF-
β, promotes ECM production and FMT [154, 187, 198].

In the group of humoural factors that induce FMT, atten-
tion should also be paid to unclassified factors such as Fizz1 
[199–201], cysteinyl leukotrienes [202, 203], bradykinin 
[204] and endothelin-1 (ET-1) [205, 206]. All of these fac-
tors can also act directly on myofibroblast formation.

Mechanical factors

The second group of FMT-inducing factors (Table  1) 
includes mechanical factors. It is well known that the state 
of mechanical tension and changes in the tissue microenvi-
ronment are crucial for FMT efficiency. Physical alterations 
involved in the formation of myofibroblasts in a variety of 
tissues, including lung tissues, have been investigated for 

more than 10 years [40, 45, 88, 207]. A number of stud-
ies both in vitro (with fibroblasts in 2D culture on different 
surfaces or in 3D collagen gels with different stiffness) and 
in vivo (with animal models) have shown that mechanical 
stress is one of the most potent factors controlling fibroblast 
phenotypical shifts and cell fate [208–212]. Hinz and co-
workers demonstrated that proto-myofibroblasts may arise 
only on substrates exhibiting an elastic modulus of at least 
3000 Pa and that sometimes, even stiffer culture substrates 
with a Young’s modulus of 20 kPa or higher are required 
to permit further myofibroblast transition [212]. It was also 
shown that the stiffness threshold for myofibroblast differ-
entiation in vitro during wound healing is approximately 
25–50 kPa [207]. As measured by atomic force microscopy, 
fibrotic lung tissue is up to 30 times stiffer than normal lung 
tissue (the Young’s modulus ranges between 20–100 and 
1–5 kPa, respectively) [213–216].

It is worth emphasizing that there are few studies on the 
direct impact of “mechanical forces” on the lung or bron-
chial FMT in asthma. The exception is the study by Shi and 
colleagues, which showed that TGF-β1-induced bronchial 
FMT as well as cell stiffness and contractility was enhanced 
by increasing substrate stiffness in culture [217]. In contrast, 
many reports have described the effect of mechanical forces 
on airway remodelling in asthma [218, 219]. Numerous stud-
ies have shown an increase in ECM protein and proteoglycan 
content (versican, decorin, collagen I and III), MMP-2 and 
MMP-9 synthesis, and IL-6 and IL-8 production in AS fibro-
blasts under mechanical stress [218–222].

A study of bronchial and transbronchial biopsies from 
AS subjects revealed that patients with uncontrolled asthma 
have significantly increased numbers of myofibroblasts (in 
central airways and alveolar parenchyma) and different 
compositions of ECM proteins compared to patients with 
controlled asthma [50]. As described by Weitoft and oth-
ers, the features and resulting differences in elasticity may 
be partly responsible for the mechanical properties of lung 
tissue in subjects with uncontrolled asthma. One explana-
tion for the increased rigidity and reduced flexibility within 
bronchi in asthma may be the increased deposition of ECM 
proteins. It is well known that a local increase in matrix 
stiffness after injury causes an increase in the number of 
myofibroblasts (or FMT), which in turn results in increased 
secretion of ECM proteins (mainly collagens), finally caus-
ing an increase in stiffness of the ECM [40, 212]. The out-
come of this feedback loop determines fibroblast morphol-
ogy and actin cytoskeleton architecture and, consequently, 
affects the FMT process, wherein α-SMA incorporation 
into stress fibres, increases in the size of FAs and increases 
in cell contractility are observed [212]. It has been previ-
ously shown that in contrast to fibroblasts from NA bronchi, 
fibroblasts from AS bronchi cultured in vitro in serum-free 
medium, thus ensuring a lack of cell–cell interactions, are 
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characterized by numerous, extremely thick and prominent 
actin cytoskeleton and relatively large FAs. These features 
directly contribute to the higher stiffness of fibroblasts from 
AS subjects than that of fibroblasts from NA subjects [44]. 
Other findings have shown that the initial absence or induced 
loss of cell–cell adhesions in AS fibroblasts is crucial for the 
completion of FMT [223]. In addition, Reeves et al. reported 
that the interaction between fibroblasts and epithelial cells 
could also be essential for the changed predisposition of 
ECM production in fibroblasts. Increased ECM and α-SMA 
synthesis observed in fibroblasts co-cultured with epithelial 
cells from bronchi of AS subjects may be the consequence 
of their response to the diseased epithelial cell phenotype 
[34, 224]. The above-mentioned interactions play an impor-
tant role in inducing FMT. Although there are few reports 
indicating the direct involvement of mechanical factors in 
asthma-related FMT, their participation in this process is 
undeniable.

ECM proteins that trigger FMT in asthma

A particularly important factor in the ECM protein group 
for the promotion of FMT is the fibronectin splice variant 
ectodomain A (ED-A-FN). The level of this protein was 
found to be increased in asthma and other pulmonary dis-
orders [37, 48, 225]. Lung fibroblasts from OVA-treated 
mice lacking ED-A-FN exhibited reduced proliferation, 
migration, α-SMA expression, and collagen deposition as 
well as impaired TGF-β1 and IL-13 release [226]. As it is 
known that ED-A-FN binds TGF-β in the ECM and that it 
can directly interact with cells via integrins, further expla-
nation of its unusual role in triggering FMT in asthma is 
not necessary. Although there is no clear evidence of the 
direct effect of other ECM proteins on FMT, their possible 
indirect influence on myofibroblast development cannot be 
ignored. Thus, special attention should be paid to tenascin. 
This myofibroblast marker is overexpressed in asthma [51, 

227, 228], and its deficiency in animal models of asthma 
was shown to attenuate airway inflammation and, in par-
ticular, eosinophilia, IL-5 and IL-13 levels in BALF [229]. 
Recently, fibulin-1, a new marker of bronchial asthma, was 
identified [230, 231]. This secreted glycoprotein stabilizes 
other ECM proteins. Considering the undeniable influ-
ence of mechanical stress on FMT, increased stability of 
the ECM may increase fibroblast susceptibility to FMT. 
Another potential indirect effect of ECM on the regulation 
of myofibroblast formation is related to the ability of ECM 
proteins to bind selective growth factors. These growth fac-
tors, which may be produced in increased quantities by AS 
airways, are subject to a variety of interactions with ECM 
proteins. The direct relationship of TGF-β binding to ECM 
in asthma has not yet been described, but given that the regu-
lation of TGF-β may depend on its binding to ECM proteins 
[94, 232], we suggest that such an interaction could also be 
important in asthma-related FMT.

Fibroblast features

It is generally accepted that the above-listed and described 
factors are crucial for FMT in asthma. However, some 
recently published results of in vitro studies have suggested 
that inherent fibroblast features can also play a significant 
role in this process. Michalik et al. showed that bronchial 
fibroblasts derived from AS patients demonstrate enhanced 
TGF-β1-induced potential to differentiate into myofibroblasts 
compared to their NA counterparts [46, 223], which may 
be attributed to the inherent features of these cells (Fig. 1).

The different properties of AS and NA HBFs that are 
associated with their predilection to FMT have recently 
been documented. Several reports have revealed signifi-
cant differences in cell morphology (mainly in cell shape) 
between bronchial fibroblasts derived from AS and NA 
donors cultured under the same standard conditions [44, 

Fig. 1   Differences in the inherent features of human bronchial fibroblasts derived from asthmatic and non-asthmatic donors that affect their 
potential to undergo TGF-β-induced FMT
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46] (Fig. 1—fibroblast morphology). In addition, Kotaru 
et al. [233] noticed substantial differences in cell size within 
populations of fibroblasts isolated from proximal and distal 
parts of AS lungs, which correlated with their predilection 
to FMT. Moreover, it was shown that TGF-β1- or TGF-β2-
induced FMT is accompanied by striking cell shape changes 
and that this phenomenon was improved in HBFs derived 
from AS subjects [46]. These observations correlated with 
an enhanced number of cells with de novo expression of 
α-SMA and with the incorporation α-SMA into highly con-
tractile microfilament bundles in AS HBF populations in 
contrast to NA counterparts (Fig. 1—enhanced percentage 
of myofibroblasts) [36, 46, 204, 223, 234, 235]. Moreover, 
AS human lung fibroblasts (HLFs) expressed higher levels 
of SM22 (a protein that establishes the smooth muscle line-
age of cells) than NA fibroblasts [235].

Recently, Sarna et al. used a combination of cytofluori-
metric and nanomechanical analyses to demonstrate signifi-
cant differences in actin cytoskeleton architecture in HBFs 
derived from AS patients and those derived from NA donors 
[44]. In contrast to NA HBFs, AS HBFs formed thick and 
aligned ventral stress fibres accompanied by enlarged FAs 
(Fig. 1—actin cytoskeleton architecture). These differences 
in cytoskeleton architecture between AS and NA fibroblasts 
correlate with the high elastic modulus and isometric ten-
sion of unstimulated (α-SMA-negative) AS HBFs (Fig. 1—
tension) and their increased predilection to TGF-β-induced 
FMT [44].

Different behaviours of NA and AS HBFs are also 
observed after external stimulation. Many reports indicate 
that the pro-fibrotic potential of HBFs derived from AS sub-
jects is multiplied in response to humoural and/or mechani-
cal factors. After stimulation, AS HBFs exhibited different 
expression patterns of some proteins compared to NA HBFs. 
The most important and notable differences are amplified 
levels of α-SMA and connexin (Cx) 43 (protein involved 
in the intercellular transfer of small metabolites and ions 
via hexameric channels termed gap junctions) [236, 237] 
in response to TGF-β administration in AS HBFs compared 
to NA HBFs (Fig. 1—upregulation of α-SMA and Cx43) 
[46, 223, 234, 238]. It was shown that increased levels of 
Cx43 in AS HBFs correlated with their FMT potential [234]. 
Humoural stimulation of HBFs from AS donors induced an 
increased level of bradykinin B2 receptor [204], leukotriene 
C4 synthase and CysLT1 receptors [239], PAI-1 [235], and 
MRTF-A [235] but also a decreased level of prostaglandin 
E2 [240].

Differences in the level of TGF-β receptors were also 
found between AS and NA HBFs and may have an impact 
on FMT potential (Fig. 1—receptors TGF-β level). The 
results of previous studies clearly indicate that although the 
level of TGF-βRII in AS and NA cell populations is com-
parable [238], significantly increased levels of TGF-βRI in 

HBFs from AS subjects compared to their counterparts from 
healthy donors were observed [203].

Additionally, AS HBFs (through their higher tension) 
affect the expression of ECM components and enhance their 
secretion into the surrounding microenvironment (Fig. 1—
ECM protein secretion). Significant differences in the 
expression of collagens, especially type I [158, 217, 235], 
proteoglycans [241], versican [221, 222], low-molecular-
weight hyaluronan [242], fibronectin [235, 243], decorin 
[221] and tenascin C [229, 244], have been reported. Moreo-
ver, although procollagens I and III synthesis is similar in 
both groups of cells [137], the balance between (pro)col-
lagen synthesis and degradation in HBFs from AS patients 
is unknown [245, 246]. This phenomenon is also associated 
with the TIMP/MMP ratio, which is unbalanced in AS HBFs 
[245]. These characteristics lead to the increased rearrange-
ment and deposition of ECM components, which support 
the phenotypic transformation of HBFs [49, 119, 158, 217], 
as described earlier.

Additionally, in response to the administration of 
humoural factors, HBFs from AS donors secrete signifi-
cantly increased levels of CTGF, IL-6, IL-8, IL-11, IL-17, 
α-chemokines and growth-related oncogene-α compared to 
their NA counterparts (Fig. 1—secretion) [106, 127, 163, 
222, 247]. Similarly, the increased secretion of an active 
form of TGF-β1 is observed in both unstimulated HBFs 
from AS donors and HBFs under pro-inflammatory con-
ditions [106, 158, 203]. In response to mechanical stress, 
HBFs from AS donors exhibit significant upregulation of 
IL-6, IL-8, MMP-2, MMP-9, collagen I and III expression 
[158, 217, 219, 222, 244]. Enhanced expression and secre-
tion of these proteins may further auto-stimulate HBFs from 
AS subjects to undergo phenotypic transformation into 
myofibroblasts.

The differentiated nature of AS and NA HBFs (presented 
and summarized in Fig. 1) enabled the detection of dis-
similarities in intracellular signalling pathway activity. The 
intensification of the output of pro-fibrotic proteins in bron-
chial fibroblasts from AS donors is probably dependent on 
the activation of different signalling pathways in comparison 
with their healthy counterparts.

Changes in ECM composition and stiffness have been 
shown to activate different signalling pathways (Fig. 2). Le 
Bellego et al. demonstrated that mechanical strain increased 
the secretion of pro-fibrotic and pro-inflammatory cytokines 
in bronchial fibroblasts obtained from AS patients, while 
no differences in cytokine secretion were observed in fibro-
blasts derived from normal volunteers [222]. Additionally, 
these authors revealed a mechanical strain-induced increase 
in ECM protein expression in only fibroblasts from AS sub-
jects, which suggested that different signalling pathways are 
involved in the transduction of mechanical stimuli in AS and 
NA fibroblast populations [222]. In particular, mechanical 
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stimulation of AS HBFs resulted in a concomitant increase 
in JNK phosphorylation and decrease in ERK1/2 phospho-
rylation, while p38 phosphorylation was maintained at a 
constant level, but during mechanical strain in NA bronchial 
fibroblasts, p38 phosphorylation was increased [222].

The striking difference observed in the susceptibility of 
fibroblasts derived from AS subjects and NA subjects to 
transition into myofibroblasts in response to humoural fac-
tors (mainly TGF-β1) indicates that these factors can facili-
tate TGF-β1-induced signal transduction in HBFs from AS 
patients. The differential response of AS and NA HBFs to 
TGF-β1 is mainly associated with canonical TGF-β/Smad 
signalling pathway activity [120, 238, 248]. Enhanced 

TGF-β1-induced Smad-dependent signalling in AS HBFs is 
closely linked to the increased levels of Cx43 in these cells 
compared to NA counterparts [234]. It has been shown that 
Cx43 regulates FMT through competition with Smad2 for 
binding sites on microtubules and acts as a type of ‘molecu-
lar switch’ [234, 249–251].

Due to the pleiotropic properties of TGF-β1, the induc-
tion of FMT during airway fibrosis is often associated with 
the activation of various non-canonical TGF-β1-induced 
signalling pathways, e.g., the mitogen-activated protein 
kinase (MAPK) pathway. Activation of FMT via the ERK1/2 
MAPK pathway was also observed in AS fibroblasts after 
the administration of bradykinin [204], IL-4 and IL-13 

Fig. 2   Different activation of some signalling pathways stimulated 
by humoural and mechanical factors in AS and NA bronchial fibro-
blasts. This figure is a simplified illustration of the various signalling 

pathways, which are, in reality, far more complex than described here 
(some details in the text). AS bronchial fibroblasts from asthmatic 
subjects, NA bronchial fibroblasts from non-asthmatic donors
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[147] (Fig. 2). Moreover, inhibition of the p38 MAPK sig-
nalling pathway by SB203580 significantly attenuated the 
bradykinin-induced myofibroblastic transition of both NA 
and AS HBFs [204], but there are no reports concerning the 
effect of p38 MAPK signalling on TGF-β1-induced FMT 
in these cells. Induction of the myofibroblastic transition of 
NA HLFs by TGF-β is also associated with the activation of 
Rho-dependent signalling (Fig. 2) [235, 252]. On the other 
hand, it has been demonstrated that TGF-β-induced FMT in 
lung fibroblasts is associated with the activation of signalling 
via Wnt/GSK-3β/β-catenin [238, 253]. Michalik et al. found 
that inhibition of GSK-3β by LiCl or TWS119 attenuates 
TGF-β1-induced FMT in HBF populations derived from AS 
patients but not in those from healthy donors (Fig. 2). Addi-
tionally, the administration of TGF-β with inhibitors of Wnt/
GSK-3β/β-catenin signalling (LiCL, TWS119) resulted in an 
increased level of β-catenin in NA HBFs compared to AS 
HBFs (Fig. 2). However, stimulation of AS HBFs by TGF-β/
LiCL led to attenuation of the Smad-dependent pathway. 
These reports suggest that impaired intracellular trafficking 
of β-catenin may be involved in the differences in reactiv-
ity of AS and NA HBFs to TGF-β-induced FMT via cross-
talk with Smad-dependent signalling [238]. It appears that 
differences in Smad- or GSK-3β/Wnt/β-catenin-dependent 
pathway activity in AS HBFs after TGF-β1 stimulation are 
closely associated with the cellular and molecular prop-
erties of these cells. In addition, different patterns of the 
above-mentioned proteins may be a response to the diverse 
activity of signalling pathways or may regulate their activ-
ity. However, the most likely scenario is the existence of 
inherent properties of cells that lead to the amplification of 
pro-fibrotic signals, which is supported by the intensified 
FMT potential of HBFs. Sources of phenotypic diversity 
among HBFs may be attributable to the origin of airway 
myofibroblast precursors.

Finally, the data mentioned above suggest that inher-
ent lung/bronchial fibroblast features are as significant as 

growth factors and mechanical properties of the micro-
environment surrounding the cell for the induction and 
effectiveness of FMT during asthma development.

Moreover, it is very important to realize that different 
populations of fibroblasts exist in the bronchial wall of 
AS subjects (Fig. 3). It was previously shown that within 
a single population of bronchial fibroblasts, there are 
cells (up to 20%) insensitive to TGF-β-induced pheno-
typic transition [46, 223, 238, 254]. Moreover, unstimu-
lated AS HBF populations show an enhanced percentage 
of α-SMA+ cells compared to NA counterparts [46, 223, 
238, 255, 256]. The origin of this TGF-β-insensitive popu-
lation is still unexplained but may be associated with the 
infiltration of highly contractile myofibroblast precursors, 
especially CD34+ fibrocytes, mesenchymal stem cells, adi-
pocytes, and pericytes, into the pro-inflammatory niche of 
the bronchial wall. These features may also be linked to 
asthma heterogeneity, showing that the multidirectional 
mechanisms of asthma inevitably lead to the expansion 
of myofibroblasts and the development of subepithelial 
fibrosis.

It is also important to emphasize the impact of cellular 
interactions on FMT potential in fibroblasts. Recent reports 
have indicated that AS epithelial cells favour the accumu-
lation of myofibroblasts and stimulate ECM production in 
human lung fibroblast populations [34, 224]. However, little 
is known about the behaviour of bronchial fibroblasts co-cul-
tured with epithelial cells, especially because different FMT 
potentials are observed between fibroblast populations of 
human bronchial and lung parenchyma (Fig. 3) [257, 258]. 
Finally, the effects of the differentiated features of bronchial 
fibroblasts can also be attributed to epigenetic or genetic fac-
tors (Fig. 3). Even though the impact of these (genetic and/or 
epigenetic) factors on asthma progression has been presented 
by others [259–262], little is known about the genetic and 
epigenetic factors directly affecting the differential response 
of bronchial fibroblasts to pro-inflammatory signals.

Fig. 3   Factors affecting fibro-
blast-to-myofibroblast transition 
during airway wall remodel-
ling in bronchial asthma. FMT 
fibroblast-to-myofibroblast 
transition, TGF-β transform-
ing growth factor-beta EMTU 
epithelial–mesenchymal trophic 
unit, ECM extracellular matrix
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Conclusion

Multiple data summarized in this article clearly indicate 
for the first time that the induction of FMT, a process 
that occurs in AS bronchial walls, requires both extrinsic 
(humoural, mechanical and ECM interactions) factors and 
inherent properties of bronchial fibroblasts (Fig. 3). Despite 
the yet uncertain contribution of these factors to the decline 
in the lung function of AS subjects, it seems practical to 
acknowledge that the literature supports an intervention 
based on topical inhibition of pathways that lead to bron-
chial remodelling.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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